
Introduction to Language Theory and Compilation
Exercises

Session 9: LR(0) and LR(k) parsing

Reminders
A LR-parser is a bottom-up parser unlike a LL-parser which is a top-down parser. The R means rightmost
deviation unlike the second L in a LL-parser. The similarities between LR and LL are that the first L stands
for the reading order (left to right) and they use k lookahead tokens in order to avoid backtracking. The
notation is LR(k).

Canonical finite state machine (CFSM)
A CFSM expresses the decisions made by an LR-parser. As shown in Figure 1, each state contains three
kind of items:

State ID The unique identifier of the current state.

Kernel The current rule(s) that the parser is using.

Closure The rules derived from the kernel.

State ID
Kernel
Closure

Figure 1: Generic state

For instance, from the grammar in Figure 2.1, the state 1 will be the Figure 2.2. The kernel is the start
variable S′ where the marker • is put before the production. This marker specify how far we have come
in the parsing process. Because the state 1 has to read the variable (non-terminal symbol) S, the closure
operation add some rules as items in state 1. These rules are all productions of S (because it is the symbol
we have to read) where the • will be in the first position. The parser still have to read the terminals ’(’ and
’x’ from the closure and the non-terminal ’S’ from the kernel.
By reading the ’(’ from state 1, the parser arrives in state 2 (Figure 2.3) and the kernel consists of all rules
from state 1 for which the parser should read a ’(’ (in the complete version of the state machine, a transition
from state 1 to 2 has the label ’(’). The closure adds all productions of L but because L produces another
non-terminal S, the closure also adds all productions of S. The parser still have to read the terminals ’(’, ’x’
and the non-terminals ’S’, ’L’ from the closure and the non-terminal ’L’ from the kernel. Note that if the
parser reads a ’(’ from state 2, it goes into state 2.
By reading the ’x’ from state 1, the parser arrives in state 3 (Figure 2.4) and the kernel is empty because all
rules from state 1 does not contain a S to read.
By reading the ’L’ from state 2, the parser arrives in state 4 (Figure 2.5) and the marker is put after the L.
All other states are produced in a similar fashion.

(0) S′ → S$
(1) S→ (L)
(2) S→ x
(3) L→ S
(4) L→ L,S
1 Initial grammar

State 1
S′ → •S$
S→•(L)
S→•x

2 Initial state

State 2
S→ (•L)
L→•S
L→•L,S
S→•(L)
S→•x

3 when a (is read
from state 1 or it-
self

State 3
S→ x•

4 when a x
is read from
state 1 or 2

State 2
S→ (L•)
L→ L•,S

5 when the L is
read from state 4

Figure 2: Example of the construction of a canonical finite state machine

1

Action table
Remember that the three operations are accept when the language is accepted by the parser, shift when the
parser reads one more token on the input and reduce when the parser replaces γ by A on the stack where γ

is the top symbols on the stack and there exists a rule of the form A→ γ .
ActionTable() begin

foreach state s of the CFSM do
if s contains A→ α •aβ then

Action[s]← Action[s]∪Shift ;
else if s contains A→ α• that is the ith rule then

Action[s]← Action[s]∪Reducei ;
else if s contains S′→ S$• then

Action[s]← Action[s]∪Accept ;

end

With k > 0

The k lookahead symbols can avoid the backtracking solution when a conflict occurs. Consider the case
where a CFSM state contains both A→ α1 •α2 and B→ γ•: The first rule produces a shift and the second
rule produces a reduce. This is a shift-reduce conflict. Based on the tokens on input, we know we should
or not attempt shifting.

The k parameter will introduce a context which is a set of terminals appended in each item of the states.
These terminals are the set of tokens that can follow the production of the rules.

With u that represents the context, the algorithms become:
Closure(I) begin

repeat
I′← I ;
foreach item [A→ α •Bβ ,σ] ∈ I,B→ γ ∈ G′ do

foreach u ∈ Firstk(βσ) do
I← I∪ [B→•γ, u];

until I′ = I ;
return(I) ;

end

Transition(I,X) begin
return(Closure({[A→ αX •β , u] | [A→ α •Xβ , u] ∈ I})) ;

end

ActionTable() begin
foreach state s of the CFSM do

if s contains [A→ α •aβ , u] then
foreach u ∈ Firstk(aβu) do

Action[s, u]← Action[s, u]∪Shift ;

else if s contains [A→ α•, u], that is the ith rule then
Action[s, u]← Action[s, u]∪Reducei ;

else if s contains [S′→ S$•, ε] then
Action[s, ·]← Action[s, ·]∪Accept ;

end

2

Exercises
Ex. 1. Give the corresponding LR(0) canonical finite state machine and its action table.

(0) S′→S$ (5) C→Fg
(1) S→aCd (6) C→CF
(2) S→bD (7) F→z
(3) S→C f (8) D→y
(4) C→eD

Ex. 2. Simulate with a table (stack, input, action, output) the parser you built during the exercise 1 on the
following string : aeyzzd

Ex. 3. Build the LR(1) parser for the following grammar:

(1) S′→S$
(2) S→A
(3) A→bB
(4) A→a
(5) B→cC
(6) B→cCe
(7) C→dA f

Is the grammar LR(0)? Explain.

Ex. 4. Build the LR(1) parser for the following grammar:

(1) S′→S$
(2) S→SaSb
(3) S→c
(4) S→ε

Simulate it on the following input: abacb.

3

