Introduction to Language Theory and
Compilation: Exercises

Session 12: yacc/bison parser generator

Faculty of Sciences INFO-F403 — Exercises



Introduction

@ yacc is a tool that automagically generates parsers.

@ lIts input is a specification that describes a grammar and also
associates actions to be done at different points during
parsing.

@ Its output is source code that implements the given parser.

@ lex generated the scanner function
e yacc generates the parser function

Faculty of Sciences INFO-F403 — Exercises



Properties of yacc-generated parsers

The parser generated by yacc has the following properties:

@ It parses the grammar in a bottom-up fashion (i.e.
shift/reduce).

@ It comminicate with a lexical analyser. This function is
usually the one generated by lex, but it's not mandatory.

@ It calls the yyerror () function when something goes wrong
and has to be written. A default implementation is available
by linking with liby.

@ Whenever a production rule is reduced, the parser executes
the corresponding action.

Faculty of Sciences INFO-F403 — Exercises



CUP Java implementation of a LR-parser

o Communication between JFlex and CUP explained in the
previous session

@ Write the JFlex specification tokens.flex

@ Write the CUP specification grammar.cup and additional Java
files.

@ Produce the Scanner Java file: jflex tokens.flex

@ Produce the Parser Java file: java -cp java-cup.jar..
Jjava_ cup.Main -parser Parser -symbols Symbols
grammar.cup (-parser and -symbols are optional)

o Compile all Java files: javac -cp java-cup.jar:. * java

@ Run your main method. If the main is added into your parser:

java -cp java-cup.jar:. Parser m

Faculty of Sciences INFO-F403 — Exercises




CUP specification

As with JFlex, CUP specifications are broken up into three parts
mot separated delimiters.
@ Arbitrary source code (class, import, ...)
e Have the following format:

import java_cup.runtime.x*;

Faculty of Sciences INFO-F403 — Exercises



CUP specification

As with JFlex, CUP specifications are broken up into three parts
separated by no delimiters.
@ Declarations of symbols, precedence and additional code
e Symbols:
non? terminal ObjectType? list of symbols separated by comma;
e Precedence:
precedence left list of symbols separated by comma;
e Additional code:
parser code {: code source :}

(can have different value than parser)

Faculty of Sciences INFO-F403 — Exercises



CUP specification

As with JFlex, CUP specifications are broken up into three parts
separated by no delimiters.

© Production rules
e Have the following format:
variable ::= definitionl:optional_var_name

{RESULT = optional_var_name;}
| definition2 {action2}
|
e Actions are activated whenever the corresponding rule is
reduced by the parser.

e Definitions are made of symbols defined in the Declaration
part

Faculty of Sciences INFO-F403 — Exercises



@ Informally describe the accepted language of the compiler
we'd generate from the specifications.

@ Adjust the specification so it only accepts polynomials of a
single variable. We input a polynomial per line, but there can
only be one variable used on each line.

© Add the necessary code to show the first derivative of a
polynomial. For example, if 2x"3+2x"2+5 was given on
input, we would output :

First derivative: 6x72+4xsetc

Faculty of Sciences INFO-F403 — Exercises



© Add a way to recognize polynomial products and adjust the
derivative calculation. For example, if (3x"2+6x) *(9x+4) is
given on input, we would output:
First derivative: (3x72+6x)*(9)+(6x+6)*(9x+4)

@ Add a way to evaluate a polynomial and its first derivative for
a given value. The user should be able to input the variable
value, followed by a semicolon, followed by the polynomial
(all this on the same line). For example :

2 ; (3x72+6x)*(9x+4)
First derivative : (3x72+6x)*(9)+(6x+6)*(9x+4)
p(2) = 528, p’(2) = 612

Faculty of Sciences INFO-F403 — Exercises



