Introduction to Language Theory and
Compilation: Exercises

Session 1: Regular languages
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Languages and operations

Let ! be a (finite) alphabet. A /anguage is a set of words
defined on a given alphabet. Let L, L1 and Ly be languages, we
can then define some operations:

Definition (Union)

LULy={w]|weLlLorwe Ly}

Definition (Concatenation)

Li-Lr= {W1W2 ’ wi € L1 and wyp € L2}

Definition (Kleene closure)
L*={etu{w|weltU{wiws |wy,wo € L}U---

1Sigma
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Regular languages

Regular languages are defined inductively:

Definition (Regular language)

@ () is a regular language
o {e} is a regular language
e Forall a€ X, {a} is a regular language

If L, Ly, Ly are regular languages, then:

@ [1 UL is a regular language
@ L1 - L5 is aregular language

@ [* is a regular language
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Finite automata (FA)

M=(Q,%,6, qo, F) where:
o Q@ is a finite set of states
@ X is the input alphabet
@ ¢ is the transition function
@ gp € Q Iis the start state
@ ( C Q is the set of accepting states

M is a deterministic finite automaton (DFA) if the transition
function § : Q@ X X — Q@ is total. In other words, on each input,
there is one and one only state to which the automaton can
transition from its current state.

Faculty of Sciences INFO-F403 — Exercises



Exercise 1

Consider the alphabet ¥ = {0, 1}. Using the inductive definition
of regular languages, prove that the following languages are
regular:

@ The set of words made of an arbitrary number of ones,
followed by 01, followed by an arbitrary number of zeroes.

@ The set of odd binary numbers.
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Exercise 1.1 — solution

@ 1Y and 0 € ¥, thus {1} and {0} are both regular
languages.

@ The Kleene closure of a regular language is also a regular
language, thus {1}* and {0}* are regular languages.

@ The concatenation of regular languages is a regular
language, thus {1}* - {0} - {1} - {0}* is a regular language.
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Exercise 1.2 — solution

@ An odd binary number always ends with a 1.
@ {1} et {0} are regular languages.

e {1} U {0} is regular.

o ({1} u{0})* is regular.

o ({1} u{0})*- {1} is regular.
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Exercise 2

@ Prove that any finite language is regular.
@ Is the language L = {0"1" | n € N} regular? Explain.
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Exercise 2.1 — solution

o Let L ={wy, wo,...,wy} be a finite language.

@ As each word w; € L is a finite concatenation of characters
in X, {w;} is a reqular language as well for all 1 </ < n.

@ Thus, {wi} U{wo}U---U{w,} = L is regular.
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Exercise 2.2 — solution

@ 'fraid not! Let's prove it by contradiction.

@ Let's assume L is regular.

@ Thus, there exists a finite automaton M = (Q, X, 0, qo, F)
that accepts L.

@ Since Q is finite, there exists a word w € L such that the
automaton is forced to pass twice through a given state q.
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Exercise 2.2 — solution (ctd.)

@ Let’s consider the word w = 0291121l

@ There exists a path from qo to g labeled by 0%, followed by
a loop from g to g labeled by 0%, followed by a path from ¢
to ¢’ € F labeled by 0/312I€1 such that ky + ko + k3 = 2|Q|.

@ If that is the case, then the automaton can also accept the
word 0k10k312IQ1 ¢ |

@ Contradiction! The automaton M cannot exist, which in
turn implies that L cannot be regular.
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Exercise 3

For each of the following languages (defined on the alphabet
Y ={0,1}), design a nondeterministic finite automaton (NFA)
that accepts it.

@ The set of strings ending with 00.

@ The set of strings whose 10t symbol, counted from the end
of the string, is a 1.

© The set of strings where each pair of zeroes is followed by a
pair of ones.

© The set of strings not containing 101.
@ The set of binary numbers divisible by 4.
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Exercise 3.1 — solution

The set of strings ending with 00.

0,1

}
R ORMOLE O
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Exercise 3.2 — solution

The set of strings whose 10t symbol, counted from the end of
the string, is a 1.

0,1 ”2
O oL T O otNO
0,1

<— 01 @+ 01 + 01 @4_ 0.1 <— 01 @

ULB
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Exercise 3.3 — solution

The set of strings where each pair of zeroes is followed by a pair

of ones.
1/©0_>QO\‘ 0’17
\ i Aé/o
o

e
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Exercise 3.4 — solution

The set of strings not containing 101.

Y Bo057
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Exercise 3.5 — solution

The set of binary numbers divisible by 4.

0,1

(a-o>(a)-0~(=)
1/
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Transform the following NFA into a DFA:
O
R
0,1 ’2 0 0
(0~ =0
0o

—>
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Exercise 4.1 — solution

0 1 0
{r} {r} {p.a}
{p.at |{p.t} {p.q,r s}
{p.t} |{p.s} {p.q}
{p.a.r.s} | {p.t} {p.q.r s}
{p.s} {p} {p.q}

Start state: {p}.
Accepting states: {p, t}, {p,s} and {p,q,r,s}.
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Exercise 4.2

Transform the following NFA into a DFA:

—> 0,1 —», 1
/ 0\ 1 ™~

1 1,0

v

4 0 r
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Exercise 4.2 — solution

6 1 0 B 1 0
{p} {at  {a s} {a.s} [{p.q.r}  A{r}
{ay | {a.r} A{r} {r.s} {p} {s}
{r} {r} {s} {p.a.r}|{p.a.r} {a.r s}
{s} {r} 0 {a.r.s} |{p.a.r} {r.s}
{a.r}y | {p.q.r} {r.s} 0 0 0

Start state: {p}.

Accepting states: {q}, {s}, {q.s}, {r.s}, {p.q.r} et {q,r,s}.
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Exercise 4.3

Transform the following e-NFA into a DFA:
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Exercise 4.3 — solution

Where can we get from each state, on each input?

| a b c

p| {p} {p.a} {p.a.r}
q| {p.at Ap.a.r} {p.q.r}
ri{p.a.ry {p.q.r} {p.q.r}

This allows us to design an NFA without e-transitions.
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Exercise 4.3 — solution (ctd.)
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Exercise 4.3 — solution (ctd.)

Obtained deterministic transition function:

) ‘ a b c

{p} {p} {p.a} {p.q.r}
{p.a} | {p.a} Ap.qa.r} {p.qr}
tp.a.rt | {p.a.r} {p.ar} {p.qr}

Start state: {p}.
Accepting state: {p, q, r}.
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Exercise 4.3 — solution (ctd.)
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Exercise 5

Write a C function that implements the following automaton and
returns the accepting state number.

Q0
/ A\{L} AVE}

w A\{I}

ANH}

—» AW, I} —————]
| / ‘w
AVF} A
A
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Exercise 5 — solution

char buffer; // Initialized with first input character

char next_char() {
return buffer;

void read_next() {
buffer = getchar();

bool is_alpha(char c) {
return (c >= A’ && c <= ’Z’);

}
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Exercise 5 — solution (ctd.)

int automaton() {
int state = 8;
char c;
while (true) {
switch state {

case 8:
if (next_char() == ’W’) state = 4;
else if (next_char() == ’I’) state = 9;

else if (is_alpha(c)) state = 3;
else state = 8;
read_next();
break;
case 4:
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Exercise 5 — solution (ctd.)

case 2:
if (is_alpha(c))
state = 3;
else

return 2; // Do not read next character!
read_next();
break;
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