Introduction to Language Theory and
Compilation: Exercises

Session 6: Grammars revisited

Faculty of Sciences INFO-F403 — Exercises

Grammars: quick reminder

A grammar is described by four components (V, T, P, S) where:
@ V is the set of variables
@ T is the set of terminals

@ P is the set of production rules
PC(VUT)*V(VUT)* x(VuT)*

@ S € Vs the start symbol

Faculty of Sciences INFO-F403 — Exercises

Useless symbols

@ A symbol X € (VU T) is said to be useless if there doesn’t
exist a derivation of the form:

* %
S= wXy = wxy
<~ ——
accessible productive

@ To remove useless symbols:

e We remove unproductive symbols (i.e. from which strings of
terminals cannot be derived)
e We remove inaccessible symbols

@ In that order!

Faculty of Sciences INFO-F403 — Exercises

Useless symbols — examples

@ Grammar whose language is empty
S — aAb
A — aA
bC
C — Ab
@ Grammar with an inaccessible variable (C)
S — aAb
A — aA
b
C — bA

Faculty of Sciences INFO-F403 — Exercises

Useless symbols — algorithms

Grammar RemoveUnproductive(Grammar G = (V, T, P, S)) begin
Vo 0 ;
i< 0;
repeat
[+—i+1;
\/,'<—{A|A—>CXEP/\OL€(V,;1UT)*}U\/,;l;
until V; = V;_q;
Vi« Vi
P’ < set of rules of P that do not contain variables in V' \ V' ;
return(G' = (V', T, P, S)) ;

Faculty of Sciences INFO-F403 — Exercises

Useless symbols — algorithms (ctd.)

Grammar RemoveInaccessible(Grammar G = (V, T, P, S)) begin
Vo« {S};i«0;
repeat
i+—i+1;
Vi—{X|IA=aXBin PANAE V,_1}UVi_;;
until V;, = Vi_;
VieVinV, T« V,NnT;
P’ + set of rules of P that only contain variables from V; ;
return(G' =(V', T",P',S)) ;

Faculty of Sciences INFO-F403 — Exercises

Useless symbols — algorithms (ctd.)

Grammar RemoveUseless(Grammar G = (V, T, P, S)) begin
Grammar G; < RemoveUnproductive(G) ;
Grammar G, < Removelnaccessible(Gy) ;
return(Gy) ;

Faculty of Sciences INFO-F403 — Exercises

Exercise 1

Remove the useless symbols in the following two grammars:

W >0

A

S Y
oy
o
)

Faculty of Sciences INFO-F403 — Exercises

CFG transformations

@ A grammar G is said to be ambiguous if there exists a word
w € L(G) such that there exists at least two different parse

trees for w.
@ Example of an ambiguous grammar:
E - E+4+E
ExE
(E)
integer

@ In the above example, the word 5 + 3 4+ 2 has more than one
possible parse tree.

Faculty of Sciences INFO-F403 — Exercises

CFG transformations (ctd.)

Parse Tree 1 Parse Tree 2
E (rule 1) E (rule 1)
at T\
E + E (ue2 E + E (rule 2)
||E + ||E 2 (ule2) 5 E + ||E (rule 2)
5 3 3 2

red edges illustrate the rule 4
blue symbols are terminals

Faculty of Sciences INFO-F403 — Exercises

CFG transformations (ctd.)

@ Operator associativity: in the preceding example, the
ambiguity arises from the fact that 4+ can be interpreted as
left or right associative.

@ Operator precedence: it can also be observed on the previous
grammar that % did not have precedence over +.

Faculty of Sciences INFO-F403 — Exercises

CFG transformations (ctd.)

Parse Tree 1

E (rule 1)
/N
E * E (ue2
/T

E + E 2o (ue2
5 3

Parse Tree 2

E (rule 1)
TN
E « E (rule 2)
| AN
5 E + E (ue2
3 2

red edges illustrate the rule 4
blue symbols are terminals

What happens if the first + change to a *?

°5+3=8
8*2=16

3+2=5
5*5=25

Faculty of Sciences

INFO-F403 — Exercises

Ambiguity removal

We can solve the associativity problem by transforming G into
the following G’ which forces left associativity:

E — E+T
ExT
T

T — (E)
nb

Faculty of Sciences INFO-F403 — Exercises

Ambiguity removal (ctd.)

We can then force precedence for * over + by transforming G’
into the following G”:

E —- E+T
T

T — TxF
F

F — (E)
nb

Faculty of Sciences INFO-F403 — Exercises

Exercise 2

@ Show that the grammar is ambiguous.

Consider the following
grammar:
E — EopE
ID[E]
1D
op — x
/
|
- >

@ The desired operator precedence is

the following:

{.=>r>{=/r > {+ -}
Transform the grammar so that it
accounts for operator precedence and
left associativity.

Faculty of Sciences

INFO-F403 — Exercises

Left factoring

@ Left factoring aims to remove rules that share a common
prefix since they make life difficult for predictive parsing.

@ Sometimes, left factoring is enough to turn a given CFG into
an LL(1) grammar!

@ Example :
S—ab|aa

is not LL(1). After left factoring, we get:

S — aN
N — al|b

which is LL(1)!

Faculty of Sciences INFO-F403 — Exercises

Left factoring — algorithm

LeftFactor(Grammar G = (V, T, P, S)) begin
while G has at least two rules with the same left-hand side and a
common prefix do

let E={A—af,..., A — a(} be such a set of rules ;

Let V be a new variable;

V=VUuy,;

P=P\E;

P=PU{A-aV, V-0,V—=(}

Faculty of Sciences INFO-F403 — Exercises

Exercise 3

Left-factor the following production rules:
<stmt> — if <expr> then <stmt-list> end if
<stmt> — if <expr> then <stmt-list> else <stmt-list> end if

Faculty of Sciences INFO-F403 — Exercises

Left recursion

@ For the same reasons, it is often useful to suppress left (or
right) recursion in a given grammar.

@ The following grammar is left recursive:
S—Sal|pg

@ It can be transformed into the equivalent (but not left
recursive) grammar:

S —» VT
y —» 0
T — aT e

Faculty of Sciences INFO-F403 — Exercises

Left recursion removal algorithm

RemovelLeftRecursion(Grammar G = (V, T, P, S)) begin

while G contains a left recursive variable A do

Let E={A— Ao, A—3,...,A— (} be the set of rules that
have A as left-hand side ;

Let & and V be two new variables ;

V=Vvu{u,vy};

P=P\E;

P=PU{A-UV.U—=B,..., U—-¢V—al,V—el;

Faculty of Sciences INFO-F403 — Exercises

Exercise 4

Apply the left recursion removal algorithm to the following

grammar:
E —- E+4+T

T
T — T=xP

P

P — ID

Faculty of Sciences INFO-F403 — Exercises

Exercise 5 — former exam question

Transform the following grammar into an LL(1) grammar:

aE | bF

bE | €

aF | aG | aHD
Ge | d

Ca

Hb

ab

TCOoITommun
A A

Faculty of Sciences INFO-F403 — Exercises

