
Introduction to Language Theory and
Compilation: Exercises
Session 2: Regular expressions

Faculty of Sciences INFO-F403 – Exercises



Regular expressions (RE)

Finite automata are an equivalent formalism to regular
languages (for each regular language, there exists at least
one FA that recognizes it, and each FA recognizes a regular
language).

Regular expressions are another formalism defined inductively
just as regular languages.

It can be proven that regular expressions and regular
languages are equivalent (see lecture notes).

Faculty of Sciences INFO-F403 – Exercises



Regular expressions (RE) (ctd.)

Base cases:

RE language
φ ∅
ε {ε}

a (∀a ∈ Σ) {a}

If p and q are regular expressions representing the languages P
and Q respectively, then:

RE language
p + q P ∪Q

pq (or p · q) P ·Q
p∗ P∗

Extended regular expression example: p+ ≡ pp∗

Faculty of Sciences INFO-F403 – Exercises



RE examples

0 + 1 denotes the language {0, 1}
a(b + c) denotes the language {a} · {b, c} = {ab, ac}

... which could also be denoted by ab + ac

x∗ denotes {x}∗
... which could also be denoted by ε+ x + xxx∗

A regular expression is equivalent to one and one only regular
language, but a regular language can have more than one
corresponding regular expression.

Faculty of Sciences INFO-F403 – Exercises



Exercise 1

For each of the following languages (defined on the alphabet
Σ = {0, 1}), design a RE that recognizes it:

1 The set of strings ending with 00.
2 The set of strings whose 10th symbol, counted from the end

of the string, is a 1.
3 The set of strings where each pair of zeroes is followed by a

pair of ones.
4 The set of strings not containing 101.
5 The set of binary numbers divisible by 4.

Faculty of Sciences INFO-F403 – Exercises



State elimination method

Given a DFA M, we can craft a corresponding regular expression
using the state elimination method. The general idea is to label
transitions in the automaton using regular expressions, pick a final
state, then remove all other states step by step to finally reach a
simple automaton which can then be used to easily determine a
regular expression. There are two possible cases:

1 The start state of M is not final (q0 /∈ F )

2 The start state of M is final (q0 ∈ F )

Faculty of Sciences INFO-F403 – Exercises



State elimination method (ctd.)

In the case where q0 /∈ F , we reach a two state automaton:

For each q ∈ F we’ll be left with an Aq that
looks like

Start

R

S

T

U

that corresponds to the regex Eq = (R+SU∗T )∗SU∗

or with Aq looking like

R

Start

corresponding to the regex Eq = R∗

• The final expression is
⊕

q∈F

Eq

69

The corresponding regular expression is:

(R + SU∗T )∗SU∗

Faculty of Sciences INFO-F403 – Exercises



State elimination method (ctd.)

In the case where q0 ∈ F , we reach a single state automaton:

For each q ∈ F we’ll be left with an Aq that
looks like

Start

R

S

T

U

that corresponds to the regex Eq = (R+SU∗T )∗SU∗

or with Aq looking like

R

Start

corresponding to the regex Eq = R∗

• The final expression is
⊕

q∈F

Eq

69

The corresponding regular expression is:

R∗

Faculty of Sciences INFO-F403 – Exercises



State elimination method (ctd.)

For each final state qF ∈ F , one has to build such a simple
automaton to derive a regular expression RE (qF ) that expresses
all possible inputs that are accepted when M stops in qF . The
actual regular expression that describes the language L(M) of the
automaton M then simply becomes:

RE (qF
1 ) + RE (qF

2 ) + . . .+ RE (qF
k ) where

{
qF
1 , . . . , q

F
k
}

= F

Faculty of Sciences INFO-F403 – Exercises



Algorithm

First, preprocess by labeling all transitions by a RE.

Then, for each state Sx to be eliminated, consider each transition
(Sa,Sx ), (Sx ,Sb) or (Sx ,Sx ) with respective labels A, B and X .

The transition (Sa,Sb) labeled by E becomes the absorbing
transition E + (AX ∗ B) and remove A, B, X and E .

Note: some transitions can not exist. In that case, does not
consider the transition. For instance, if E = (Sa,Sb) cannot be
generated by δ (the transition function, see definition), then the
absorption transition will be AX ∗ B.

Faculty of Sciences INFO-F403 – Exercises



Exercise 2.1

Design a RE accepting the same language as:

q1 q2 q3

1 0

0

1

0

1

Faculty of Sciences INFO-F403 – Exercises



Exercise 2.2

Design a RE accepting the same language as:

q3 q1 q2
0

0

1

1

1

0

Faculty of Sciences INFO-F403 – Exercises



Exercise 3

Convert the following REs into ε-NFAs:
1 01∗

2 (0 + 1)01
3 00(0 + 1)∗

Faculty of Sciences INFO-F403 – Exercises



Extended regular expressions (ERE)

Very popular on UNIX-like tools (grep, find, etc.)

Grant more flexibility than traditional regular expressions

Typically used by scanner generators such as lex

Faculty of Sciences INFO-F403 – Exercises



ERE syntax

Expression Accepted language

r* 0 or more rs
r+ 1 or more rs
r? 0 or 1 r
[abc] a or b or c
[a-z] Any character in the interval a. . . z
. Any character except \n
[ˆs] Any character but those in s
r{m,n} Between m and n occurrences of r
r1 r2 The concatenation of r1 and r2

Faculty of Sciences INFO-F403 – Exercises



ERE syntax (ctd.)

Expression Accepted language

r1 | r2 r1 or r2
(r) r
ˆr r if it starts a line
r$ r if it ends a line
"s" The string s
\c The character c
r1(?=r2) r1 when it’s followed by r2

Faculty of Sciences INFO-F403 – Exercises



Examples

Expression Accepted language

[a-zA-Z] Any letter (upper or lower case)
[0-9] Any digit
a[ˆA-Za-z]b An a followed by a non-alphabetical character and a b
ˆSilly Silly if it starts a line
[a-zA-Z]([a-zA-Z]|[0-9])* An identifier in the Pascal language

Faculty of Sciences INFO-F403 – Exercises



Exercise 4

1 Give an extended regular expression (ERE) that targets any
sequence of 5 characters, including the newline character \n

2 Give an ERE that targets any string starting with an
arbitrary number of \ followed by any number of *

3 UNIX-like shells (such as bash) allow the user to write batch
files in which comments can be added. A line is defined to be
a comment if it starts with a # sign. What ERE accepts such
comments?

4 Design an ERE that accepts numbers in scientific notation.
Such a number must contain at least one digit and has two
optional parts:

A "decimal" part : a dot followed by a sequence of digits
An "exponential" part: an E followed by an integer that may
be prefixed by + or -
Examples : 42, 66.4E-5, 8E17, . . .

Faculty of Sciences INFO-F403 – Exercises



Exercise 4

5 Design an ERE that accepts "correct" phrases that fulfill the
following criteria:

The first word must start with a capital letter
The phrase must end with a full stop .
The phrase must be made of one or more words (made of the
characters a...z and A...Z) separated by a single space
There cannot be two phrases on the same line.

Punctuation signs other than a full stop are not allowed.
6 Craft an ERE that accepts old school DOS-style filenames

(8 characters in a...z, A...Z and _) whose extension is
.ext and that begin with the string abcde. We ask that the
ERE only accept the filename without the extension!

Example: on abcdeLOL.ext, the ERE must accept abcdeLOL

Faculty of Sciences INFO-F403 – Exercises


