
INFO-F-403 Introduction to Language Theory and Compilation
Project Part 1: S-COBOL Lexical Analyzer

Delhaye Quentin

October 30, 2013

1 Presentation of the implementation

The program is divided into three classes: Main, LexicalAnalyzer and SymbolsTable.

1.1 Main

This is the public executable class interacting with the user. It will ask him to enter a line of S-COBOL
code, will store it into a String str, and then will feed it to the lexical analyzer until the String is
empty. The lexical analyzer will return an array of two Strings, the first being the token to subtract to
str. If the token contains a special character from the point of view of the regular expression (such as
* or (, for example), those characters need to be escaped before the subtraction, and then un-escaped
after it to allow a clean output. When str is finally empty, the class prints on the standard output all
the token/lexical unit couples sent back by the lexical analyzer.

This ends when the user stops entering code by simply hitting the return key without entering
anything. When he does that, the class asks the lexical analyzer to print the table of symbols.

1.2 LexicalAnalyzer

This class receives a String input from the Main class. The first things it does with it is checking if it
is a comment: input is in a new line and it matches the following regex: (*|/).*\n$.

If it is not a comment, the method nextToken splits input at the spaces and submits the first
chunck at every regex or list until a match is found. If no match is found, the next piece of input is
concatenated using a space and submited again until a match is found or all the pieces have been put
back together.

The various test are the following:

• ^\.\n$, ouput is the end of the line;
• contained in the list keywords which is formed from the exhaustive list. An other list, units,

holds the corresponding lexical unit at the same index.
• ^’[\w\ \-\+*/:!\?]*’$, String.
• 0|[\+\-]?[1-9][0-9]*, integer.
• (0|[\+\-]?[1-9][0-9]*)(\.[0-9]+)?, real number. This regex is evaluated after the integer

because a real number without a decimal part can be considered as a simple integer.
• s?9(\([1-9]\))?(v9(\([1-9]\))?)?, image.
• ^[a-zA-Z][\w\-]{0,14}, identifier.

1

Each time an identifier is encountered, the token, as well as the line number on which it occurred,
are sent to the table of symbols.

Each time an image is encountered, if an identifier preceded it, they are both sent the the table of
symbols.

If no valid token can be found in the input String, the lexical analyzer sends "ERROR" as a lexical
unit.

1.3 SymbolsTable

This class receives either variables or labels. In the first case, it must check if the identifier is not
already stored before saving it in the corresponding list. In the later case, it checks if the identifier
already is in the list, and if it is, if the line number is different. If the line number is different, or if the
identifier is brand new, the couple is apended to the list.

When the class is asked to format the list through the toString method, it first sorts both of the
list using the buble sort algorithm. The rest is just producing a String allowing a nice output.

2 Hypothesis

• Each line is supposed to end with a dot.
• Every comments occupy full line and begin with * or /.
• In order to avoid confusion, the user will leave space between the operands and the operators.
• Hyphenation is not allowed inside a String token.

3 Automaton Reduction and Regular Expressions

3.1 Image

The following will prove that the DFA shown at figure 1 can be reduced to a regular expression. The
transformation from a DFA into an RE will be achieved through state elimination.

Note: [1-9] represents the range [1;9]

q0start

q1

q2 q3 q4 q5 q6

q7

q8q9q10

s

9

9

(

v

[1-9]
) v

9

(

[1-9]
)

Figure 1: DFA recognizing an image

• q0 Ñ q2

2

q0start q2

9 ‘ s9

• q0 Ñ q5

q0start q5

9([1-9]) ‘ s9([1-9])

• q0 Ñ q7

q0start q7

9([1-9])v9 ‘ s9([1-9])v9 ‘ 9v9 ‘ s9v9

• q0 Ñ q10

q0start q10

9([1-9])v9([1-9]) ‘ s9([1-9])v9([1-9]) ‘ 9v9([1-9]) ‘ s9v9([1-9])

The regular expression corresponding to the whole DFA is then:

RE “ 9‘ s9‘ 9pr1´ 9sq ‘ s9pr1´ 9sq ‘ 9pr1´ 9sqv9‘ s9pr1´ 9sqv9‘ 9v9‘ s9v9

‘9pr1´ 9sqv9pr1´ 9sq ‘ s9pr1´ 9sqv9pr1´ 9sq ‘ 9v9pr1´ 9sq ‘ s9v9pr1´ 9sq

Knowing that pA‘ABq “ Apε‘Bq, we have:

RE “ vtε‘ su9w ‘ vtε‘ su9pr1´ 9sqw ‘ vtε‘ sq9pr1´ 9sqv ‘ tε‘ sq9vw9

‘vtε‘ su9pr1´ 9sqv ‘ tε‘ su9vw9pr1´ 9sq

ô RE “ tε‘ su9vε‘ tε‘ pr1´ 9squ ‘ tpr1´ 9sqv ‘ vu9‘ tpr1´ 9sqv ‘ vu9pr1´ 9sqw

ô RE “ tε‘ su9vε‘ tε` pr1´ 9squ ‘ tpr1´ 9sqv ‘ vu9tε‘ pr1´ 9squw

ô RE “ tε‘ su9vε‘ tε‘ pr1´ 9squ ‘ tpr1´ 9sq ‘ εuv9tε‘ pr1´ 9squw

Using the fact that A‘ ε “ ε‘A, we find:

RE “ tε‘ su9vε‘ tε‘ pr1´ 9squtε‘ v9tε‘ pr1´ 9squuw

According to the extended regular expressions, ε ‘ A corresponds to A?. Using that relation, we
can deduce the following expression:

s?9([1-9]?(v9[1-9]?)?)?

3

3.2 Integer

q0start

q1

q2

q3

+,-

[1-9]
0

[1-9]

[0-9]

Figure 2: Automaton recognizing an integer

• q0 Ñ q2

q0start q2

(+[1-9]) ‘ (-[1-9]) ‘ ([1-9]) [0-9]

RE “ vp`r1´ 9sq ‘ p´r1´ 9sq ‘ pr1´ 9sqw ‘ vp`r1´ 9sq ‘ p´r1´ 9sq ‘ pr1´ 9sqwr0´ 9s˚

ô RE “ vp`r1´ 9sq ‘ p´r1´ 9sq ‘ pr1´ 9sqwvε‘ r0´ 9s˚w

ô RE “ v` ‘´‘ εwr1´ 9svε‘ r0´ 9s˚w

Since a ‘ b is equivalent to the extended regular expression [ab], we have:

0 | [+-]?[1-9][0-9]*

3.3 Real

• q0 Ñ q2 Same result as for the integer.

• q0 Ñ q6

q0start q2 q6

v` ‘ ´‘ εwr1´ 9svε‘ r0´ 9s˚w .r0´ 9sr0´ 9s˚

RE “ v` ‘´‘ εwr1´ 9svε‘ r0´ 9s˚w ‘ v` ‘´‘ εwr1´ 9svε‘ r0´ 9s˚w.r0´ 9sr0´ 9s˚

ô RE “ v` ‘´‘ εwr1´ 9svε‘ r0´ 9s˚w ‘ vε‘ .r0´ 9sr0´ 9s˚w

Knowing that AA* is equivalent to the extended regular expression A+, we have:

(0 | [+-]?[1-9][0-9]*)(.[0-9]+)?

4

q0start

q1

q2

q3

q4 q5

+,-

[1-9]

0

[1-9]

[1-9]

.

.

[0-9]
[0-9]

Figure 3: Automaton recognizing a real

4 Notes on the DFA

It is to be noted that the DFA Simulator can’t recognize the comma – , – nor the "end of line"
character.

The rejecting state is label ERROR.

5

