
Introduction to Language Theory and
Compilation: Exercises
Session 8: Code generation

Faculty of Sciences INFO-F403 – Exercises



Code generation

Two questions:

1 What code to generate? For which architecture?
Low Level Virtual Machine Intermediate Representation
(LLVM IR) for an abstract machine because it is intermediate
code (see http://www.llvm.org)

2 At what point should the code be generated? How can this
be specified formally?

Attribute grammars

Faculty of Sciences INFO-F403 – Exercises

http://www.llvm.org


Abstract machine

In this course, we’ll use LLVM IR as target language, which acts
as a kind of assembly language for an abstract machine.

LLVM IR is a intermediary language developed (originally) for
a Virtual Machine (LLVM), the file extension is *.ll

LLVM IR is can be optimized and compiled to a specific
architecture by using LLVM tools.

For the complete documentation, go to
http://llvm.org/docs/LangRef.html

Faculty of Sciences INFO-F403 – Exercises

http://llvm.org/docs/LangRef.html


LLVM IR – generals

First of all, we present a simplified LLVM because we avoid
objects and visibility.

We also avoid to call specific architecture commands like
commands to access on registers.

Inline comments starts with a ’;’ until the end of line.

Faculty of Sciences INFO-F403 – Exercises



LLVM IR – identifier

Two types
Global identifiers (functions, global variables) begin with the ’@’

character

Local identifiers (register names, types) begin with the ’%’
character

Faculty of Sciences INFO-F403 – Exercises



LLVM IR – identifier

Three formats
Named valuesa ’[%@][a-zA-Z$._][a-zA-Z$._0-9]*’

Unamed values ’[%@]integer’ looks like ’%0’. It is temporaries
values and they are numbered sequentially (using a
per-function incrementing counter, starting with 0).

Constants classical form for numeric (’null’ for pointers,
’true’/’false’ for boolean)

aother characters can be surrounded with quotes and special characters
may be escaped using ’\xx’ where ’xx’ is the hexadecimal ASCII code.

Faculty of Sciences INFO-F403 – Exercises



LLVM IR – primitive types

iN is an integer defined on N bits (i.g. i1 for boolean,
i32 for classic integer)

half 16-bit floating point value

float 32-bit floating point value

double 64-bit floating point value

void does not represent any value and has no size

label represents code labels

array [<# elements> x <elementtype>]

Faculty of Sciences INFO-F403 – Exercises



LLVM IR – function

Syntax
define <ResultType> @<FunctionName> ([argument list])
{

entry:
...

}

Example: sum(a, b)
define i32 @add1(i32 %a, i32 %b)
{

entry:
%varTmp1 = add i32 %a, %b
ret i32 %varTmp1

}

Faculty of Sciences INFO-F403 – Exercises



Simple usage

as an Interpreter
1 Produce the byte-code file

llvm-as code-source.ll -o=code-source.bc
2 Run the interpreter

lli code-source.bc

as an Compiler
1 Produce the byte-code file

llvm-as code-source.ll -o=code-source.bc
2 Run the compiler

llc code-source.bc -o=code-source.bin
3 Run your program

./code-source.bin

Faculty of Sciences INFO-F403 – Exercises



Exercise 1

Assuming that you have defined these functions:

define i32 @readInt ()
define void @println(i32 %value)

Write a LLVM function that computes and outputs the value of:

(3+ x) ∗ (9− y)

where x is a value read on input and y is a global variable.

Faculty of Sciences INFO-F403 – Exercises



Operations

The list of all operations are available on
http://llvm.org/docs/LangRef.html.

The most useful subset is explained in the remainder section of
the statement sheet.

Faculty of Sciences INFO-F403 – Exercises

http://llvm.org/docs/LangRef.html


Exercise 2

Assuming that you have defined these functions:

define i32 @readInt ()
define void @println(i32 %value)

Write a function that:

Allocates memory for two variables we will call a and b

Initializes a and b with values read on input

Adds 5 to a

Divides b by 2

If a > b, output a, else output b

Faculty of Sciences INFO-F403 – Exercises



Exercise 3

Define this function

define i32 @readInt ()

which reads an integer of the form [0-9]+ in base 10 by using

; External declaration of the getchar function
declare i32 @getchar ()

Remember that the character 0 is the ASCII code 48.

Faculty of Sciences INFO-F403 – Exercises



Exercise 4

Translate this C program in LLVM IR.
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int getNumber(void){
return rand() % 100;

}

int main(void){
// initialization of randomizer
srand(time(NULL));
int guess = getNumber ();
int i;
for(i=0;i<5;i++){

int try;
scanf("%d",&try);
if(try > guess){// greater

putchar (45);//-
putchar (10);//\n

Faculty of Sciences INFO-F403 – Exercises



Exercise 4 (ctd.)

}else if(try < guess){//lower
putchar (43);//+
putchar (10);//\n

}else{// success
putchar (79);//O
putchar (75);//K
putchar (10);//\n
return 0;

}
}
// failure
putchar (75);//K
putchar (79);//O
putchar (10);//\n
return 0;

}

Faculty of Sciences INFO-F403 – Exercises


