
Introduction to Language Theory and
Compilation: Exercises

Session 12: yacc/bison parser generator

Faculty of Sciences INFO-F403 – Exercises



Introduction

yacc is a tool that automagically generates parsers.

Its input is a specification that describes a grammar and also
associates actions to be done at different points during
parsing.
Its output is source code that implements the given parser.

lex generated the scanner function
yacc generates the parser function

Faculty of Sciences INFO-F403 – Exercises



Properties of yacc-generated parsers

The parser generated by yacc has the following properties:

It parses the grammar in a bottom-up fashion (i.e.
shift/reduce).

It comminicate with a lexical analyser. This function is
usually the one generated by lex, but it’s not mandatory.

It calls the yyerror() function when something goes wrong
and has to be written. A default implementation is available
by linking with liby.

Whenever a production rule is reduced, the parser executes
the corresponding action.

Faculty of Sciences INFO-F403 – Exercises



CUP Java implementation of a LR-parser

Communication between JFlex and CUP explained in the
previous session

Write the JFlex specification tokens.flex

Write the CUP specification grammar.cup and additional Java
files.

Produce the Scanner Java file: jflex tokens.flex

Produce the Parser Java file: java -cp java-cup.jar:.
java_cup.Main -parser Parser -symbols Symbols
grammar.cup (-parser and -symbols are optional)

Compile all Java files: javac -cp java-cup.jar:. *.java

Run your main method. If the main is added into your parser:
java -cp java-cup.jar:. Parser

Faculty of Sciences INFO-F403 – Exercises



CUP specification

As with JFlex, CUP specifications are broken up into three parts
mot separated delimiters.

1 Arbitrary source code (class, import, ...)
Have the following format:
import java_cup.runtime.*;

Faculty of Sciences INFO-F403 – Exercises



CUP specification

As with JFlex, CUP specifications are broken up into three parts
separated by no delimiters.

2 Declarations of symbols, precedence and additional code
Symbols:

non? terminal ObjectType? list of symbols separated by comma;

Precedence:
precedence left list of symbols separated by comma;

Additional code:
parser code {: code source :}

(can have different value than parser)

Faculty of Sciences INFO-F403 – Exercises



CUP specification

As with JFlex, CUP specifications are broken up into three parts
separated by no delimiters.

3 Production rules
Have the following format:
variable ::= definition1:optional_var_name

{RESULT = optional_var_name;}
| definition2 {action2}
| ...
;

Actions are activated whenever the corresponding rule is
reduced by the parser.
Definitions are made of symbols defined in the Declaration
part

Faculty of Sciences INFO-F403 – Exercises



Exercises 1-3

1 Informally describe the accepted language of the compiler
we’d generate from the specifications.

2 Adjust the specification so it only accepts polynomials of a
single variable. We input a polynomial per line, but there can
only be one variable used on each line.

3 Add the necessary code to show the first derivative of a
polynomial. For example, if 2xˆ3+2xˆ2+5 was given on
input, we would output :
First derivative: 6xˆ2+4xsetc

Faculty of Sciences INFO-F403 – Exercises



Exercises 4-5

4 Add a way to recognize polynomial products and adjust the
derivative calculation. For example, if (3xˆ2+6x)*(9x+4) is
given on input, we would output:
First derivative: (3xˆ2+6x)*(9)+(6x+6)*(9x+4)

5 Add a way to evaluate a polynomial and its first derivative for
a given value. The user should be able to input the variable
value, followed by a semicolon, followed by the polynomial
(all this on the same line). For example :

2 ; (3x^2+6x)*(9x+4)
First derivative : (3x^2+6x)*(9)+(6x+6)*(9x+4)
p(2) = 528, p’(2) = 612

Faculty of Sciences INFO-F403 – Exercises


