
Introduction to Language Theory and Compilation
Exercises

Session 11: lex/flex scanner generator

Reminders
A scanner is a program that reads text on the standard input and prints it modified on standard output.
For example, a filter that replaces all as with bs and that receives abracadabra on input would output
bbrbcbdbbrb.

Specification format
A JFex (a Java implementation of flex) specification is made of three parts separated by lines with %%:

• Part 1: arbitrary programming code to be prepended in the output Java scanner program
• Part 2: regular expression definitions and arbitrary Java code (between %{ and %}) to be inserted at

the start of the scanner program

– The JFlex options (%class Name, %unicode, %line, %column, %standalone, %cup, . . .)
– The regular expression definitions are used as "macros" in part 3.
– The Java additional code of the scanner (%{ code }%, %init{ code executed before
the parsing }init%, %eof{ code executed after the parsing }eof%, . . .)

• Part 3: translation rules of the following shape: Regex {Action}

– Regex is an extended regular expression (ERE)
– Action is a Java code snippet that will be executed each time a token matching Regex is

encountered.
– The regular expressions defined in Part 2 can be used by putting their names in curly braces
{ }.

Variables and special actions
When writing actions, some special variables and macros can be accessed:

• yylength() contains the length of the recognized token
• yytext() is a the actual string that was matched by the regular expression.
• yyline is the line counter (requires the option %line).
• yycolumn is the column counter (requires the option %column).

Meta states
You can define inclusive or exclusive (use xstate instead of state) states with the command:

%xstate states list separated by a comma;

Each state has to contain some regular expressions and action can be a change of state by using the function
yybegin(Name of the state). The first state used is defined by CUP and it called YYINITIAL. For
instance:

1

...
xstate YYINITIAL, PRINT;
%%
<YYINITIAL> {

"print" {yybegin(PRINT);}
}
<PRINT> {

";" {yybegin(YYINITIAL);}
. {System.out.println(yytext());}

}

Exercises
Ex. 1. Write a scanner that outputs its input file with line numbers in front of every line.

Ex. 2. Write a scanner that outputs the number of alphanumeric characters, alphanumeric words and
alphanumeric lines in the input file.

Ex. 3. Write a scanner that only shows comments in the input file. Such comments are comprised within
curly braces { }.

Ex. 4. Write a scanner that transforms the input text by replacing the word "compiler" with "ewww" if the
line starts with an "a", with "???" if it starts with a "b" and by "profit!!!" if it starts with a "c".

Ex. 5. Write a lexical analysis function that recognizes the following tokens:

• Decimal numbers in scientific notation (i.g. -0.4E-1)

• C99 variable identifiers (start by an alpha, followed by arbitrary number of alphanumeric or under-
score)

• Relational operators (<, >, ==, ! =, >=, <=, !)

• The if, then and else keywords

The point of this function is then to be used by a yacc implementation, cup for Java.

2

