
Introduction to Language Theory and
Compilation: Exercises
Session 2: Regular expressions
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Regular expressions (RE)

Finite automata are an equivalent formalism to regular
languages (for each regular language, there exists at least
one FA that recognizes it, and each FA recognizes a regular
language).

Regular expressions are another formalism defined inductively
just as regular languages.

It can be proven that regular expressions and regular
languages are equivalent (see lecture notes).
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Regular expressions (RE) (ctd.)

Base cases:

RE language
φ ∅
ε {ε}

a (∀a ∈ Σ) {a}

If p and q are regular expressions representing the languages P
and Q respectively, then:

RE language
p + q P ∪Q

pq (or p · q) P ·Q
p∗ P∗

Extended regular expression example: p+ ≡ pp∗
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RE examples

0 + 1 denotes the language {0, 1}
a(b + c) denotes the language {a} · {b, c} = {ab, ac}

... which could also be denoted by ab + ac

x∗ denotes {x}∗
... which could also be denoted by ε+ x + xxx∗

A regular expression is equivalent to one and one only regular
language, but a regular language can have more than one
corresponding regular expression.
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Exercise 1

For each of the following languages (defined on the alphabet
Σ = {0, 1}), design a RE that recognizes it:

1 The set of strings ending with 00.
2 The set of strings whose 10th symbol, counted from the end

of the string, is a 1.
3 The set of strings where each pair of zeroes is followed by a

pair of ones.
4 The set of strings not containing 101.
5 The set of binary numbers divisible by 4.

Faculty of Sciences INFO-F403 – Exercises



State elimination method

Given a DFA M, we can craft a corresponding regular expression
using the state elimination method. The general idea is to label
transitions in the automaton using regular expressions, pick a final
state, then remove all other states step by step to finally reach a
simple automaton which can then be used to easily determine a
regular expression. There are two possible cases:

1 The start state of M is not final (q0 /∈ F )

2 The start state of M is final (q0 ∈ F )
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State elimination method (ctd.)

In the case where q0 /∈ F , we reach a two state automaton:

For each q ∈ F we’ll be left with an Aq that
looks like

Start

R

S

T

U

that corresponds to the regex Eq = (R+SU∗T )∗SU∗

or with Aq looking like

R

Start

corresponding to the regex Eq = R∗

• The final expression is
⊕

q∈F

Eq

69

The corresponding regular expression is:

(R + SU∗T )∗SU∗

Faculty of Sciences INFO-F403 – Exercises



State elimination method (ctd.)

In the case where q0 ∈ F , we reach a single state automaton:

For each q ∈ F we’ll be left with an Aq that
looks like

Start

R

S

T

U

that corresponds to the regex Eq = (R+SU∗T )∗SU∗

or with Aq looking like

R

Start

corresponding to the regex Eq = R∗

• The final expression is
⊕

q∈F

Eq

69

The corresponding regular expression is:

R∗
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State elimination method (ctd.)

For each final state qF ∈ F , one has to build such a simple
automaton to derive a regular expression RE (qF ) that expresses
all possible inputs that are accepted when M stops in qF . The
actual regular expression that describes the language L(M) of the
automaton M then simply becomes:

RE (qF
1 ) + RE (qF

2 ) + . . .+ RE (qF
k ) where

{
qF
1 , . . . , q

F
k
}

= F
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Algorithm

First, preprocess by labeling all transitions by a RE.

Then, for each state Sx to be eliminated, consider each transition
(Sa,Sx ), (Sx ,Sb) or (Sx ,Sx ) with respective labels A, B and X .

The transition (Sa,Sb) labeled by E becomes the absorbing
transition E + (AX ∗ B) and remove A, B, X and E .

Note: some transitions can not exist. In that case, does not
consider the transition. For instance, if E = (Sa,Sb) cannot be
generated by δ (the transition function, see definition), then the
absorption transition will be AX ∗ B.
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Exercise 2.1

Design a RE accepting the same language as:

q1 q2 q3

1 0

0

1

0

1
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Exercise 2.2

Design a RE accepting the same language as:

q3 q1 q2
0

0

1

1

1

0
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Exercise 3

Convert the following REs into ε-NFAs:
1 01∗

2 (0 + 1)01
3 00(0 + 1)∗
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Extended regular expressions (ERE)

Very popular on UNIX-like tools (grep, find, etc.)

Grant more flexibility than traditional regular expressions

Typically used by scanner generators such as lex
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ERE syntax

Expression Accepted language

r* 0 or more rs
r+ 1 or more rs
r? 0 or 1 r
[abc] a or b or c
[a-z] Any character in the interval a. . . z
. Any character except \n
[ˆs] Any character but those in s
r{m,n} Between m and n occurrences of r
r1 r2 The concatenation of r1 and r2

Faculty of Sciences INFO-F403 – Exercises



ERE syntax (ctd.)

Expression Accepted language

r1 | r2 r1 or r2
(r) r
ˆr r if it starts a line
r$ r if it ends a line
"s" The string s
\c The character c
r1(?=r2) r1 when it’s followed by r2
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Examples

Expression Accepted language

[a-zA-Z] Any letter (upper or lower case)
[0-9] Any digit
a[ˆA-Za-z]b An a followed by a non-alphabetical character and a b
ˆSilly Silly if it starts a line
[a-zA-Z]([a-zA-Z]|[0-9])* An identifier in the Pascal language
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Exercise 4

1 Give an extended regular expression (ERE) that targets any
sequence of 5 characters, including the newline character \n

2 Give an ERE that targets any string starting with an
arbitrary number of \ followed by any number of *

3 UNIX-like shells (such as bash) allow the user to write batch
files in which comments can be added. A line is defined to be
a comment if it starts with a # sign. What ERE accepts such
comments?

4 Design an ERE that accepts numbers in scientific notation.
Such a number must contain at least one digit and has two
optional parts:

A "decimal" part : a dot followed by a sequence of digits
An "exponential" part: an E followed by an integer that may
be prefixed by + or -
Examples : 42, 66.4E-5, 8E17, . . .
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Exercise 4

5 Design an ERE that accepts "correct" phrases that fulfill the
following criteria:

The first word must start with a capital letter
The phrase must end with a full stop .
The phrase must be made of one or more words (made of the
characters a...z and A...Z) separated by a single space
There cannot be two phrases on the same line.

Punctuation signs other than a full stop are not allowed.
6 Craft an ERE that accepts old school DOS-style filenames

(8 characters in a...z, A...Z and _) whose extension is
.ext and that begin with the string abcde. We ask that the
ERE only accept the filename without the extension!

Example: on abcdeLOL.ext, the ERE must accept abcdeLOL
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