
Introduction to Language Theory and
Compilation: Exercises
Session 6: Grammars revisited

Faculty of Sciences INFO-F403 – Exercises

Grammars: quick reminder

A grammar is described by four components 〈V ,T ,P,S〉 where:
V is the set of variables

T is the set of terminals

P is the set of production rules

P ⊆ (V ∪ T)∗V (V ∪ T)∗ × (V ∪ T)∗

S ∈ V is the start symbol

Faculty of Sciences INFO-F403 – Exercises

Useless symbols

A symbol X ∈ (V ∪ T) is said to be useless if there doesn’t
exist a derivation of the form:

S ∗⇒︸︷︷︸
accessible

wXy ∗⇒ wxy︸ ︷︷ ︸
productive

To remove useless symbols:
We remove unproductive symbols (i.e. from which strings of
terminals cannot be derived)
We remove inaccessible symbols

In that order!

Faculty of Sciences INFO-F403 – Exercises

Useless symbols – examples

Grammar whose language is empty
S → aAb
A → aA

bC
C → Ab

Grammar with an inaccessible variable (C)
S → aAb
A → aA

b
C → bA

Faculty of Sciences INFO-F403 – Exercises

Useless symbols – algorithms

Grammar RemoveUnproductive(Grammar G = 〈V ,T ,P,S〉) begin
V0 ← ∅ ;
i ← 0 ;
repeat

i ← i + 1 ;
Vi ← {A | A→ α ∈ P ∧ α ∈ (Vi−1 ∪ T)∗} ∪ Vi−1 ;

until Vi = Vi−1;
V ′ ← Vi ;
P ′ ← set of rules of P that do not contain variables in V \ V ′ ;
return(G ′ = 〈V ′,T ,P ′,S〉) ;

Faculty of Sciences INFO-F403 – Exercises

Useless symbols – algorithms (ctd.)

Grammar RemoveInaccessible(Grammar G = 〈V ,T ,P,S〉) begin
V0 ← {S} ; i ← 0 ;
repeat

i ← i + 1 ;
Vi ← {X | ∃ A→ αXβ in P ∧ A ∈ Vi−1} ∪ Vi−1 ;

until Vi = Vi−1;
V ′ ← Vi ∩ V ; T ′ ← Vi ∩ T ;
P ′ ← set of rules of P that only contain variables from Vi ;
return(G ′ = 〈V ′,T ′,P ′,S〉) ;

Faculty of Sciences INFO-F403 – Exercises

Useless symbols – algorithms (ctd.)

Grammar RemoveUseless(Grammar G = 〈V ,T ,P,S〉) begin
Grammar G1 ← RemoveUnproductive(G) ;
Grammar G2 ← RemoveInaccessible(G1) ;
return(G2) ;

Faculty of Sciences INFO-F403 – Exercises

Exercise 1

Remove the useless symbols in the following two grammars:

a b

S → a | A
A → AB
B → b

S → A
B

A → aB
bS
b

B → AB
Ba

C → AS
b

Faculty of Sciences INFO-F403 – Exercises

CFG transformations

A grammar G is said to be ambiguous if there exists a word
w ∈ L(G) such that there exists at least two different parse
trees for w .

Example of an ambiguous grammar:
E → E + E

E ∗ E
(E)
integer

In the above example, the word 5+ 3+ 2 has more than one
possible parse tree.

Faculty of Sciences INFO-F403 – Exercises

CFG transformations (ctd.)

Faculty of Sciences INFO-F403 – Exercises

CFG transformations (ctd.)

Operator associativity: in the preceding example, the
ambiguity arises from the fact that + can be interpreted as
left or right associative.

Operator precedence: it can also be observed on the previous
grammar that ∗ did not have precedence over +.

Faculty of Sciences INFO-F403 – Exercises

CFG transformations (ctd.)

Faculty of Sciences INFO-F403 – Exercises

Ambiguity removal

We can solve the associativity problem by transforming G into
the following G ′ which forces left associativity:

E → E + T
E ∗ T
T

T → (E)
nb

Faculty of Sciences INFO-F403 – Exercises

Ambiguity removal (ctd.)

We can then force precedence for ∗ over + by transforming G ′

into the following G ′′:

E → E + T
T

T → T ∗ F
F

F → (E)
nb

Faculty of Sciences INFO-F403 – Exercises

Exercise 2

Consider the following
grammar:

E → E op E
ID[E]
ID

op → ∗
/

+
−
− >

Show that the grammar is ambiguous.

The desired operator precedence is
the following:
{[],− >} > {∗, /} > {+,−}.
Transform the grammar so that it
accounts for operator precedence and
left associativity.

Faculty of Sciences INFO-F403 – Exercises

Left factoring

Left factoring aims to remove rules that share a common
prefix since they make life difficult for predictive parsing.

Sometimes, left factoring is enough to turn a given CFG into
an LL(1) grammar!

Example :
S → ab | aa

is not LL(1). After left factoring, we get:

S → aN
N → a | b

which is LL(1)!

Faculty of Sciences INFO-F403 – Exercises

Left factoring – algorithm

LeftFactor(Grammar G = 〈V ,T ,P,S〉) begin
while G has at least two rules with the same left-hand side and a
common prefix do

Let E = {A→ αβ, . . . ,A→ αζ} be such a set of rules ;
Let V be a new variable;
V = V ∪ V ;
P = P \ E ;
P = P ∪ {A→ αV,V → β, . . . ,V → ζ};

Faculty of Sciences INFO-F403 – Exercises

Exercise 3

Left-factor the following production rules:
<stmt> → if <expr> then <stmt-list> end if
<stmt> → if <expr> then <stmt-list> else <stmt-list> end if

Faculty of Sciences INFO-F403 – Exercises

Left recursion

For the same reasons, it is often useful to suppress left (or
right) recursion in a given grammar.

The following grammar is left recursive:

S → Sα | β

It can be transformed into the equivalent (but not left
recursive) grammar:

S → VT
V → β

T → αT | ε

Faculty of Sciences INFO-F403 – Exercises

Left recursion removal algorithm

RemoveLeftRecursion(Grammar G = 〈V ,T ,P,S〉) begin
while G contains a left recursive variable A do

Let E = {A→ Aα,A→ β, . . . ,A→ ζ} be the set of rules that
have A as left-hand side ;
Let U and V be two new variables ;
V = V ∪ {U ,V} ;
P = P \ E ;
P = P ∪ {A→ UV,U → β, . . . ,U → ζ,V → αV,V → ε} ;

Faculty of Sciences INFO-F403 – Exercises

Exercise 4

Apply the left recursion removal algorithm to the following
grammar:

E → E + T
T

T → T ∗ P
P

P → ID

Faculty of Sciences INFO-F403 – Exercises

Exercise 5 – former exam question

Transform the following grammar into an LL(1) grammar:

S → aE | bF
E → bE | ε
F → aF | aG | aHD
G → Gc | d
H → Ca
C → Hb
D → ab

Faculty of Sciences INFO-F403 – Exercises

