
Introduction to Language Theory and Compilation
Exercises

Session 8: Code generation

Reminders

Identifier
An identifier can be either a named value ([a-zA-Z$._][a-zA-Z$._0-9]*) or a unamed value ([0-9]+) or a
constant (i.g. null). The named value are used as a variable or a function unlike an unamed value which is
a temporary value (like an intermediate calculation step or a storage of a value). The scope of an identifier
is determined by its first character where @ means global and % means local.

You also have to determine the type of your identifier: i32 for integer, double for real, label repre-
sents code labels and void does not represent any value and has no size. You can also use array: array
[<# elements> x <elementtype>.

Function
A function respect the following signature where entry: is the required label.

define <ResultType > @<FunctionName > ([argument list]){
entry:

...
ret <type > <value >

}

For instance

define i32 @add1(i32 %a, i32 %b){
entry:

%varTmp1 = add i32 %a, %b
ret i32 %varTmp1

}

and you can call this function with its signature

%1 = call i32 @add1(i32 %myFirstInt , i32 %mySecondInt)

Operation
For operations on numbers, a float version is available with the prefix f. For instance fadd for add.

The binary operations are: add, sub, mul, sdiv (the prefix s for signed and u for unsigned), srem (re-
mainder of a division, s/u for the sign). You can also use the bitwise operations: and, or, xor.

In order to use named variable and keep data in memory, you can allocate (a garbage collector will
auto-clean the memory) with the operation allocate. The other operations are store which stores a value
into a pointer made by allocate and load which loads a value from a pointer.

For instance

%a = allocate i32 ; we allocate an integer called ’a’
store i32 1, i32* %a ; we store the value 1 into the pointer ’a’
%1 = load i32* %a ; we load the value pointed by ’a’
%2 = add i32 1,1 ; we put %1+1 into a unamed variable

1

Input/Output
You can use functions from the standard library (stdlib). The usual functions of input/output are

int getchar(void);
int putchar(int c);

The declaration of these function in LLVM IR is

declare i32 @getchar ()
declare i32 @putchar(i32);

Condition
A condition is characterized by a test and a jump. The jump is made by calling one of the two signature of
the br operator:

Unconditional jump br label %myLabel

Conditional jump br i1 %boolValue, label %myLabelIfTrue, label %myLabelIfFalse

The boolean value can be evaluated by using one of boolean operators: eq (==), ne (6=), sgt (s/u for sign,
>), sge (s/u for sign, ≥), slt (s/u for sign, <), sle (s/u for sign, ≤) and by casting this evaluation into a
boolean value with icmp.

For instance

def i32 compareTo(i32 %a, i32 %b){
entry:

%cond = icmp slt i32 %a,%b
br i1 %cond , label %lower , label %greaterORequals

lower:
ret i32 -1

greaterORequals:
%1 = sub i32 %a,%b
ret i32 %1

}

Practical aspect
For more information, go to http://llvm.org/docs/LangRef.html. In order to run the interpreter,
you have to produce byte code and then interpret it:

llvm-as code-source.ll -o=code-source.bc
lli code-source.bc

Exercises
Ex. 1. Assuming that you have defined these functions:

define i32 @readInt ()
define void @println(i32 %value)

Write a LLVM function that computes and outputs the value of:

(3+ x)∗ (9− y)

where x is a value read on input and y is a global variable.

Ex. 2. Assuming that you have defined these functions:

define i32 @readInt ()
define void @println(i32 %value)

2

Write a function that:

• Allocates memory for two variables we will call a and b

• Initializes a and b with values read on input

• Adds 5 to a

• Divides b by 2

• If a > b, output a, else output b

Ex. 3. Define this function

define i32 @readInt ()

which reads an integer of the form [0-9]+ in base 10 by using

; External declaration of the getchar function
declare i32 @getchar ()

Remember that the character 0 is the ASCII code 48.

Ex. 4. Translate this C program in LLVM IR.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int getNumber(void){
return rand() % 100;

}

int main(void){
// initialization of randomizer
srand(time(NULL));
int guess = getNumber ();
int i;
for(i=0;i<5;i++){

int try;
scanf("%d",&try);
if(try > guess){// greater

putchar (45);//-
putchar (10);//\n

}else if(try < guess){//lower
putchar (43);//+
putchar (10);//\n

}else{// success
putchar (79);//O
putchar (75);//K
putchar (10);//\n
return 0;

}
}
// failure
putchar (75);//K
putchar (79);//O
putchar (10);//\n
return 0;

}

3

