Introduction to Language Theory and Compilation: Exercises Session 3: Introduction to grammars

Faculty of Sciences INFO-F403 – Exercises

ULB

▲ 同 ▶ ▲ 三

A grammar is a tuple $G = \langle V, T, P, S \rangle$ where

- *V* is the set of *nonterminals* (or *variables*);
- T is the set of *terminals*;
- *P* is the set of *production rules*. In the general case:

$$P \subseteq \underbrace{(V \cup T)^* V (V \cup T)^*}_{\bullet} \times (V \cup T)^*$$

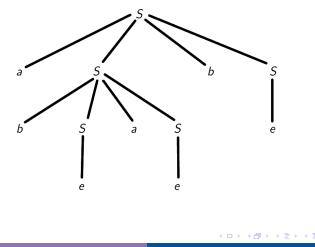
at least one variable

• $S \in V$ is the start symbol.

ULB

Let G be a grammar whose production rules in P are:

$$\begin{array}{cccc} S &
ightarrow & aSbS \ S &
ightarrow & bSaS \ S &
ightarrow & e \end{array}$$


The rules can also be written in a more compact form:

 $S \rightarrow aSbS \mid bSaS \mid e$

S is the only variable (or nonterminal) and is also the start symbol. We have $T = \{a, b, e\}$.

ULB

The string abeaebe can be parsed using G and is thus part of the language defined by the grammar.

ULB

Class 0: Unrestricted grammars

No restrictions on the structure of production rules.

 \implies A bag of production rules.

ULB

글 🕨 🖌 글

Chomsky hierarchy – class 1/3

Class 1: Context-sensitive grammars Every production rule must have the following structure:

 $\alpha \rightarrow \beta$

with $|\alpha| \leq |\beta|$. As an exception, the following rule may be part of the grammar as well:

 $S \to \varepsilon$

where S is the start symbol. This rule is only allowed if S never appears on the right hand of any production rule.

ULB

⇒ A starting production rule *S* and each production rule is composed of a pair of ordered sets (left,right) where $|left| \leq |right|$.

Class 2: Context-free grammars (CFG) Every rule must obey the following structure:

A
ightarrow lpha

ULB

\implies A starting production rule *S* and each production rule is composed of a pair of ordered sets (left,right) where | *left* |= 1

Class 3: Regular grammars Two subclasses: *Right linear grammars* Rules must obey this structure:

$$A \rightarrow wB$$
 or $A \rightarrow w$ $(w \in T^*)$

Left linear grammars Rules must obey this structure:

$$A \to Bw$$
 or $A \to w$ $(w \in T^*)$

ULB

 \implies A starting production rule *S* and each production rule is composed of a pair of ordered sets (left,right) where | *left* |= 1and *right* may contain **some terminals** but at most **one starting/ending variable**. Class 0: Unrestricted grammars A bag of production rules

- Class 1: CS grammars A starting production rule S and each production rule is composed of a pair of ordered sets (left,right) where $|left| \leq |right|$.
- Class 2: CF grammars A starting production rule S and each production rule is composed of a pair of ordered sets (left,right) where | left |= 1
- *Class 3: RE grammars* A starting production rule *S* and each production rule is composed of a pair of ordered sets (left,right) where | *left* |= 1 and *right* may contain some terminals but at most one starting/ending variable

< 回 > < 三 > < 三 >

Informally describe the languages generated by the following grammars and also specify what kind of grammars they are:

$$(a) \begin{bmatrix} S & \rightarrow & abcA \\ & Aabc \\ A & \rightarrow & \varepsilon \\ Aa & \rightarrow & Sa \\ cA & \rightarrow & cS \end{bmatrix}$$
$$(b) \begin{bmatrix} S & \rightarrow & 0 \\ & 1 \\ & 1S \end{bmatrix} (c) \begin{bmatrix} S & \rightarrow & a \\ & *SS \\ & +SS \end{bmatrix}$$

ULB

通 ト イ ヨ ト イ ヨ ト

Let *G* be the following grammar:

$$\begin{array}{cccc} S & \rightarrow & AB \\ A & \rightarrow & Aa \\ A & \rightarrow & bB \\ B & \rightarrow & a \\ B & \rightarrow & Sb \end{array}$$

- Is G a regular grammar?
- 2 Give the *parse tree* for
 - a) baabaab
 - b) bBABb
 - c) baSb

Give the leftmost and rightmost derivations for baabaab

ULB

э.

Write a context-free grammar that generates all strings of as and bs (in any order) such that there are more as than bs.
 Test your grammar on the input baaba by giving a derivation.

ULB

.∋⇒

Write a context-sensitive grammar that generates all strings of as, bs and cs (in any order) such that there are as many of each. Give a derivation of cacbab using your grammar.

ULB