Introduction to Language Theory and Compilation: Exercises Session 6: Grammars revisited

aculty of Sciences INFO-F403 – Exercises

ULB

< 🗇 🕨 < 🖃 🕨

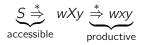
A grammar is described by four components $\langle V, T, P, S \rangle$ where:

- V is the set of variables
- T is the set of terminals
- *P* is the set of production rules

$$P \subseteq (V \cup T)^* V (V \cup T)^* \times (V \cup T)^*$$

```
• S \in V is the start symbol
```

A symbol X ∈ (V ∪ T) is said to be useless if there doesn't exist a derivation of the form:



- To remove useless symbols:
 - We remove unproductive symbols (i.e. from which strings of terminals cannot be derived)

UTB

- We remove inaccessible symbols
- In that order!

- Grammar whose language is empty
 - $\begin{array}{rccc} S & \rightarrow & aAb \\ A & \rightarrow & aA \\ & & bC \\ C & \rightarrow & Ab \end{array}$
- Grammar with an *inaccessible* variable (C)

$$\begin{array}{rccc} S & \rightarrow & aAb \\ A & \rightarrow & aA \\ & & b \\ C & \rightarrow & bA \end{array}$$

ULB

< 🗇 🕨 < 🖃 🕨

.∋...>

Grammar RemoveUnproductive(**Grammar** $G = \langle V, T, P, S \rangle$) begin

$$V_{0} \leftarrow \emptyset ;$$

$$i \leftarrow 0 ;$$

repeat

$$\begin{vmatrix} i \leftarrow i+1 ; \\ V_{i} \leftarrow \{A \mid A \rightarrow \alpha \in P \land \alpha \in (V_{i-1} \cup T)^{*}\} \cup V_{i-1} ;$$

until $V_{i} = V_{i-1};$
 $V' \leftarrow V_{i} ;$
 $P' \leftarrow$ set of rules of P that do not contain variables in $V \setminus V'$
return $(G' = \langle V', T, P', S \rangle) ;$

ULB

 $\begin{array}{l} \textbf{Grammar RemoveInaccessible}(\textbf{Grammar } G = \langle V, T, P, S \rangle) \textbf{ begin} \\ V_0 \leftarrow \{S\} ; i \leftarrow 0 ; \\ \textbf{repeat} \\ & \middle| i \leftarrow i+1 ; \\ V_i \leftarrow \{X \mid \exists A \rightarrow \alpha X\beta \text{ in } P \land A \in V_{i-1}\} \cup V_{i-1} ; \\ \textbf{until } V_i = V_{i-1}; \\ V' \leftarrow V_i \cap V ; T' \leftarrow V_i \cap T ; \\ P' \leftarrow \text{ set of rules of } P \textbf{ that only contain variables from } V_i ; \\ \textbf{return}(G' = \langle V', T', P', S \rangle) ; \\ \end{array}$

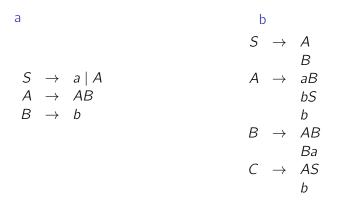
ШЪВ

```
 \begin{array}{c|c} \textbf{Grammar RemoveUseless}(\textbf{Grammar } G = \langle V, T, P, S \rangle) \textbf{ begin} \\ \textbf{Grammar } G_1 \leftarrow \texttt{RemoveUnproductive}(G) ; \\ \textbf{Grammar } G_2 \leftarrow \texttt{RemoveInaccessible}(G_1) ; \\ \texttt{return}(G_2) ; \end{array}
```

ULB

通 ト イ ヨ ト イ ヨ ト

Remove the useless symbols in the following two grammars:



ULB

< 回 > < 三 > < 三 >

• The unproductive symbol removal algorithm stabilises with $V_i = \{S, B\}$ and we thus have:

$$G_1 = \langle \{S, B\}, \{a, b\}, \{S \to a, B \to b\}, S \rangle$$

• We notice *B* can't be accessed from *S* in this new grammar and can thus be removed. We then end up with:

$$G' = \langle \{S\}, \{a\}, \{S \to a\}, s \rangle$$

Solution for exercise 1.b

• Computational steps for V_i :

$$\begin{array}{c|ccc}
i & V_i \\
\hline
0 & \emptyset \\
1 & \{C, A\} \\
2 & \{C, A, S\} \\
3 & \{C, A, S\}
\end{array}$$

• We thus have the following *P*':

$$\begin{array}{cccc} S & \to & A \\ A & \to & bS \\ & & b \\ C & \to & AS \\ & & b \end{array}$$

ULB

э

• We can now remove the inaccessible symbols:

$$\begin{array}{c|cc}
i & V_i \\
\hline
0 & \{S\} \\
1 & \{S, A\} \\
2 & \{S, A\}
\end{array}$$

• We thus obtain $G' = \langle V', P', T', S' \rangle$ where:

•
$$V' = \{S, A\}$$

• $P' = \{S \rightarrow A, A \rightarrow bS \mid b\}$
• $T' = \{b\}$

ULB

くぼう くほう くほう

1

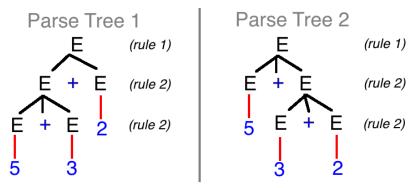
- A grammar G is said to be ambiguous if there exists a word w ∈ L(G) such that there exists at least two different parse trees for w.
- Example of an ambiguous grammar:

$$E \rightarrow E + E$$

 $E * E$
 (E)
integer

• In the above example, the word 5 + 3 + 2 has more than one possible parse tree.

CFG transformations (ctd.)



red edges illustrate the rule 4 blue symbols are terminals

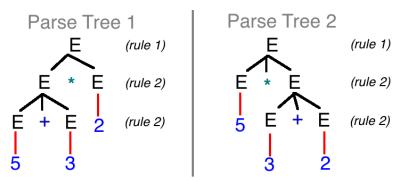
ULB

< (1) > < (1) > <

- Operator associativity: in the preceding example, the ambiguity arises from the fact that + can be interpreted as left or right associative.
- Operator precedence: it can also be observed on the previous grammar that * did not have precedence over +.

ULB

CFG transformations (ctd.)



red edges illustrate the rule 4 blue symbols are terminals

What happens if the first + change to a *?

3 + 2 = 5

5 * 5 = 25

- 5 + 3 = 8
- 8 * 2 = **16**

We can solve the associativity problem by transforming G into the following G' which forces left associativity:

$$E \rightarrow E+T$$

$$E * T$$

$$T$$

$$T \rightarrow (E)$$

$$nb$$

ULB

通 ト イ ヨ ト イ ヨ ト

We can then force precedence for * over + by transforming G' into the following G'':

$$\begin{array}{cccc} E & \rightarrow & E+T \\ & T \\ T & \rightarrow & T*F \\ & F \\ F & \rightarrow & (E) \\ & nb \end{array}$$

ULB

< 同 > < 三 > < 三 >

Consider the following grammar:

$$\begin{array}{cccc} E & \rightarrow & E \ op \ E \\ & & ID[E] \\ & ID \\ op & \rightarrow & * \\ & & / \\ & & + \\ & & - \\$$

• Show that the grammar is ambiguous.

• The desired operator precedence is the following:

 $\{[],->\} \ > \ \{*,/\} \ > \ \{+,-\}.$

Transform the grammar so that it accounts for operator precedence and left associativity.

伺 ト イヨト イヨト

Solution for exercise 2

Faculty of Sciences INFO-F403 – Exercises

ULB

2

イロト イヨト イヨト イヨト

- Left factoring aims to remove rules that share a common prefix since they make life difficult for predictive parsing.
- Sometimes, left factoring is enough to turn a given CFG into an LL(1) grammar!
- Example :

$$S \rightarrow ab \mid aa$$

is not LL(1). After left factoring, we get:

$$\begin{array}{cccc} S &
ightarrow & aN \ N &
ightarrow & a \mid b \end{array}$$

ULB

which is LL(1)!

```
LeftFactor (Grammar G = \langle V, T, P, S \rangle) begin

while G has at least two rules with the same left-hand side and a

common prefix do

Let E = \{A \to \alpha\beta, \dots, A \to \alpha\zeta\} be such a set of rules ;

Let \mathcal{V} be a new variable;

V = V \cup \mathcal{V};

P = P \setminus E;

P = P \cup \{A \to \alpha\mathcal{V}, \mathcal{V} \to \beta, \dots, \mathcal{V} \to \zeta\};
```

ŪИВ

Left-factor the following production rules:

- <stmt> \rightarrow if <expr> then <stmt-list> end if
- <stmt> \rightarrow if <expr> then <stmt-list> else <stmt-list> end if

ULB

通 ト イ ヨ ト イ ヨ ト

- <stmt> \rightarrow if <expr> then <stmt-list> <if-tail>
- <if-tail> \rightarrow end if
- <if-tail> \rightarrow else <stmt-list> end if

ULB

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- For the same reasons, it is often useful to suppress left (or right) recursion in a given grammar.
- The following grammar is left recursive:

 $S \rightarrow S\alpha \mid \beta$

• It can be transformed into the equivalent (but not left recursive) grammar:

$$egin{array}{cccc} S & o & \mathcal{VT} \ \mathcal{V} & o & eta \ \mathcal{T} & o & lpha \mathcal{T} \mid arepsilon \end{array}$$

ULB

```
RemoveLeftRecursion(Grammar G = \langle V, T, P, S \rangle) begin

while G contains a left recursive variable A do

Let E = \{A \to A\alpha, A \to \beta, ..., A \to \zeta\} be the set of rules that

have A as left-hand side ;

Let U and V be two new variables ;

V = V \cup \{U, V\} ;

P = P \setminus E ;

P = P \cup \{A \to UV, U \to \beta, ..., U \to \zeta, V \to \alpha V, V \to \varepsilon\} ;
```

Apply the left recursion removal algorithm to the following grammar:

$$\begin{array}{ccc} E & \rightarrow & E+T \\ & T \\ T & \rightarrow & T*P \\ & P \\ P & \rightarrow & ID \end{array}$$

ULB

2

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶

Solution for exercise 4

$$\begin{array}{cccc} E & \rightarrow & AB \\ A & \rightarrow & T \\ B & \rightarrow & +TB \\ & & \varepsilon \\ T & \rightarrow & CD \\ C & \rightarrow & P \\ D & \rightarrow & *PD \\ & & \varepsilon \\ P & \rightarrow & ID \end{array}$$

Faculty of Sciences INFO-F403 – Exercises

ULB

2

<ロト <回ト < 三ト < 三ト

Transform the following grammar into an LL(1) grammar:

$$\begin{array}{rcl} S & \rightarrow & aE \mid bF \\ E & \rightarrow & bE \mid \epsilon \\ F & \rightarrow & aF \mid aG \mid aHD \\ G & \rightarrow & Gc \mid d \\ H & \rightarrow & Ca \\ C & \rightarrow & Hb \\ D & \rightarrow & ab \end{array}$$

ULB

< 同 > < 三 > < 三 >

- Remove unproductive symbols: H and C are both unproductive as they are mutually recursive and that they cannot produce anything useful. We can thus remove rules $H \rightarrow Ca, C \rightarrow Hb$ and $F \rightarrow aHD$.
- **(2)** Remove inaccessible symbols: by removing rule $F \rightarrow aHD$, D became inaccessible. We can thus remove $D \rightarrow ab$.

TILR

So far, we have:

$$\begin{array}{rrrr} S & \rightarrow & aE \mid bF \\ E & \rightarrow & bE \mid \varepsilon \\ F & \rightarrow & aF \mid aG \\ G & \rightarrow & Gc \mid d \end{array}$$

- Solution Content is a constraint of the formula in the formula in the formula is a constraint of the formula in the formula in the formula in the formula is a constraint of the formula in the formula
- Left factoring: we replace $F \rightarrow aF \mid aG$ with $F \rightarrow aF'$ and $F' \rightarrow F \mid G$.

We can now check whether our final grammar is LL(1) by building the corresponding action table and verifying that no conflicts arise.

(0)	CI	,	C¢		а	b	С	d	\$
			S\$ aE bF	S'	P0	P0	×	×	×
()			bE ε	S	P1	P2	×	×	×
(3, 4)				Ε	×	P3	×	×	P4
			F G	F	P5	×	×	×	×
(8)				F'	P6	×	×	Ρ7	×
()			$cG' \mid \varepsilon$	G	×	×	×	P8	×
(-,,	-	·		G'	×	×	P9	×	P10

... and we're done!