
Introduction to Language Theory and
Compilation: Exercises

Session 6: First sets, Follow sets and LL(1) parsing

Faculty of Sciences INFO-F403 – Exercises

Prediction issues

We’ve seen that parsers cannot easily make a choice when
several conflicting possibilities arise.

Top-down parsing: choice between several Produce actions
Bottom-up parsing: choice between Shift and Reduce actions

We had to rely on (horribly inefficient) backtracking
techniques.

We’ll now attempt to make better use of the input to predict
which action should be taken.

The objective is to avoid backtracking altogether.

Faculty of Sciences INFO-F403 – Exercises

First sets

Let α ∈ (V ∪ T)∗ be a sentential form. We define Firstk(α)
as the set of strings of k first terminals that can be produced
from α.

Formally:
∀α ∈ (V ∪ T)∗ : Firstk(α) =

{ω ∈ T ∗|α ∗⇒ ωβ

∧
(
(|ω| = k ∧ β ∈ T ∗) ∨ (|ω| < k ∧ β = ε)

)
}

Faculty of Sciences INFO-F403 – Exercises

First sets – intuitive illustration

Faculty of Sciences INFO-F403 – Exercises

First sets – construction algorithm

begin
foreach a ∈ T do Firstk(a)← {a}

foreach A ∈ V do Firstk(A)← ∅

repeat
foreach A ∈ V do

Firstk(A)← Firstk(A)∪ {x ∈ T ∗ | A→ Y1Y2 . . .Yn ∧
x ∈ Firstk(Y1)⊕k Firstk(Y2)⊕k · · · ⊕k Firstk(Yn)}

until stability

Faculty of Sciences INFO-F403 – Exercises

Follow sets

Let A be a variable. We define Followk(A) as the set of k
first terminals of the strings that can follow the productions
of A.

Computation:

∀A ∈ V \ {S} : Followk(A) =⋃
B→αAγ

{Firstk(γ)⊕k Followk(B)}

⋃
(if S +⇒ αA then {ε} else ∅)

Faculty of Sciences INFO-F403 – Exercises

Follow sets – intuitive illustration

Faculty of Sciences INFO-F403 – Exercises

Follow sets – construction algorithm

begin
foreach A ∈ V do Followk(A)← ∅ ;
;
repeat

if B → αAβ ∈ P then
Followk(A)← Followk(A) ∪ {Firstk(β)⊕k Followk(B)} ;

until stability ;

Faculty of Sciences INFO-F403 – Exercises

Exercise 1

With regards to the grammar given on paper:
1 Give the First1(A) and the Follow1(A) sets for each A ∈ V .
2 Give the First2(<expression>) and the

Follow2(<expression>) sets.

Faculty of Sciences INFO-F403 – Exercises

Solution for exercise 1.1

Symbol First1() Follow1()

S begin
program begin $
statement list ID read write end
statement tail ID read write ε end
statement ID read write ID read write end
id list ID)
id tail , ε)
expr list (ID INTLIT)
expr tail , ε)
expression (ID INTLIT ; ,)
primary tail + - ε ; ,)
primary (ID INTLIT + - ; ,)
add op + - (ID INTLIT

Faculty of Sciences INFO-F403 – Exercises

Solution for exercise 1.2

First2(< expression >) = { ((, (ID, (INTLIT, ID+, ID-,
INTLIT+, INTLIT-, ID, INTLIT }

Follow2(< expression >) = { ,(, ,ID, ,INTLIT,);,)+,)-,
),,)), ;read, ;write, ;ID, ;end}

Faculty of Sciences INFO-F403 – Exercises

LL(1) grammars

A grammar is said to be LL(1) if it can be recognized by a
top-down parser with one lookahead symbol.

Formally:

A grammar G is LL(1) if and only if:
For each production A→ α1 and A→ α2 (α1 6= α2) we have:

First1(α1Follow1(A)) ∩ First1(α2Follow1(A)) = ∅

Faculty of Sciences INFO-F403 – Exercises

Action table

We can easily construct an action table for an LL(1)
grammar.

The table tells us what action should be taken depending on
the current symbol on top of the parser’s stack and the
current lookahead symbol.

S → aS (1)

→ b (2)

a b c · · ·
S P1 P2 × · · ·
a M × × · · ·
...

...
...

...

Faculty of Sciences INFO-F403 – Exercises

Action table construction algorithm

begin
M ← × ;
foreach A→ α do

foreach a ∈ First1(α) do
M[A, a]← M[A, a] ∪ Produce(A→ α) ;

if ε ∈ First1(α) then
foreach a ∈ Follow1(A) do

M[A, a]← M[A, a] ∪ Produce(A→ α) ;

foreach a ∈ T do M[a, a]← Match ;
;
M[$, ε]← Accept ;

Faculty of Sciences INFO-F403 – Exercises

Exercise 2

Which of these grammars are LL(1)?

3

S → ABc

A → a | ε
B → b | ε

4

S → Ab

A → a | B | ε
B → b | ε

1

S → ABBA

A → a | ε
B → b | ε

2

S → aSe | B
B → bBe | C
C → cCe | d

Faculty of Sciences INFO-F403 – Exercises

Solution for exercise 2

1 not LL(1) because a ∈ Follow1(A), a ∈ First1(A) and we
have the rule A→ ε. Thus,
M[A, a] = {Produce 2,Produce 3}.

2 LL(1).
3 LL(1).
4 not LL(1) because b ∈ First1(A), b ∈ Follow1(B) and we

have the rule B → ε. Thus,
M[A, b] = {Produce 3,Produce 4}.

Faculty of Sciences INFO-F403 – Exercises

Exercise 3

Give the action table for the following grammar:

(1) <S> → <expr> $
(2) <expr> → − <expr>
(3) <expr> → (<expr>)
(4) <expr> → <var> <expr-tail>
(5) <expr-tail> → − <expr>
(6) <expr-tail> → ε

(7) <var> → ID <var-tail>
(8) <var-tail> → (<expr>)
(9) <var-tail> → ε

Faculty of Sciences INFO-F403 – Exercises

Solution for exercise 3

- () ID $
<S> 1 1 × 1 ×
<Expr> 2 3 × 4 ×
<ExprTail> 5 × 6 × 6
<Var> × × × 7 ×
<VarTail> 9 8 9 × 9

Faculty of Sciences INFO-F403 – Exercises

Recursive descent parser

How can we implement a top-down parser?

We create one function per variable.

Each function calls a next_token() function to read the
next token on the input.
We use the latter as lookahead symbol and proceed to pick
the right action.

Call(s) to match(token)
Call(s) to a function corresponding to another variable (i.e.
Produce)

We may also use a syntax_error() function to explicitly
signal that parsing failed.

Faculty of Sciences INFO-F403 – Exercises

Recursive descent parser – example

<statement> → id := <expr> ; | read (<id list>) ; | write (<expr list>) ;

void statement()
{

token tok = next_token();
switch(tok)
{
case ID:

match(ID); match(ASSIGNOP); expression(); match(SEMICOLON);
break;

case READ:
match(READ); match(LPAREN); id_list(); match(RPAREN);
match(SEMICOLON); break;

case WRITE:
match(WRITE); match(LPAREN); expr_list(); match(RPAREN);
match(SEMICOLON); break;

default:
syntax_error(tok); break;

}
}

Faculty of Sciences INFO-F403 – Exercises

Exercise 4

Using the grammar given on paper, program a recursive descent
parser for rules (14) through (21).

Faculty of Sciences INFO-F403 – Exercises

