Introduction to Language Theory and
Compilation: Exercises
Session 6: First sets, Follow sets and LL(1) parsing

Faculty of Sciences INFO-F403 — Exercises

Prediction issues

@ We've seen that parsers cannot easily make a choice when
several conflicting possibilities arise.

e Top-down parsing: choice between several Produce actions
e Bottom-up parsing: choice between Shift and Reduce actions

@ We had to rely on (horribly inefficient) backtracking
techniques.

@ We'll now attempt to make better use of the input to predict
which action should be taken.

@ The objective is to avoid backtracking altogether.

Faculty of Sciences INFO-F403 — Exercises

o Let a € (VU T)* be a sentential form. We define First“(a)
as the set of strings of k first terminals that can be produced

from «a.

o Formally:
Ya € (VUT)* : First’(a) =

{we THa = wp

A ((lwl=kABeT)V(w <krB=¢))}

Faculty of Sciences INFO-F403 — Exercises

First sets — intuitive illustration

oué
0\).

Faculty of Sciences INFO-F403 — Exercises

g8

First sets — construction algorithm

begin
foreach a € T do FirstX(a) « {a}

foreach Ac V do First(A) « 0

repeat
foreach Ac V do
First“(A) < First“(A)U{x € T* |A = Y1 Y2... Y, A
x € Firstk(Y1) @K First®(Ya) @ - - - @ First*(Y;)}

until stability

Faculty of Sciences INFO-F403 — Exercises

@ Let A be a variable. We define Follow*(A) as the set of k
first terminals of the strings that can follow the productions

of A.
@ Computation:

VAe V\{S}: Followk(A) =

U {First* () ®* Follow*(B)}
B—aAy

U(/f S =& aA then {e} else 0)

Faculty of Sciences INFO-F403 — Exercises

Follow sets — intuitive illustration

o R
4\ /\

—

K
Follow'(A) k caracteres
si possible

/

Faculty of Sciences INFO-F403 — Exercises

Follow sets — construction algorithm

begin
foreach A € V do Follow*(A) < 0 ;

repeat
if B— aAB € P then
| Follow*(A) « Follow*(A) U {First*(8) &* Follow*(B)} ;

until stability;

Faculty of Sciences INFO-F403 — Exercises

Exercise 1

With regards to the grammar given on paper:
@ Give the First'(A) and the Follow!(A) sets for each A€ V.

@ Give the First?(<expression>) and the
Follow?(<expression>) sets.

Faculty of Sciences INFO-F403 — Exercises

Solution for exercise 1.1

| Symbol | First'() | Follow' ()
S begin
program begin $
statement list | ID read write end
statement tail | ID read write € | end

statement ID read write ID read write end
id list D)

id tail , €)

expr list (ID INTLIT)

expr tail , €)

expression (ID INTLIT s,)

primary tail +-¢€)

primary (ID INTLIT -5,

add op + - (ID INTLIT

Faculty of Sciences

INFO-F403 — Exercises

Solution for exercise 1.2

e First?(< expression >) = { ((, (ID, (INTLIT, ID+, ID-,
INTLIT+, INTLIT-, ID, INTLIT }

e Follow?(< expression >) ={ ,(, ,ID, ,INTLIT,);,)+,)-,
),,)), ;read, ;write, ;ID, ;end}

Faculty of Sciences INFO-F403 — Exercises

LL(1) grammars

@ A grammar is said to be LL(1) if it can be recognized by a
top-down parser with one lookahead symbol.

@ Formally:

A grammar G is LL(1) if and only if:
For each production A — a3 and A — as (a1 # an) we have:
First!(a;Follow’(A)) N First! (axFollow! (A)) = ()

Faculty of Sciences INFO-F403 — Exercises

Action table

@ We can easily construct an action table for an LL(1)
grammar.

@ The table tells us what action should be taken depending on
the current symbol on top of the parser’s stack and the
current lookahead symbol.

Il [af[b]c
P1 | P2
al|l M X | X

S - as (1)
— b (2)

Faculty of Sciences INFO-F403 — Exercises

Action table construction algorithm

begin
M+ x ;
foreach A — a do
foreach a € First'(a) do
L MIA, a] < M[A, a] U Produce(A — a) ;
if € € First'(a) then

foreach a € Follow'(A) do
| MI[A, a] < M[A, a] U Produce(A — a) ;

foreach a € T do M|a, a] < Match ;

| MIS$,] < Accept ;

Faculty of Sciences INFO-F403 — Exercises

Exercise 2

Which of these grammars are LL(1)?

S — ABBA
A — ale
B — ble

S — ABc
A — ale
B — ble

o2

W »
L

> 0
L

aSe | B
bBe | C
cCe | d

Ab
alB|e
b|e

Faculty of Sciences

INFO-F403 — Exercises

Solution for exercise 2

©00

not LL(1) because a € Follow!(A), a € First*(A) and we
have the rule A — €. Thus,
MIA, a] = {Produce 2, Produce 3}.

LL(1).
LL(1).
not LL(1) because b € First!(A), b € Follow’(B) and we

have the rule B — €. Thus,
MIA, b] = {Produce 3, Produce 4}.

Faculty of Sciences INFO-F403 — Exercises

Exercise 3

Give the action table for the following grammar:

(1) | <S> - <expr>$

(2) | <expr> — — <expr>

(3) | <expr> - (<expr>)

(4) | <expr> — <var> <expr-tail>
(5) | <expr-tail> — — <expr>

(6) | <expr-tail> — ¢

(7) | <var> — ID <var-tail>

(8) | <var-tail> — (<expr>)

(9) | <var-tail> — ¢

Faculty of Sciences INFO-F403 — Exercises

Solution for exercise 3

|- ¢>|m]s
<S> 11| x| 1]x
<Expr> 2 13| x| 4 | x
<ExprTail> | 5 | x| 6| x | 6
<Var> X | X | x| 7 | X
<VarTail> 91819 x1]9

Faculty of Sciences INFO-F403 — Exercises

Recursive descent parser

How can we implement a top-down parser?
@ We create one function per variable.

@ Each function calls a next_token() function to read the
next token on the input.
@ We use the latter as lookahead symbol and proceed to pick
the right action.
e Call(s) to match(token)
e Call(s) to a function corresponding to another variable (i.e.
Produce)
@ We may also use a syntax_error() function to explicitly
signal that parsing failed.

Faculty of Sciences INFO-F403 — Exercises

Recursive descent parser — example

<statement> — id := <expr> ; | read (<id list>) ; | write (<expr list>) ;

void statement ()

{
token tok = next_token();
switch(tok)
{
case ID:
match(ID); match(ASSIGNOP); expression(); match(SEMICOLON);
break;
case READ:
match(READ) ; match(LPAREN); id_list(); match(RPAREN);
match (SEMICOLON) ; break;
case WRITE:
match(WRITE) ; match(LPAREN); expr_list(); match(RPAREN);
match (SEMICOLON) ; break;
default:
syntax_error(tok); break;
¥
¥

Faculty of Sciences INFO-F403 — Exercises

Exercise 4

Using the grammar given on paper, program a recursive descent
parser for rules (14) through (21).

Faculty of Sciences INFO-F403 — Exercises

