Introduction to Language Theory and
Compilation: Exercises

Session 1: Regular languages
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Languages and operations

Let ! be a (finite) alphabet. A /anguage is a set of words
defined on a given alphabet. Let L, L1 and Ly be languages, we
can then define some operations:

Definition (Union)

LULy={w]|weLlLorwe Ly}

Definition (Concatenation)

Li-Lr= {W1W2 ’ wi € L1 and wyp € L2}

Definition (Kleene closure)
L*={etu{w|weltU{wiws |wy,wo € L}U---

1Sigma
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Regular languages

Regular languages are defined inductively:

Definition (Regular language)

@ () is a regular language
o {e} is a regular language
e Forall a€ X, {a} is a regular language

If L, Ly, Ly are regular languages, then:

@ [1 UL is a regular language
@ L1 - L5 is aregular language

@ [* is a regular language
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Finite automata (FA)

M=(Q,%,6, qo, F) where:
o Q@ is a finite set of states
@ X is the input alphabet
@ ¢ is the transition function
@ gp € Q Iis the start state
@ ( C Q is the set of accepting states

M is a deterministic finite automaton (DFA) if the transition
function § : Q@ X X — Q@ is total. In other words, on each input,
there is one and one only state to which the automaton can
transition from its current state.
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Exercise 1

Consider the alphabet ¥ = {0, 1}. Using the inductive definition
of regular languages, prove that the following languages are
regular:

@ The set of words made of an arbitrary number of ones,
followed by 01, followed by an arbitrary number of zeroes.

@ The set of odd binary numbers.
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Exercise 2

@ Prove that any finite language is regular.
@ Is the language L = {0"1" | n € N} regular? Explain.
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Exercise 3

For each of the following languages (defined on the alphabet
Y ={0,1}), design a nondeterministic finite automaton (NFA)
that accepts it.

@ The set of strings ending with 00.

@ The set of strings whose 10t symbol, counted from the end
of the string, is a 1.

© The set of strings where each pair of zeroes is followed by a
pair of ones.

© The set of strings not containing 101.
@ The set of binary numbers divisible by 4.
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Transform the following NFA into a DFA:
O
R
0,1 ’2 0 0
(0~ =0
0o

—>
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Exercise 4.3

Transform the following e-NFA into a DFA:
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Exercise 5

Write a C function that implements the following automaton and
returns the accepting state number.

Q0
/ A\{L} AVE}

w A\{I}

ANH}
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| / ‘w
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A
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