Introduction to Language Theory and
Compilation: Exercises

Session 2: Regular expressions

Faculty of Sciences INFO-F403 — Exercises

Regular expressions (RE)

@ Finite automata are an equivalent formalism to regular
languages (for each regular language, there exists at least
one FA that recognizes it, and each FA recognizes a regular
language).

@ Regular expressions are another formalism defined inductively
just as regular languages.

@ It can be proven that regular expressions and regular
languages are equivalent (see lecture notes).

Faculty of Sciences INFO-F403 — Exercises

Regular expressions (RE) (ctd.)

Base cases:
RE language
¢ 0
€ {e}
a (VaeX) {a}

If p and g are regular expressions representing the languages P
and Q respectively, then:

RE language
p+q PUQR
pq(orp-q)| P-Q
p* P*

Extended regular expression example: p™ = pp*

Faculty of Sciences INFO-F403 — Exercises

=N E]ES

@ 0+ 1 denotes the language {0, 1}
@ a(b+ c) denotes the language {a} - {b, c} = {ab, ac}
@ ... which could also be denoted by ab + ac
@ x* denotes {x}*
e ... which could also be denoted by € + x + xxx*
@ A regular expression is equivalent to one and one only regular

language, but a regular language can have more than one
corresponding regular expression.

Faculty of Sciences INFO-F403 — Exercises

Exercise 1

For each of the following languages (defined on the alphabet
Y ={0,1}), design a RE that recognizes it:
© The set of strings ending with 00.

@ The set of strings whose 10t" symbol, counted from the end
of the string, is a 1.

© The set of strings where each pair of zeroes is followed by a
pair of ones.

© The set of strings not containing 101.
@ The set of binary numbers divisible by 4.

Faculty of Sciences INFO-F403 — Exercises

State elimination method

Given a DFA M, we can craft a corresponding regular expression
using the state elimination method. The general idea is to label
transitions in the automaton using regular expressions, pick a final
state, then remove all other states step by step to finally reach a
simple automaton which can then be used to easily determine a
regular expression. There are two possible cases:

@ The start state of M is not final (qo ¢ F)
@ The start state of M is final (go € F)

Faculty of Sciences INFO-F403 — Exercises

State elimination method (ctd.)

In the case where qg ¢ F, we reach a two state automaton:

U

O)
Start O/_\ @

v
T

R
S

The corresponding regular expression is:

(R+ SU*T)*SU*

Faculty of Sciences INFO-F403 — Exercises

State elimination method (ctd.)

In the case where gg € F, we reach a single state automaton:

R

Start

The corresponding regular expression is:

R*

Faculty of Sciences INFO-F403 — Exercises

State elimination method (ctd.)

For each final state g© € F, one has to build such a simple
automaton to derive a regular expression RE(qF) that expresses
all possible inputs that are accepted when M stops in g©. The
actual regular expression that describes the language L(M) of the
automaton M then simply becomes:

RE(qf)+ RE(g5)+ ...+ RE(qf) where {qf,..., Gy =F

Faculty of Sciences INFO-F403 — Exercises

Algorithm

First, preprocess by labeling all transitions by a RE.

Then, for each state Sy to be eliminated, consider each transition
(Sa, Sx), (Sx, Sp) or (Sx, Sx) with respective labels A, B and X.

The transition (S,, Sp) labeled by E becomes the absorbing
transition £ + (AX % B) and remove A, B, X and E.

Note: some transitions can not exist. In that case, does not
consider the transition. For instance, if E = (S, Sp) cannot be
generated by 0 (the transition function, see definition), then the
absorption transition will be AX x B.

Faculty of Sciences INFO-F403 — Exercises

Exercise 2.1

Design a RE accepting the same language as:

7
0\ 0
— -~ -~

Faculty of Sciences INFO-F403 — Exercises

Design a RE accepting the same language as:

'

O\‘
\0

Faculty of Sciences INFO-F403 — Exercises

Exercise 3

Convert the following REs into e-NFAs:
Q 01"
@ (0+1)01
@ 00(0+ 1)*

Faculty of Sciences INFO-F403 — Exercises

Extended regular expressions (ERE)

@ Very popular on UNIX-like tools (grep, find, etc.)
@ Grant more flexibility than traditional regular expressions

@ Typically used by scanner generators such as lex

Faculty of Sciences INFO-F403 — Exercises

ERE syntax

| Expression | Accepted language
r* 0 or more rs
r+ 1 or more rs
r? Qorlr
[abc] aorborc
[a-Z] Any character in the interval a...z
. Any character except \n
["s] Any character but those in s
r{m,n} Between m and n occurrences of r
rl r2 The concatenation of r1 and r2

Faculty of Sciences INFO-F403 — Exercises

ERE syntax (ctd.)

Expression \ Accepted language

rl | r2 rl or r2

(r) T

“r r if it starts a line

r$ r if it ends a line

"s" The string s

\c The character ¢

r1(?=r2) rl1 when it's followed by r2

Faculty of Sciences INFO-F403 — Exercises

| Expression | Accepted language |
[a-zA-Z] Any letter (upper or lower case)
[0-9] Any digit
a["A-Za-z]b An a followed by a non-alphabetical character and a b
“Silly Silly if it starts a line
[a-zA-Z] ([a-zA-Z] | [0-9])* | An identifier in the Pascal language

Faculty of Sciences INFO-F403 — Exercises

Exercise 4

@ Give an extended regular expression (ERE) that targets any
sequence of 5 characters, including the newline character \n

@ Give an ERE that targets any string starting with an
arbitrary number of \ followed by any number of *

© UNIX-like shells (such as bash) allow the user to write batch
files in which comments can be added. A line is defined to be
a comment if it starts with a # sign. What ERE accepts such
comments?
© Design an ERE that accepts numbers in scientific notation.
Such a number must contain at least one digit and has two
optional parts:
o A "decimal" part : a dot followed by a sequence of digits
o An "exponential" part: an E followed by an integer that may
be prefixed by + or -
o Examples : 42, 66.4E-5, 8E17, ...

Faculty of Sciences INFO-F403 — Exercises

Exercise 4

@ Design an ERE that accepts "correct" phrases that fulfill the
following criteria:
e The first word must start with a capital letter
@ The phrase must end with a full stop .
e The phrase must be made of one or more words (made of the
characters a...z and A...Z) separated by a single space
e There cannot be two phrases on the same line.

Punctuation signs other than a full stop are not allowed.
@ Craft an ERE that accepts old school DOS-style filenames
(8 charactersin a...z, A...Z and _) whose extension is

.ext and that begin with the string abcde. We ask that the
ERE only accept the filename without the extension!

o Example: on abcdelOL.ext, the ERE must accept abcdeLDlm

Faculty of Sciences INFO-F403 — Exercises

