Introduction to Language Theory and Compilation: Exercises Session 3: Introduction to grammars

Faculty of Sciences INFO-F403 – Exercises

ULB

▲ 同 ▶ ▲ 三

A grammar is a tuple $G = \langle V, T, P, S \rangle$ where

- *V* is the set of *nonterminals* (or *variables*);
- *T* is the set of *terminals*;
- *P* is the set of *production rules*. In the general case:

$$P \subseteq \underbrace{(V \cup T)^* V(V \cup T)^*}_{\bullet} \times (V \cup T)^*$$

at least one variable

• $S \in V$ is the start symbol.

Let G be a grammar whose production rules in P are:

$$\begin{array}{cccc} S &
ightarrow & aSbS \ S &
ightarrow & bSaS \ S &
ightarrow & e \end{array}$$

The rules can also be written in a more compact form:

 $S \rightarrow aSbS \mid bSaS \mid e$

S is the only variable (or nonterminal) and is also the start symbol. We have $T = \{a, b, e\}$.

ULB

The string abeaebe can be parsed using G and is thus part of the language defined by the grammar.

Class 0: Unrestricted grammars

No restrictions on the structure of production rules.

 \implies A bag of production rules.

ULB

글 🕨 🖌 글

Chomsky hierarchy – class 1/3

Class 1: Context-sensitive grammars Every production rule must have the following structure:

 $\alpha \rightarrow \beta$

with $|\alpha| \leq |\beta|$. As an exception, the following rule may be part of the grammar as well:

 $S \to \varepsilon$

where S is the start symbol. This rule is only allowed if S never appears on the right hand of any production rule.

ULB

⇒ A starting production rule *S* and each production rule is composed of a pair of ordered sets (left,right) where $|left| \leq |right|$.

Class 2: Context-free grammars (CFG) Every rule must obey the following structure:

A
ightarrow lpha

ULB

\implies A starting production rule *S* and each production rule is composed of a pair of ordered sets (left,right) where | *left* |= 1

Class 3: Regular grammars Two subclasses: *Right linear grammars* Rules must obey this structure:

$$A \rightarrow wB$$
 or $A \rightarrow w$ $(w \in T^*)$

Left linear grammars Rules must obey this structure:

$$A \to Bw$$
 or $A \to w$ $(w \in T^*)$

ULB

 \implies A starting production rule *S* and each production rule is composed of a pair of ordered sets (left,right) where | *left* |= 1and *right* may contain **some terminals** but at most **one starting/ending variable**. Class 0: Unrestricted grammars A bag of production rules

- Class 1: CS grammars A starting production rule S and each production rule is composed of a pair of ordered sets (left,right) where $|left| \leq |right|$.
- Class 2: CF grammars A starting production rule S and each production rule is composed of a pair of ordered sets (left,right) where | left |= 1
- *Class 3: RE grammars* A starting production rule *S* and each production rule is composed of a pair of ordered sets (left,right) where | *left* |= 1 and *right* may contain some terminals but at most one starting/ending variable

< 回 > < 三 > < 三 >

Informally describe the languages generated by the following grammars and also specify what kind of grammars they are:

$$(a) \begin{bmatrix} S & \rightarrow & abcA \\ & Aabc \\ A & \rightarrow & \varepsilon \\ Aa & \rightarrow & Sa \\ cA & \rightarrow & cS \end{bmatrix}$$
$$(b) \begin{bmatrix} S & \rightarrow & 0 \\ & 1 \\ & 1S \end{bmatrix} (c) \begin{bmatrix} S & \rightarrow & a \\ & *SS \\ & +SS \end{bmatrix}$$

ULB

通 ト イ ヨ ト イ ヨ ト

- Unrestricted grammar giving all strings made of *abc* taken at least once. Not CS because A → e and the only rule which can generate e is S.
- Right linear grammar giving all strings made of 1s which may be followed by a single 0. 0 itself is also accepted.
- Context-free grammar giving all arithmetical expressions (in polish notation) using addition and multiplication with the mathematical variable called *a*. Not class 3 because two variables (2 × S) in the set *right*.

Let *G* be the following grammar:

- Is G a regular grammar?
- 2 Give the *parse tree* for
 - a) baabaab
 - b) bBABb
 - c) baSb

Give the leftmost and rightmost derivations for baabaab

э.

Is G regular?

The given grammar is context-free but *not regular* : there cannot be a rule like $A \rightarrow \alpha B$ combined with a rule like $A \rightarrow B\alpha$ in a regular grammar.

Left and Right linear grammars are exclusive.

Solution for exercise 2 - 2/5

Give the parse tree for
 a) baabaab

Solution 2 for exercise 2 - 3/5

Solution for exercise 2 - 4/5

Give the leftmost and rightmost derivations for baabaab

The *leftmost* derivation of *baabaab* is: $S \Rightarrow AB \Rightarrow AaB \Rightarrow bBaB \Rightarrow baaB \Rightarrow baaSb \Rightarrow baaABb \Rightarrow$ $baabBBb \Rightarrow baabaBb \Rightarrow baabaab$

The *rightmost* derivation is: $S \Rightarrow AB \Rightarrow ASb \Rightarrow AABb \Rightarrow$ $AAab \Rightarrow AbBab \Rightarrow Abaab \Rightarrow Aabaab \Rightarrow bBabaab \Rightarrow baabaab$

Write a context-free grammar that generates all strings of as and bs (in any order) such that there are more as than bs.
 Test your grammar on the input baaba by giving a derivation.

ULB

.∋⇒

Write a context-free grammar that generates all strings of as and bs (in any order) such that there are more as than bs.
 Test your grammar on the input baaba by giving a derivation.

Trick: when you add a b, you also add a a in order to have at least |a| = |b|

$S \rightarrow bSa \mid aSb \mid abS \mid baS \mid Sab \mid Sba \mid Sa \mid aS \mid a$ We can derive *baaba* from this grammar:

$$S \Rightarrow baS \Rightarrow baabS \Rightarrow baaba$$

ULB

< 回 > < 三 > < 三 >

Write a context-sensitive grammar that generates all strings of as, bs and cs (in any order) such that there are as many of each. Give a derivation of cacbab using your grammar.

Solution for exercise 4

n°	Rule			idea
(1)	S	\rightarrow	Sı	words
(2)	S	\rightarrow	ε	nowords
(3)	Sı	\rightarrow	ABC	a = b = c
(4)	Sı	\rightarrow	ABCS/	concat words
(5)	AB	\rightarrow	BA	swap a and b
(6)	AC	\rightarrow	CA	swap a and a
(7)	BA	\rightarrow	AB	swap b and a
(8)	ВС	\rightarrow	СВ	swap b and c
(9)	СА	\rightarrow	AC	swap c and a
(10)	СВ	\rightarrow	BC	swap c and b
(11)	Α	\rightarrow	а	variable; to terminal
(12)	В	\rightarrow	b	variable; to terminal
(13)	С	\rightarrow	С	variable; to terminal

cacbab can be derived from this grammar:

 $\begin{array}{l} S \stackrel{(1)}{\Rightarrow} S' \stackrel{(4)}{\Rightarrow} ABCS' \stackrel{(3)}{\Rightarrow} ABCABC \stackrel{(8)}{\Rightarrow} ACBABC \stackrel{(6)}{\Rightarrow} CABABC \stackrel{(8)}{\Rightarrow} \\ CABACB \stackrel{(6)}{\Rightarrow} CABCAB \stackrel{(8)}{\Rightarrow} CACBAB \stackrel{(13)}{\Rightarrow} cACBAB \stackrel{(11)}{\Rightarrow} caCBAB \stackrel{(13)}{\Rightarrow} \\ cacBAB \stackrel{(12)}{\Rightarrow} cacbAB \stackrel{(11)}{\Rightarrow} cacbaB \stackrel{(12)}{\Rightarrow} cacbab \end{array}$

