
Introduction to Language Theory and
Compilation: Exercises

Session 11: lex/flex scanner generator

Faculty of Sciences INFO-F403 – Exercises



Introduction

lex is a tool that can automatically generate scanners
(lexical analysers) from a specification.

It’s often used in conjunction with yacc (parser generator)
which will be the subject of the next session.

JFlex is a free Java implementation of lex, whereas CUP is a
free Java implementation of yacc.

Faculty of Sciences INFO-F403 – Exercises



lex specifications

The input of lex is a specification made of pairs of regular
expressions and source code snippets.

lex uses this information to generate source code that
implements the corresponding scanner under the guise of a
function called yylex().

The obtained executable analyses its own input, searches for
occurrences of the specified regular expressions, and executes
the corresponding source code.

Faculty of Sciences INFO-F403 – Exercises



Format of lex specifications

A lex specification is broken up in three parts separated by a
line with %% (can be switched following the
implementation):

1 arbitrary programming code to be prepended in the output
scanner program

2 regular expression definitions and arbitrary programming code
(between %{ and %}) to be inserted at the start of the
scanner program

3 translation rules (token identification by regular expression
and associated source code pairs)

The usual file extension for such a file is .l or .lex

Faculty of Sciences INFO-F403 – Exercises



Java – Example lex file

%{
/* Arbitrary Java code to be prepended to generated code */
import static java.Math.*;
%}

%class Lexer
%standalone
%unicode

number [0-9]
letter [a-zA-Z]
identifier {letter}({number}|{letter})*
integer ({number})+

%%

{identifier} { System.out.println("ID: "+yytext()+" (length: "+yylength()); }
{integer} { System.out.print("Integer: "+new Integer(yytext()));}

Faculty of Sciences INFO-F403 – Exercises



Java – Compiling

To obtain the scanner executable :
1 Generate the scanner code with

java JFlex.Main myspec.flex
... which creates Lexer.java (%class option)

2 Compile the code generated by JFex into a class file:
javac Lexer.java
... which creates Lexer.class

3 Run it with java Lexer <input file>

You can find JFlex on http://jflex.de.

Faculty of Sciences INFO-F403 – Exercises

http://jflex.de


Exercise 1-2

1 Write a scanner that outputs its input file with line numbers
in front of every line.

2 Write a scanner that outputs the number of alphanumeric
characters, alphanumeric words and alphanumeric lines in the
input file.

Faculty of Sciences INFO-F403 – Exercises



Lexer - States

Can use states in the lexer (exclusive or inclusive).
They must be declared with %xstate State1,State2,... in the
options list
The default state is YYINITIAL and a state can be used as:

< State_Name > {
regex {action}
...

}

Faculty of Sciences INFO-F403 – Exercises



Exercise 3-4

3 Write a scanner that only shows comments in the input file.
Such comments are comprised within curly braces { }.

4 Write a scanner that transforms the input text by replacing
the word "compiler" with "ewww" if the line starts with an
"a", with "???" if it starts with a "b" and by "profit!!!" if it
starts with a "c".

Faculty of Sciences INFO-F403 – Exercises



Exercise 5

Write a lexical analysis function that recognises the following
tokens:

Decimal numbers in scientific notation (i.g. -0.4E-1)

C99 variable identifiers (start by an alpha, followed by
arbitrary number of alphanumeric or underscore)

Relational operators (<, >, ==, ! =, >=, <=, !)

The if, then and else keywords

The point of this function is then to be used by a yacc
implementation, cup for Java.

Faculty of Sciences INFO-F403 – Exercises


