

Yunlin Su
Song Y. Yan

Principles of Compilers

A New Approach to Compilers
Including the Algebraic Method

Yunlin Su
Song Y. Yan

Principles of Compilers

A New Approach to Compilers
Including the Algebraic Method

With 129 figures

Authors
Prof. Yunlin Su
Head of Research Center of Information
Technology Universitas Ma Chung
Villa Puncak Tidar No-01 Malang
Java Timur, Indonesia
E-mail: su.yunlin@machung.ac.id

Prof. Song Y. Yan
Department of Mathematics
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge MA 02139, U.S.A.
E-mail: syan@math.mit.edu

ISBN 978-7-04-030577-7
Higher Education Press, Beijing

ISBN 978-3-642-20834-8 ISBN 978-3-642-02835-5 (eBook)
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011926225

� Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks.
Duplication of this publication or parts thereof is permitted only under the provisions of the
German Copyright Law of September 9, 1965, in its current version, and permission for use must
always be obtained from Springer. Violations are liable to prosecution under the German Copyright
Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The compiler is one of the most important aspects of system software. When
any computer user develops a computer program, one must use some pro-
gramming language, rather than using a computer instruction set. This im-
plies that there must be the compiler of the programming language that
has been installed on the computer one uses, and otherwise the developed
program cannot be run.

There are some differences between a compiler and programming lan-
guage. Once language is designed, it must be kept unchanged (except when
it contains a mistake that has to be corrected), while the techniques for im-
plementing compilation might be changed over time. Hence people always
explore the more efficient and more advanced new techniques to raise the
quality of compilers.

The course similar to “The principles of Compilers” has become one of
the most important courses in computer science within higher institutes. Ac-
cording to our knowledge, the development of compilation techniques evolves
in two directions. One is towards the improvement of the compilation tech-
niques for existing languages. Another is towards the research and develop-
ment of the compilation techniques of new languages. These new languages
include object-oriented languages, distributed languages, parallel languages,
etc. This book introduces the newest knowledge in the field, and explores
the compilation techniques suitable for the languages and computation. It
associates the compilation of programming languages with the translation of
natural languages in human brains so that the reader can easier understand
the principles of compilers. Meanwhile, it introduces the algebraic method of
compilation that belongs to formal technology.

This book consists of 16 chapters. Chapter 1, Introduction, outlines the
process of compilation and associates the compilation of programming lan-
guages with the comprehension and generation of natural languages in human
brains. Chapter 2 introduces the grammar and language. The generation of
the language is based on the grammar and languages are the fundamentals
of the compilation process. Chapter 3 introduces finite automata and regu-
lar languages, together with Chapter 4, it is devoted to lexical analysis, the
first task of analysis stage. Chapter 3 may be regarded as the theoretical
preparation of lexical analysis; while Chapter 4 is the concrete practice of

vi Preface

lexical analysis. Chapters 5 – 7 commonly work together to discuss syntacti-
cal analysis. Chapter 5 introduces push-down automata that correspond to
context-free grammars. Chapter 6 devotes to the discussion of context-free
grammars and the context-free languages which they generate. Chapter 7
explores the second task of analytical stage— syntactical analysis. Following
this is the semantic analysis. After the analytical stage finishes, the synthetic
stage starts. The main task of the synthetic stage is to generate object code.
Chapter 8 introduces and analyzes attribute grammars. Chapter 9 introduces
a new compilation method — the formal method of compilation. Chapter 10
discusses the generation of the intermediate code. Chapter 11 expatiates the
debugging and optimization techniques for compilers. Chapter 12 explicates
the memory management that is related to compilation of programs. Chap-
ter 13 is the destination of the compilation, the generation of object code.
The chapter introduces the virtual machine MMIX that is proposed by D.E.
Knuth in his book The Art of Computer Programming. This virtual machine
is the mixture of features of 14 most popular machines in the current mar-
ket, it has rich an instruction set, and makes object codes flexible. Chapters
14 and 15 expound the compilation techniques for object-oriented program-
ming languages and parallel programming languages. Chapter 16 discusses
issues for grid computing. Though grid computing has attracted one’s atten-
tion there is no any language especially suitable for grid computing at the
present. Hence, we just focus on its features, pointing out the issues which
the compilation of the language should be tackled when the language exists.

We would like to express our sincere appreciation to Ms. Chen Hongying
of Higher Education Press. Without her encouragement, help and patience,
we could not finish the writing of this book. We also want to thank the
authors whose contributions were referred to the book. A great part of the
contents of the book is taken from them. We would like to acknowledge Tim
Lammertink and Myrte de Vos for their kind help. Finally, we would like to
express our gratitude to our family and students for their long-term support
and understanding.

No doubt, there might be neglects or mistakes remaining in the book. We
hope that the reader would be generous with your criticism.

Yunlin Su
Song Y. Yan
March 2011

Contents

Chapter 1 Introduction · 1
1.1 Language and Mankind · 1
1.2 Language and Computer · 3
1.3 Compilation of Programming Languages · · · · · · · · · · · · · · · · 12
1.4 Number of Passes of Compiler · 17
1.5 An Example of Compilation of a Statement · · · · · · · · · · · · · · 19
1.6 Organization of the Book · 21
Problems· 23
References · 23

Chapter 2 Grammars and Languages · 25
2.1 Motivation of the Chapter · 25
2.2 Preliminary Knowledge· 25
2.3 Grammar· 27
2.4 Language· 31
2.5 Language Generated by a Grammar · · · · · · · · · · · · · · · · · · · 34
2.6 Turing Machine · 37
2.7 Issues Concerning Grammars and Languages · · · · · · · · · · · · · 52
Problems· 53
References · 54

Chapter 3 Finite State Automata and Regular
Languages · 55

3.1 Motivations of the Chapter · 55
3.2 Languages, Grammars and Automata · · · · · · · · · · · · · · · · · · 55
3.3 Deterministic Finite Automata · 59
3.4 Nondeterministic Finite Automata · 64
3.5 Regular Expressions · 65
3.6 Regular Grammar · 66
3.7 Kleene’s and Moore’s Theorems · 68
3.8 Pumping Theorems and Closure Properties for LREG · · · · · · · 69

viii Contents

3.9 Applications of Finite Automata · 70
3.10 Variants of Finite Automata · 72
Problems· 77
References · 78

Chapter 4 Lexical Analysis · 79
4.1 Motivation of the Chapter · 79
4.2 Lexical Analyzer · 80

4.2.1 Role of Lexical Analyzer · 81
4.2.2 Identifier Analysis · 84
4.2.3 Handling of Constants · 86
4.2.4 Structure of Lexical Analyzer · · · · · · · · · · · · · · · · · · · 87

4.3 Output of Lexical Analyzer· 95
4.4 Error Handling · 97
Problems· 98
References · 98

Chapter 5 Push-Down Automata and Context-Free
Languages · 101

5.1 Motivation of the Chapter · 101
5.2 Push-Down Automata · 102
5.3 Context-Free Languages (LCF) · 103
5.4 Pumping Theorems for Context-Free Languages· · · · · · · · · · · 105
5.5 Push-Down Automata and Context-Free Languages · · · · · · · · 106
5.6 Applications of Context-Free Languages · · · · · · · · · · · · · · · · 106
5.7 Turing Machines · 107
5.8 Turing Machines as Language Accepters · · · · · · · · · · · · · · · · 108
5.9 Equivalence of Various Turing Machines · · · · · · · · · · · · · · · · 115
5.10 Recursively Enumerable Languages (LRE) · · · · · · · · · · · · · · 116
5.11 Context-Sensitive Languages (LCS) · · · · · · · · · · · · · · · · · · · 117
5.12 Hierarchy of Machines, Grammars and Languages · · · · · · · · 119

5.12.1 Hierarchy of Machines· 119
5.12.2 Hierarchy of Grammars and Languages · · · · · · · · · · · 120

5.13 Relations Among Machines, Languages and Grammars· · · · · 121
Problems· 124
References · 124

Chapter 6 Context-Free Grammars · 125
6.1 Motivation of the Chapter · 125
6.2 Context-Free Grammars · 126
6.3 Characteristics of Context-Free Grammars· · · · · · · · · · · · · · · 135
Problems· 154

Contents ix

References · 155

Chapter 7 Syntax Analysis · 157
7.1 Motivation of the Chapter · 157
7.2 Role of Syntax Analysis in Compilers · · · · · · · · · · · · · · · · · · 158
7.3 Methods of Syntax Analysis · 161
7.4 LL(1) Syntactical Analysis Method · 173
7.5 Bottom-Up Syntactical Analysis Method · · · · · · · · · · · · · · · · 180
7.6 LR(1) Syntactical Analysis Method · 185

7.6.1 LR(0) Syntactical Analysis · 185
7.6.2 SLR(1) Syntactical Analysis · 189
7.6.3 LALR(1) Syntactical Analysis· · · · · · · · · · · · · · · · · · · 191
7.6.4 LR(1) Syntactical Analysis · 193
7.6.5 Comparison Between LL(1) Syntactical Analysis

Method and LR(1) Syntactical Analysis Method · · · · · 202
Problems· 205
References · 206

Chapter 8 Attribute Grammars and Analysis · · · · · · · · · · · · · 207
8.1 Motivation of the Chapter · 207
8.2 Attribute Grammar · 208
8.3 Dependence Graph and Evaluation of Attributes · · · · · · · · · · 212

8.3.1 Dynamic Attribute Evaluation · · · · · · · · · · · · · · · · · · 217
8.3.2 Loop Handling · 221

8.4 L Attribute Grammas and S Attribute Grammars · · · · · · · · · 222
Problems· 225
References · 227

Chapter 9 Algebraic Method of Compiler Design· · · · · · · · · · 229
9.1 Motivation of the Chapter · 229
9.2 Source Language · 230
9.3 Algebraic Foundation and Reasoning Language · · · · · · · · · · · 238

9.3.1 Algebra Fundamentals · 239
9.3.2 Reasoning Language· 247

9.4 A Simple Compiler· 275
9.4.1 The Normal Form · 276
9.4.2 Normal Form Reduction · 277
9.4.3 The Target Machine · 281

Problems· 282
References · 282

x Contents

Chapter 10 Generation of Intermediate Code · · · · · · · · · · · · · 285
10.1 Motivation of the Chapter· 285
10.2 Intermediate Code Languages · 286

10.2.1 Graphic Representation · 287
10.2.2 Postfix Representation · 290
10.2.3 The Quadruple Code · 292

Problems· 311
References · 312

Chapter 11 Debugging and Optimization · · · · · · · · · · · · · · · · 313
11.1 Motivation of the Chapter· 313
11.2 Errors Detection and Recovery · 313
11.3 Debugging of Syntax Errors · 316

11.3.1 Error Handling of LL(1) Parser · · · · · · · · · · · · · · · · · 318
11.3.2 Error Handling in LR(1) Analysis · · · · · · · · · · · · · · · 319

11.4 Semantic Error Check · 319
11.5 Optimization of Programs· 320
11.6 Principal Ways of Optimization· 324

11.6.1 Elimination of Subexpressions · · · · · · · · · · · · · · · · · · 324
11.6.2 Copy Propagation· 325
11.6.3 Dead-Code Elimination· 326
11.6.4 Loop Optimization · 327
11.6.5 Reduction of Strength· 328

Problems· 329
References · 330

Chapter 12 Storage Management · 331
12.1 Motivation of the Chapter· 331
12.2 Global Allocation Strategy · 332
12.3 Algorithms for Allocation · 334

12.3.1 Algorithm for Stack Allocation · · · · · · · · · · · · · · · · · 334
12.3.2 Algorithm for Heap Allocation · · · · · · · · · · · · · · · · · 336

12.4 Reclamation of Used Space · 337
12.4.1 Basic Garbage Collection Algorithm · · · · · · · · · · · · · 338
12.4.2 Supports to Garbage Collector From Compilers · · · · · 340
12.4.3 Reference Counts · 342
12.4.4 Tokens and Scans · 343
12.4.5 Dual Space Copy · 344
12.4.6 Contract · 345

12.5 Parameter Passing · 346
12.5.1 Call-by-Value · 347

Contents xi

12.5.2 Call-by-References · 347
12.5.3 Copy-Restore · 348
12.5.4 Call-by-Name · 348

Problems· 349
References · 351

Chapter 13 Generation of Object Code · · · · · · · · · · · · · · · · · · 353
13.1 Motivation of the Chapter· 353
13.2 Issues of Design of Generators of Target Codes· · · · · · · · · · · 354

13.2.1 Input of Code Generators · 354
13.2.2 Target Programs · 355
13.2.3 Storages Management · 355
13.2.4 Selection of Instructions · 356
13.2.5 Register Allocation · 357
13.2.6 Selection of Order of Computation · · · · · · · · · · · · · · 358
13.2.7 Method of Generation of Codes · · · · · · · · · · · · · · · · · 358

13.3 Target Machine MMIX · 358
13.3.1 Binary Bits and Bytes · 359
13.3.2 Memory and Registers · 361
13.3.3 Instructions · 362
13.3.4 Load and Store· 363
13.3.5 Arithmetic Operations · 365
13.3.6 Conditional Instructions · 367
13.3.7 Bit Operations · 368
13.3.8 Byte Operations · 369
13.3.9 Jumps and Branches· 373
13.3.10 Subprogram Calls · 375
13.3.11 Interruptions · 377

13.4 Assembly Language of MMIX · 382
13.5 Generation of MMIXAL Target Codes · · · · · · · · · · · · · · · · · 389

13.5.1 Translation of Expressions in Reversed Polish
Form · 390

13.5.2 Translation of Triple Expressions· · · · · · · · · · · · · · · · 390
13.5.3 Translation of Expression Quadruples · · · · · · · · · · · · 391
13.5.4 Translation of Expressions · 392
13.5.5 Translation of Syntax Tree Form of Expressions · · · · · 393
13.5.6 Translation of Various Statements · · · · · · · · · · · · · · · 394

Problems· 395
References · 397

xii Contents

Chapter 14 Compilation of Object-oriented Languages · · · · · 399
14.1 Motivation of the Chapter· 399
14.2 Objects and Compilation · 400
14.3 Characteristics of Objects · 403

14.3.1 Inheritance· 403
14.3.2 Method Overload · 404
14.3.3 Polymorphic· 405
14.3.4 Dynamic Constraint · 406
14.3.5 Multiple Inheritances · 408
14.3.6 Multiple Inheritances of Inter-reliance · · · · · · · · · · · · 410

Problems· 412
References · 413

Chapter 15 Compilation of Parallel Languages · · · · · · · · · · · · 415
15.1 Motivation of the Chapter· 415
15.2 Rising of Parallel Computers and Parallel

Computation · 415
15.3 Parallel Programming · 419

15.3.1 Shared Variables and Monitors · · · · · · · · · · · · · · · · · 420
15.3.2 Message Passing Model · 422

15.4 Object-oriented Languages · 424
15.5 Linda Meta Array Space · 425
15.6 Data Parallel Languages · 427
15.7 Code Generation for Hidden Parallel Programs · · · · · · · · · · 428

15.7.1 Types of Regions · 430
15.7.2 Formation of Regions · 431
15.7.3 Schedule Algorithms for Regions · · · · · · · · · · · · · · · · 436

Problems· 437
References · 437

Chapter 16 Compilation of Grid Computing · · · · · · · · · · · · · · 439
16.1 Motivation of the Chapter· 439
16.2 Rising of Grid Computing and Intent · · · · · · · · · · · · · · · · · 439
16.3 Grid Computing Model· 442

16.3.1 Group Routing · 443
16.3.2 Routing in Linear Array · 445

16.4 Compilation of Grid Computing · 447
Problems· 450
References · 450

Index · 451

Chapter 1 Introduction

Language allows us to know how octopuses make love
and how to remove cherry stains and why Tad was
heartbroken,and whether theRed Sox will win theWorld
Series without great relief pitcher and how to build an
atom bomb in your basement and how Catherine the
Great died, among other things.

Steve Pinker

1.1 Language and Mankind

If you read the text above, you must be engaging in one of the mind’s most
enchanting process— the way one mind influences another through language.
However, we put a precondition on it that you have to know English, other-
wise the text has no influence at all to you. There are so many languages in
the world that even no one can exactly tell how many there are. Therefore,
there is the need of a bridge that connects different languages so that people
can understand each other. The bridge is the translation. And the subject
of the book is the translation between the formal language and the machine
language, or compilation.

What is the compiler or the compilation program? Simply speaking, it
is a program of which the function is to translate programs written in a
programming language into machine codes that are to be run by the same
kind of machine the codes belong to. In order to explain things behind this,
we need to discuss it further.

Language is main means of human communication and the way in which
most information is exchanged. By language, people link up each other, they
express their attentions and feelings, and they describe matters or express
their understanding [1]. It is one of the kinds of intelligence or the product
of intelligence. However, in the long process of human evolution, there was
a long period without language. Gradually, they invented oral language to
meet the need of living. Therefore, oral language can be considered as the first
breakthrough in language, it was also a breakthrough in human civilization.
From oral language to written language, it underwent even longer time. The

2 Chapter 1 Introduction

occurrence of written language represented a more significant breakthrough
of human being in terms of languages. Human thinking and problem solving
can be conceptualized as processes involving languages. Many, if not most or
all, forms of thinking and problem solving are internal, that is, done in the
absence of external stimuli. Abstraction of puzzles, for example, into verbal
symbols provides a way to think about a solution. It is not difficult to imagine
that without language the process of thinking cannot be completed, contin-
ued and deepened as if there is no language one simply cannot express his/her
ideas to other. When one wants to reminisce, he/she is unable to describe the
process that involves many objects and complicated plots. Written language
is more powerful than oral language. It not only can link up people at the
contemporary era, but also it can link up the present time and the ancient
time so that people at the present time can also know things that took place
in ancient period. By using written language, people not only can commu-
nicate with people in the vicinity, but also contact people at long distance.
Especially with the modern communication tools, e.g., computer networks,
televisions, and telephones, people may communicate with each other even
quicker, more convenient and may make sure the security and secrecy of in-
formation. That means that written languages change the extent of time and
space of communication of people.

The civilizations of the human being are divided into many branches. Each
one is symbolized by different language. Each race or nation formed each own
language due to the difference of living locations and evolution conditions.
In history, there were several thousands languages. As time passed, many
languages, especially the oral languages, that were used only by few people
had extinguished. Until now there are still some languages that have only oral
versions and have no corresponding written versions. Therefore, the languages
that have real impacts and are used by the great throng of peoples are not too
many. However, people who use these languages want to share the civilization;
they want to cooperate with each other or to do business. Obviously, each
language is so different from others that unless one has learnt it otherwise one
has no way to understand, and vice versa. Hence, if two different language
speakers want to converse with each other, they need a bridge to link them. It
is the translation. Its task is to translate a language spoken by A to another
language spoken by B and to translate the language spoken by B to a language
spoken by A. It is not only necessary to translate the oral language (the
translator of colloquial languages is a called interpreter) but also necessary, or
even more important to translate the written languages including the works in
social science, natural science, novels, etc. Without the translations, people
speaking different languages cannot converse, communicate, and exchange
their thinking or discoveries. In this sense, we may say that the world is
small but the number of languages in the world is far too many.

Today as the rapid development of science and technology and the in-
evitable tendency of economy globalization happening in almost every coun-
try around the world, language translation including colloquial and literal,

1.2 Language and Computer 3

has become a heated profession. Take as an example for the colloquial trans-
lation or interpretation, it involves three persons, i.e., two, A and B. who
want to converse with each other for some purpose, and one, C, who helps
them with the thing. Suppose that A speaks the language X and B speaks
the language Y. Obviously, in order for A and B understanding each other
the task of C is to interpret the words of X spoken by A into language Y,
meanwhile, he interprets the words of B spoken in Y spoken by B into lan-
guage X. Therefore, C must be a bilingual in this circumstance. And this
situation is shown in Fig. 1.1.

Fig. 1.1 Oral translation.

The role of C sometime needs to be done by two persons, say C or D, is
in charge of the interpretation from X to Y or from Y to X.

While in the case of a literal translation, the translator mainly translates
a foreign language into his native language for the native readers, or he trans-
lates his native language into foreign language to serve the foreign readers.
No matter which case it is, the purpose is the same, i.e., to make the listener
or reader understanding each other.

1.2 Language and Computer

It is well known that computer is one of the greatest inventions of mankind
in the last century. It embodies the newest development of mankind’s science
and technology. Computer relies on its running to solve problems set by
people while the running relies on the program that is composed of a sequence
of the instructions in advance from the instruction set of the machine. The
instruction set that is used to develop programs can be considered as the
language of computer. It acts to follow the sequence of the instructions as if
it speaks the language that consists of the sequence. This kind of language
consists of the sequence of 0 s and 1 s.

Hence in order to make the computer running and working for peoples, one
should develop the program with the purpose of solving intended problem.
For doing so one needs to master the instruction set. We do not say that
people cannot master the instruction set and develop programs by using it.
However, it is really very tedious and cumbersome to “speak” the language to

4 Chapter 1 Introduction

computer; especially it is too much for the common users of the computers.
It is something like that one is required to understand the principles of the
television and operate the existing components of the television if one wants
to watch the television.

When the computer was just invented, there was not any other language to
use for running the computer. The instruction set of computer was the unique
language which people may use to develop programs. The historical period
is called the period of manually programming. The instruction commonly
contains the operation code that indicates the operation it performs, the
addresses of the data which the operation performs as the control codes.
At that time, only very few people were the designers or developers of the
computers. For them to build the programs using the instruction set was
not a problem though it also entailed them to work hard and spend lots
of time. As computers became more and more popular, the users were no
longer those who are very familiar with the principles inside the computers,
they are just the real user, no different from the users of televisions. They
want to freely use the computer to solve their varieties of problems. In this
circumstance, no doubt, the machine language became their stumbling block
in using computers [2]. In order to break away from the constraints of the
machine language, from soon after the invention of computer, people had
started searching the solution to the problem. The first step was to replace
the operation codes of the instructions to the notations easily mnemonic,
e.g., to use ADD to represent addition, SUB to represent subtract, MUL to
represent multiplication, and DIV to represent division, or more simply, just
to use +, −, ×, and / (or ÷) to represent the arithmetic operators. Then, they
used symbolic addresses to take the place of real binary addresses, etc. Of
course the language transformed in this way is no longer computer language,
or original computer instruction set, although it basically corresponds to the
computer instruction set, and they are completely equivalent. This was the
first step that people broke away from computer language. Though it was a
minor step, it was crucial. It indicates that people may not be confined by the
computer instruction set, they may use more convenient language to develop
programs for computers. This kind of languages is called assembly languages.
Here the module given above was still suitable. As shown in Fig. 1.2, the left
side of the bottom edge of the triangle represents any program written in
assembly language which we call the source program, and the right side of the
bottom edge is totally equivalent program written in a computer instruction
set which was produced by the assembler on the top of the triangle and has
the name of the object program or target program. And the assembler plays
the role of the compiler of which the duty is to translate the source program
into the executable object program written in machine language. Therefore,
the assembler must also be executable on computer and by its operation it
produces the object program as its output.

Hence the assembler is the early version of the compilers. As the lan-
guage which source programs used was assembly language, it was only the

1.2 Language and Computer 5

Fig. 1.2 Translation of computer assembly language.

simple adaptation of the machine instruction set (e.g., the operation code
was the mnemonic code of the original one). Hence it is also called low-level
language. Here the word low means that it is machine-oriented (low-level)
and isn’t mankind-oriented (high-level). Assembler is also a low-level form
of the compilers as it hasn’t used much the compilation principles which we
used in the compilers for high-level programming languages.

After the success of assembly languages and their assemblers, people
started the design of the mankind-oriented high-level programming languages.
The common feature of these languages is that they broke away from the
restriction of the computer instruction set. They adopted a subset of the
commonly used language (in general it is English) and established the gram-
mar to describe the statements or elements which people used to develop the
programs. These languages are called procedure-oriented languages or sim-
ply procedural languages, or imperative languages. The earliest programming
languages include FORTRAN (stands for FORmula TRANslation, it was first
designed as early as 1954 [3]), ALGOL 60 [4], COBOL (stands for Common
Business Oriented Language, it was first designed in 1959, and its success was
strongly influenced by the United States Department of Defense). In terms of
the occurrence of the programming languages, the 1960s was stormy. It was
said that at that period over two thousand languages were developed, but
only thirteen of them ever became significant either in terms of concept or
usage. Among them, APL (stands for A Programming Language, developed
by Dr. Kenneth Iverson at IBM [5]) is an interactive language. It devises
a powerful yet compact notation for computation which incorporated many
concepts from mathematics. PL/1 (stands for Programming Language/1) is
suitable for scientific computation. With 1 in the name it probably intends
to be number one in terms of its great deal of functionality. LISP (stands
for List Processing, developed by McCarthy and his co-workers to design
a conceptually simple language for handling symbolic expressions with its
domain being artificial intelligence) [6]. PROLOG (stands for Programming
for Logic) is another effort for use in artificial intelligence. SNOBOL (devel-
oped in the mid-1960s at Bell Telephone Laboratory [7]) is a language whose
main strength is in processing string data. As the name SIMULA67 indicated
that SIMULA was designed in 1967 and had simulation as its major appli-

6 Chapter 1 Introduction

cation domain. And it was later refined in CLU, Euclid, and MODULA [8].
GPSS or SIMSCRIPT [9] provided the example that conventional program-
ming languages can and have been augmented so that simulations can be
easily described. The later development of the programming languages was
the coming of the general-purpose language called ADA [10] in honor of Ada
Augusta, Countess of Lovelace, the daughter of the famous poet Byron. She
collaborated with Charles Babbage (1792 – 1871) who between 1820 and 1850
designed two machines for computation. One relied on the theory of finite dif-
ference and so he called it Difference Engine. The other embodied many of the
principles of a modern digital computer and he called this Analytical Engine.
Ada, as the collaborator of Charles Babbage, helped him with developing
programs for the analytical engine. Therefore she has recently been recog-
nized as the first programmer. The other language that later became very
popular is C [11]. It initially was used for writing the kernel of the operating
system UNIX.

Apart from few (if any) languages the languages aforementioned basically
all are procedure-oriented languages. After the software crisis that took place
in the late 1960s, the structured programming method was proposed, and it
hastened parturition of Pascal (in honor of French mathematician Pascal, de-
signed by Swiss computer scientist Niklaus Wirth [12]). Another methodology
that was proposed to solve the software crisis is the object-oriented software
design method, and it caused the production of the object-oriented languages.
For example, based upon the C language, C++ was developed. Soon after it
Java was also designed based upon C. In addition, SMALLTALK [13] is also
of this kind.

As hardware unceasingly develops it also puts forward the new require-
ments to software. New computer architectures like distributed systems, par-
allel computer systems, computer networks, etc. all propose new requirements
and challenges to computer programming. New languages that meet these
needs sequentially come out.

No matter how the languages change, there is one thing unchanged that
the source programs written in these languages must be compiled first before
they become executable object programs on computers. That is to say that
they obey the module as shown in Fig. 1.3.

Fig. 1.3 A process of compilation.

1.2 Language and Computer 7

In Fig. 1.3, the compiler should be written in machine language. Only by
this way can it be executed on computer and translate the source programs
into object programs. To write the compiler directly in machine language
is not easy, and the work load is conceivably tremendous. Therefore, people
thought of using high-level language instead. Then it is compiled by a simpler
compiler written in machine language. By the two-run compilation process,
the real executable compiler is realized, as shown in Fig. 1.4.

Fig. 1.4 Sequential compilation process.

There are two triangles in Fig. 1.4. At first the second triangle is put to
run. After its run, it yields the compiler’s object program which in turns to
replace the compiler on the top of the first triangle executable. And via its
run on computer it also yields the object program that corresponds to the
source program. That is what we really need.

The module can be extended further. For example, one uses A language
to write the source program, and the compiler is written in B. Obviously the
compiler cannot be executed before it is compiled to the machine language.
Now the compiler in B can be regarded as a source program. And its compiler
is written in C. Once again, the C compiler is taken as a source program. It
is compiled by a really executable compiler in machine language.

The sequence of programs works backward. The compiler in machine lan-
guage first translates the C compiler into an executable compiler. Then by
its turn it translates the compiler in B to machine language. Finally by its
run it translates the source program into an executable object program.

The process can be extended to any levels. As long as the last level is
executable, the backward process can continue to transform the former one
to executable and in turn it transforms its former one again until the first
level can be run. Then the whole compilation process ends.

In designing a programming language a number of criteria must be kept
in mind in order to make the language welcome by users and qualified as a
quality language.

8 Chapter 1 Introduction

1. A well-defined syntactic and semantic description of the pro-
gramming language is essential

No matter what kind of description tool was used for the description, the
goal should be that when a programmer uses the language to design his/her
program, the description of the language, including syntactic and semantic,
should provide explicit information to let him/her correctly work and just as
he/she writes or talks in native language. If the description of the language
cannot provide explicit, concise, and comprehensive information, then no one
will be interested in using it as everyone must be afraid of meeting trouble in
the design of the program. Therefore the well-defined syntactic and semantic
description of the language is really, absolutely important.

In terms of use of the natural or native languages, including English and
Chinese, they are all not perfect, they all have the problems of ambiguity
or confusion. Nevertheless, as human has the higher ability in understanding
language in comparison with computers, the problems which people were
confronted with are less. However, as for the programming languages which
people use to interact with computer, the situation is drastically different.
In a programming language, even a minor bug or an ambiguity which people
made in their program, the program may not be able to correctly run, or it
reports mistakes. The bug of the programming languages sometimes was not
easily found. When D. E. Knuth reported the “remaining trouble spots in
ALGOL60” [14], it was 1967 after AGOL60 had been published for several
years. Obviously, if people happen to use them, they must be wrong. From
this example, one may know that it is not easy to realize the goal of well
description. This is also why thousands of languages soon disappeared after
the programming language storm took place in the 1960s [15]. Time like the
great breakers that washed out the sands washed the programming languages
that were not qualified in terms of the point.

2. Determinism of program structures

The determinism of program structures is intimately related to the explicit
and comprehensive description of the language. With the determinism of
the program structures, we mean that any programs in the language have
deterministic levels or hierarchy, easily understand and this makes the design,
debugging, and modifying easier to carry out. Therefore, the determinism of
the structures is different from the description, but they complement each
other.

3. Fast translation

This can also be said high efficiency of translation. When programmers
design their programs, they must hope that the programs can be translated
quickly. As Niklaus Wirth said that “A language that is simple to parse for
the compiler is also simple to parse for the human programmer and that can
only be an asset.”

1.2 Language and Computer 9

High efficiency is no doubt an important criterion for appraising the qual-
ity of programming languages. Starting from the early stage when people
started using programming languages, they had concerned about the effi-
ciency with which they designed programs. Therefore, a high efficiency has
wider meaning than fast translation means. There are several implications of
the high efficiency.

1) The high efficiency of the execution of programs.
Initially, when talking about high efficiency, almost no exception, it meant

the efficiency of the execution of the programs. And this entails the quality of
the compiler that compiles the source programs to object programs with the
high efficiency of the execution. Therefore, it may involve the design of the
optimal compiler, the efficient register allocation, as well as the mechanism
design for supporting the running of programs. Though the efficiency of the
execution of programs is intimately related to the design of the language, the
quality of the compilation by the compiler decidedly affects the efficiency of
the execution of the programs.

2) The efficiency of the compilation.
Probably, this point is just consistent with what Wirth expressed. The

large-scale productive program means that they frequently run. Hence the
saving of even only few minutes is still crucial if the great number of running
is taken into account for every day. This is why it becomes an issue which
people are concerned with. The issue is related to the quality of the compiler.
The other kind of the program is also related to the quality of the compiler.
It is the compiler that is in charge of the compilation of student programs
or programs used for teaching. Typically, the programs written by students
will not be used for production. They were the results of their learning. Only
the correctness is concerned. Therefore, we just need to make the compiler
working efficiently to compile the program to point out the errors (if any) in
the program. Therefore, in this situation the important thing is still the fast
translation of the compiler, rather than that compiler can produce the object
program with high execution efficiency and optimization.

3) The efficiency of the writing, debugging, and running of the programs.
In terms of the efficiency, the third aspect is that of writing, debugging

and running of programs. For example, if we use a language to solve some
problems, it turned out that the time spent by the programmer on designing,
coding, debugging, modifying, and running of the program was the least and
the energy spent by the programmer was also the least. If this really happened
it would be most welcome by the programmer or the user of the language. In
the practical sense, this is the real standard that measures the efficiency of
some language in solving problems on the computer. When using a language
to solve problems, one should pursue the efficiency rather than the traditional
one which are considered the efficiency of compilation only.

4. Reliability

The so-called reliability means that features should be designed in such a

10 Chapter 1 Introduction

way that syntactic and logical errors are both discouraged and easily discov-
ered. Comments both enhance the comprehensiveness and play a role for the
reader of the program to check the correctness of the program. Hence any
designer of the language should provide the facility in the language he/she
designs. Programmer when designing a program should also make use of the
facility to enhance the reliability of the program.

5. Machine independent

High-level programming language is intended to use in a variety of ma-
chines, of course, one of its goals is the ability to move the programs from a
machine to a machine.

6. Generality

The idea of generality is that all features should be composed of different
aspects of a few basic concepts. That also means that related concepts should
be unified into a single framework as the class does in the object-oriented
language.

7. Extensibility

The reason for taking this as a desirable feature is that translators are
usually forced to choose one representation for all objects of a given type and
this can be very inefficient. Programming language should allow the extension
of itself via simple, natural and elegant mechanism.

Almost every language provides the definition mechanism of subroutine
or subprogram. In developing large programs, a great part of the tasks for the
programmer can be regarded as the extension of the language as he/she has to
make a decision i.e. in order to solve the problem, how should he/she utilize
the primitive characteristics to simulate the data structures of the problem.
Hence, from the view point of the concept, it is equal to extend the original
language to include the structures simulated. Moreover, the hardware envi-
ronment that has rapidly developed and changed recently also requires the
change of software to meet them, especially the parallel computer systems,
clusters, distributed computer systems, etc., all require the programming
languages that are suitable to them. In the book later we will discuss the
computer architecture for explicitly parallel instruction computing (EPIC).
It is the extension of the very long instruction word (VLIW). These devel-
opments in hardware all require the new programming languages that are
suitable their compilers.

8. Provability

It will be desirable that when a program is developed, there is also a
mechanism to carry out the verification of the program. Is there a formal
definition of all features of the language? If it is so, this will permit formal
verification of programs. However, the cost of the process of formal verifica-
tion is very high, either unaided or aided by machine, and requires a high-level

1.2 Language and Computer 11

mathematical sophistication. It seems that as though this goal may never be
completely achieved, it continues to be worth striving for.

9. Consistency with commonly used notations

People usually get used to some notations. If they are changed in a newly
designed language, people must feel inconvenient and hard to accept the
new notations. For example, the operator + that is predefined to work on
integers, reals, and mixed integers, and real arguments, may be extended by
the programmer to work on complex numbers and matrices, etc. But if it is
replaced by other notations, people will not be happy to use it.

These nine criteria are the guidelines for creating a successful program-
ming language design. However, people discover that the best designed lan-
guage unnecessarily satisfies all the guidelines. The “go to” statement is such
an example. In the early created languages, almost no exception, all set up
the statement to realize the transfer of the control.

In order for programs not only able to be executed sequentially, but also
able to transfer, the initial motivation of setting “go to” statement was not
wrong. However, in practice, the misuse of the “go to” statement may really
cause problems. This was why Edgar Dijkstra published the famous letter,
accusing that the “go to” statement is harmful. He proposed that the “go to”
statement should be removed from the programming language. His opinion
initiated a long-term debate on whether the “go to” statement should be re-
moved or not. Later in 1974, D. E. Knuth [16] made a thoughtful argument to
end the debate. He pointed out that though the “go to” statement is a state-
ment which is easily misused, banishing it from the language repertoire seems
like a too severe form of surgery. From the debate, an idea of programming
methodology gradually became explicit, it was the structured programming.
PASCAL was the representative of the structural programming languages.
Then MODULA, C and ADA were also the products under the effect of the
methodology.

The so-called software crisis reflected the serious problems in the devel-
opment of software, e.g., the quality of the software couldn’t be guaranteed.
There were too many bugs hiding in the code and the development life pe-
riod was always suspended. It forced people to search for the solution. Then
another approach was proposed. It is the object-oriented programming. The
languages that correspond to this method are object-oriented programming
languages, as we have mentioned, SMALLTALK, C++, and JAVA belong to
the category.

The occurrences of network environment, distributed environment and
parallel computers have put forward the new thinking of parallel and dis-
tributed programming. Definitely, these require the languages for doing so.

12 Chapter 1 Introduction

1.3 Compilation of Programming Languages

From the discussion above, we have known that the programs written in
high-level programming languages need to be compiled before they can run
or executed on computer. Therefore, to write programs is something like that
the communications between two persons need a third person to translate.
In the process, people are concerned about the efficiency — the execution
of programs. In practice, the focuses or goals may be varied. If the goals
are different, the result may also be different. For example, in the course of
compilers, in view of the nature of the course, we are naturally concerned
about the compilers. The goals of compilers may be followings:

1. To develop the compiler as small as possible

According to the energy saving principle, of course we will take it as our
goal to produce a compiler as small as possible. In other words, it is all
right as long as it can handle basic tasks of compilation. Such a compiler,
however, may not be complete, as it may not be able to handle sophisticate
situations. The possible case that corresponds to the situation may be the
subset of the language. It just considers the basic elements of the language,
rather than the whole language. This kind of compilers may be taken as
the project of students with the purpose of providing training practice to
students. For training students to master the basic skills of the compilers,
this kind of compilers may play well but in practical applications they are
far from complete and unqualified to fulfill the practical task of compilation.

2. To create a compiler that possesses the better ability of diag-
nosis and recovery from failures

A compiler should be able to discover the errors within the source pro-
grams written by the users, not only static errors, but also dynamic errors.
After the error is found, it should also determine the source of the error, se-
quentially it presents the hint for correction. Only such kind of compilers can
be considered as user-friendly. It is also very helpful for users to guarantee the
correctness of the programs. However, it does not guarantee that the object
programs produced must be efficient. This kind of compilers is suitable for
the teaching environment as its ability of compilation and hinting is instruc-
tive for students. It belongs to the so-called dirty compiler category. It can
also be used as the preliminary compiler, after which the clean or optimized
compiler may work again on the source programs and produce the optimized
object programs with high efficiency.

3. To produce the compiler that will compile flexible and efficient
object programs

Based upon producing correct object programs from source programs, the
compiler requires that the object programs have higher efficiency. Therefore,
apart from the compilation, the compiler also implements the optimization

1.3 Compilation of Programming Languages 13

of object programs.
If we pay attention to the process by which the object programs are

yielded or to the final product— object programs, the possible goals can be
as follows.

1) The time spent by the compiler to translate the source program is the
least. If this is the goal, we must require that the speed of compilation of
the source program and confirmation of correctness of the source program is
fastest, and it uses the fastest speed again to generate the object program.
As for the efficiency of the object program, it is not its business and out of
its consideration.

2) The object program which the compiler generates is most efficient. It
is contrast to the first one as its focus is the efficiency of the object program
rather than the speed or efficiency of the compilation.

3) The size of the object program which the compiler generates should
be smaller. Notice that 2) was concerned about the time efficiency, here it is
concerned about the space efficiency. Therefore, the two are not equivalent.
Of course, in general, the shorter the program is, the faster it runs. However,
it is not always like this. For example, the program may be short, but it
contains lots of loops, then it may be time-consuming. Hence the goal here
is pursued mainly from the space which the object program occupies. If the
memory space of the computer is limited, it may consider this as the goal.

From the discussion above, we can see that the goals of writing compilers
may be a variety, and it is impossible to require that the compilers written
by different groups of people or written for different purposes simultaneously
meet all the same requirements. As for developing other systems, we can only
realize the compromise of the different goals. Now we focus on the compiler
and the compilation process. For the compiler, as its specific goal is to trans-
late programs written in some language into the target language of a kind of
computers, the compiler is used to establish the correspondence between the
two sides— the source language and the computer. In other words, for a pro-
gramming language and a kind of computers, there needs a compiler for the
language that runs on the computer. If there are m programming languages
and n computer systems, according to the correspondence between the lan-
guage and computer given above, we need to develop m × n compilers. Of
course, this is not the case that we look for as it implies a tremendous work
load. In order to reduce the work load, the approach we take is to find out
in the compiler which part is computer-related and which part is computer
independent. For those computers independent parts, we make them shared
by all compilers. Only for those computer related, we direct at the different
computer to design the corresponding parts of the compiler separately. Just
out of the reason, the compiler we developed is not written directly in the
computer instruction set as only in this way, instead it can be unrelated to
the specific computer. The works that need to relate to the specific computer
should be suspended as late as possible (for example, let it happen when
the compiler is really working for compilation, rather than when it was de-

14 Chapter 1 Introduction

veloped). By the effort, the number of the compilers for m languages and
n computers may be reduced from m × n to m + n. Here we just briefly
introduce the idea, we will expound it in details later in the book.

Further we will explain the working principles of the compilers. We be-
gin our discussion with general languages. When we study a language, no
matter it is native language or foreign language, the first we should study is
the words, i.e., the individual words to stand things. It includes the spelling,
the writing, the pronunciation, etc. Then we study the grammar with which
the individual words may be linked together to form a meaningful sentence
with correct grammar. As for the compiler, its working process contains two
phases, the analysis phase and the synthetic phase. The analytical phase in-
cludes two parts again: lexical analysis and syntactic analysis. Lexical anal-
ysis starts from the input of the source program. The input of the source
program is considered as the input of the character stream. The lexical anal-
ysis has to differentiate the words in sentences, they include identifiers, con-
stants, key words, variable names, operators, punctuation symbols, etc. At
the time, it has also to check the correctness of the spelling or writing of
the words. Only when they all are correct, may the next analysis, i.e., the
syntactic analysis be called on. And in order for syntactic analysis easier to
work, all the characters in the input form should be transformed into the
intermediate code form. In this aspect, it is somehow similar to the product
of language understanding in mind. The question now is that in order for
the neural system in our brain to process the utterances, what representa-
tions result in memory when listeners understand utterances or texts? What,
for example, would be stored in memory when you hear “The kid is on the
bed”? Research has suggested that the meaning representation begins with
basic units called propositions [17, 18]. Propositions are the main ideas of
utterance. They are a kind of the intermediate code form easy to process and
produce the understanding. For “The kid is on the bed”, the main idea is
that something is on something else. When one reads the utterance, he/she
will extracts the proposition on and understand the relationship which it ex-
presses between the kid and the bed. Often propositions are written like this:
On (kid, bed). Many utterances contain more than one position. Consider
“The dog watches the kid playing on the ground board”. We have as the first
component proposition On (kid, ground board). From that, we build up

Playing (kid, On (kid, ground board))

Finally we get to

Watch (dog, Playing (kid, On (kid, ground board)))

The intermediate code form makes every language unit having the same
format which we call token. They are linked together to represent the original
sentence.

The syntactic analysis takes the token sequence as input, then it analyzes
each sentence based upon the grammar of the programming language. If

1.3 Compilation of Programming Languages 15

after this, it did not find any error in the program (sentence sequence),it fur-
ther transforms the source program into the intermediate code representation
again so that the sequential synthetic phase may work on the representation
and transform it into the target program. Hence the working process may be
shown in Fig. 1.5.

Fig. 1.5 Working process of syntactic analysis.

The symbol table of Fig. 1.5 represents the structure in which for each
identifier a record is contained. As for the constant table, it represents the
structure in which for each constant a record is contained. In the symbol
table, apart from the identifier and the address that allocates to it (but it
is not the real memory address, it is only a relative address), it also con-
tains the segments for its various attributes. This kind of the data structure
may accelerate the searching of the record of every identifier, and it can also
accelerate the store of the identifier into the record or the retrieval of the
identifier from it. Upon the lexical analysis in working, when it meets an
identifier for the first time, if the lexical analysis confirms that it is an iden-
tifier, it is called the definition occurrence of the identifier. Then the later
occurrence is called the application occurrence. As the definition occurrence
appears, the compiler puts it to the symbol table, and allocates an address
to it according to the order it occurred, the allocated address is also stored
in the table. Meanwhile, based on the definition or declaration for it made
by the source program, the relative attributes are also put into the table.
On the application occurrence, the identifier is transformed to intermediate
form according to the record obtained from the definition occurrence, and
it is also needed to check whether the attributes implied in the application
occurrence are consistent with that of the definition occurrence. If they are
not consistent, the lexical analysis will consider that there is an error there.

The constant table is similar to the symbol table. For a constant, lexical
analysis first needs to transform each character that represents the digit (If
the constant represents a signed integer, it may contains a symbol + or −. If
it is a real or a float number, it may also contains +, −, decimal point, and
exponential symbol.) into corresponding numeric value. In the process, it is
also required to check whether it is correct or not. After the correctness is
confirmed then the constant is put in the constant table, and the address is
assigned to it as well as its attributes are put into the table.

For more concrete details of the symbol table and constant table, we will
further explain them later in the book.

16 Chapter 1 Introduction

The error handling may be carried out in both lexical analysis phase and
syntactic analysis phase, even in the later synthetic stage (including seman-
tic analysis). Actually, usually the lexical analysis and syntactic analysis may
handle the majority of the errors detected by the compiler. The errors that
can be found by lexical analysis include such errors as that the input char-
acters cannot be linked to form any symbol of the language; while the errors
that usually can be found by the syntactic analysis include such errors as
that the token stream violates the grammar rules or structural rules of the
language. During the semantic stage, the compiler intends to detect the fol-
lowing construction: it is correct in syntactic structure, but it simply has no
meaning in the operation concerned. For example, we want to perform the
additional operations of two identifiers, but one identifier may be the name
of an array while the other is the name of a procedure. The error handling
should not stop the working of the compiler after it discovers an error so that
it can continue the compilation and continue to find out more errors (if any).
Definitely, the user prefers knowing more errors in his/her program to only
knowing an error.

We have outlined the analytical stage in the preceding part. As we men-
tioned before, for the complete compilation process, after the analytical stage
has been finished, the next stage will be synthetic stage, the tasks of which
may be divided into the generation of the intermediate code, the optimization
of the code and the generation of code. Fig. 1.6 shows the process.

Fig. 1.6 Working process of compiler.

The intermediate code may be considered as a program of abstract ma-
chine. This intermediate code should be easy to generate, at the same time
it should also be easy to translate to the object code.

The intermediate code may have several forms. A more popular one is the
form of three addresses in which the program is expressed as the sequence of
instructions and each at most has three operands as shown in the following
expression:

id1 := id2 + id3

or
id1 ← (+id2, id3).

The intermediate code forms also have several properties. At first, apart from

1.4 Number of Passes of Compiler 17

assignment (i.e., the value of right-hand side is assigned to left-hand side),
each three-address instruction has at most one operator. Therefore, when the
instruction is formed, the compiler must decide the order of operation, for
example, the multiplication or division should be performed before addition
or subtract. Second, the compiler should generate a temporal name for stor-
ing the value which each instruction calculates. Third, some three-address
instruction may have the operands less than three. As for more details about
the generation of the intermediate code we will introduce later in the book.

The code optimization stage intends to improve the intermediate code in
order to produce the machine code that may run faster. The optimization
may be divided into local optimization and global optimization. The local
optimization in general is simpler, for example, some instructions are com-
bined into one instruction so that the number of instructions in the program
reduces. The global optimization involves the modification of the algorithm
of the program. The amount of the code optimization implemented by dif-
ferent compilers may vary remarkably; the time consumed may be different
too. For example, in comparison to other compilers some optimized compiler
may spend most time on optimization. However, there are also some other
compilers that only briefly perform optimization, they may also remarkably
reduce the running time of the object code while the compilation time was
not so much.

The task of the object generation stage is simply to generate the object
code. Usually the object codes consists of the assembly code or the relocatable
machine codes. For every variable which the source program uses, memory
unit for storing is needed. Then each intermediate instruction is translated
into the machine instructions that equally perform the same task. Thus the
machine code is yielded. However, there is also a key task for code generation,
that is the allocation of registers to variables as the allocation may speed up
the operation of the computer.

1.4 Number of Passes of Compiler

Before we start our discussion, we have to introduce the term scanning or
pass first. Scanning means the whole process of reading or passing the source
program from very beginning to its end. Obviously, in order to implement
the compilation of the source program it is absolutely necessary to scan the
program once from its beginning to its end. Without doing so for the whole
program, how can the compiler collect all information of the program? Hence
for any compiler, scanning the source program at least once is the must. If
the scanning of the program can be done backward and forward repeatedly,
one pass is enough. We do not allow to do so as we want a thing to be regular.

For a certain compiler one pass is enough for it to implement the com-
pilation of the source programs. For those languages in which the definition

18 Chapter 1 Introduction

occurrence of the identifiers precedes the applied occurrences of the identifiers
it is the case, while for others it may need more than two passes.

In practice, there are many ways that arrange various stages of the com-
piler into one pass (in one pass it may involve a stage or a number of stages of
the compiler. In reverse, a number of stages that are consecutive may be put
into one pass, of course they may also be put into separate passes.) Usually
one pass exclusively assigned for a stage (e.g., the lexical stage or syntactic
stage) has its advantages, as in this way the tasks of the compiler may be as-
signed to different groups or different individuals. This is consistent with the
principle of software engineering. It is also feasible that a number of stages are
combined in one pass, for example, one pass may be composed of the lexical
analysis, syntactic analysis, semantic analysis and intermediate code genera-
tion. If it is the case, then the token stream formed by lexical analysis may
be directly translated into the intermediate code and the activities of these
stages within the pass may be carried out interlacingly. We may consider the
syntactical analysis as one that assumes main responsibility, it intends to find
out the grammar structure of the tokens which have been seen. It gets the
next token by calling the lexical analysis. As the grammar structure of the
token stream was found, the syntactic analysis calls the intermediate code
generator to perform the semantic analysis and generate the intermediate
code.

To divide compiler stages into a number of passes is beneficial to the
division of the compilation work. However, it does not mean that the more the
pass number is, the better. A reasonable idea is to have less pass number—
the less, the better, as it must take time to read and write the intermediate
file. On the other hand, however, if many stages were put into one pass, it is
likely to store the whole program in the memory as one stage may need the
information obtained in other stage. In this case the compiler may require
much larger memory space than it really needs. Therefore it causes serious
problem for the memory space. To put a number of stages into one pass can
also cause other problems. For example, the interface between the lexical
analysis and the syntactic analysis may be confined to a token, and then
it is equal to set up a bottleneck for their running. On the other hand, it
is usually very difficult to perform code generation before the intermediate
code is completely generated.

Therefore, it is not necessarily efficient to put some stages into one pass,
and it would be rather better to put them in different scans. If we adopt
the so-called post patching-up technique, however, it is feasible to put the
intermediate code and the target code generation together. By means of as-
sembler, the so-called post patching-up technique is as follows. Suppose that
we have an assembler with two passes. The first pass is aimed at discovering
all the identifiers that represent memory units, and when the identifier is
found, its memory address is derived. Then in the second pass, the memory
address will replace the identifier. In summary, to make compiler with fewer
numbers of passes is proper as it will avoid multiple times of the input and

1.5 An Example of Compilation of a Statement 19

output of intermediate files. However, if some works are really necessary to be
divided into different passes, it will be no good at all to grudgingly combine
them together as this will cause unnecessary problems or difficulties.

1.5 An Example of Compilation of a Statement

In this section, we will illustrate the working principles of the compiler by
the compilation of a statement.

Example Suppose that the capital is a, and it is stored in the bank with
compound interest rate r. How much will be the amount of the sum of the
capital and the interest? Write a program that computes the amount. Sup-
pose the time period is n.

So we denote a as the sum of the capital and interest and initialize it as
1. Then the formula that computes the amount is as follows:

a := (1 + r)n × a

The corresponding program that computes the amount is as follows:

var n : int,
a, r : real,
a := 1,

i.e.,
a := (1 + r) ↑ n× a.

The compilation of the statement begins with the input of the character
stream that constitutes the program. Then the lexical analysis works first. It
transforms the characters into tokens. It confirms that var, int, real all are
key words of the language, and n, a, r are identifiers. The identifier n has
the attribute of integer while a, r have the attribute of real number. There is
also a constant 1 that is integer. By this assumption, the symbol table and
constant table are shown in Tables 1.1 and 1.2.

Table 1.1 Symbol table

Symbol name Intermediate code Attribute

n id1 int

a id2 real

r id3 real

Table 1.2 Constant table

Constant value Intermediate code

1 c

20 Chapter 1 Introduction

With symbol table, we can draw the process of the compilation of the
statement according to the compilation process given in Fig. 1.6. Since there
is no error in the program we omit the error handling part.

In Fig. 1.7, for the sake of simplicity, we use EXP in place of the exponent
operation id1↑ n.

Fig. 1.7 An example of compilation process of source program.

In the practical computer, in general, the exponential instruction is not
directly provided, but usually it provides the macro-instruction of the expo-
nential computation. In the intermediate code generation, we have used 5
assignment instructions. In the code generation, the number is not changed
and the number of instruction used is not reduced. However, the number of
the temporal memory units is reduced from 4 to 1. Therefore, the optimiza-
tion of the programs can be either the decrease of the number of instructions
or the number of memory units used, or both.

1.6 Organization of the Book 21

1.6 Organization of the Book

As a monograph on compiler principles, our intention is to bring the reader to
the front of the field, including the principles of the compilers for distributed
and parallel programming as well as the ideas of compilation for grid com-
puting. So far, the authors found that many books on compilers seldom dealt
with these topics though more and more computer systems were designed
with these principles. And the books on compilers left a gap between the
need and the reality. That makes the students who studied compiler princi-
ples have no idea about how should the two kinds of languages be handled
with compilation. To teach the students with obsolete materials is no good at
all for them, no matter how these materials are disguised as useful things. In
addition we intend to use the concise and explicit language as possible as we
can to cover the necessary knowledge of compilers. In our introduction, we
also encourage the reader to exert his/her creative thinking to supplement
the details of the compilation. As the title of the book indicates, it just pro-
vides the principles instead of details. In this way, we provide the broader
way to the reader to enhance himself/herself.

Chapter 2 focuses on grammars and languages. Starting from Chapter
2, at the beginning of each chapter, we first introduce the motivation of
studying the chapter. In this way, we want the reader having the purpose of
the study in mind. Therefore, he/she will not be blind when the study starts.
Both grammars and languages are the fundamentals of the programming as
the design of any programming language is based upon them. The syntactic
analysis stage is carried out by contrasting to the grammar of the language.

Chapter 3 expounds the finite state automata (or briefly finite automata,
FA) and regular expressions. The automata theory which we discuss is the
design tool of the compiler. It is an essential tool of the lexical analysis. The
compiler design has become a rather mature branch of computer science,
rather than ad hoc or contrived one. It is done under the guideline of the
theory for finite automata.

Chapter 4 discusses the lexical analysis. The lexical analysis is intimately
related to the topics of Chapter 3.

Chapter 5 further introduces the pushdown automata (PDA) that is the
extension of the finite state automata. We introduce two kinds of pushdown
automata with acceptance by final state and empty stack. We also describe
the properties of the pushdown automata.

Chapter 6 focuses on the context-free grammars, i.e., Type 2 grammars.
We explore the characteristics of these grammars as well as their relations
with pushdown automata. This is the preparation for discussion on syntactic
analysis.

Chapter 7 is with the subject of syntactic analysis. It may be seen as one
of the kernels of compilers. We deeply discuss the top-down syntactic analysis
and bottom-up syntactic analysis techniques. Both techniques are still in use
and dominate over the syntactic analysis domain. For the top-down syntactic

22 Chapter 1 Introduction

analysis, we first introduce the LL(1) analytic technique, including definition
of LL(1) grammars, properties of LL(1) grammars, and decision of whether
a given grammar is or not an LL(1) grammar. If it is not an LL(1) grammar,
it may be feasible to transform it into LL(1). We also provide the may of
the transformation Finally, we introduce the implementation of the LL(1)
syntactic analysis. Sequentially, we devote almost the same pages to discuss
the LR(1) of bottom-up syntactic analysis in which we explain LR(0), SLR(1),
LALR(1), and LR(1) one by one. Then the implementation of the technique
is also given.

Chapter 8 deals with the attribute grammars and their analysis. This is
the supplement of the analysis for the context-free grammars. The program-
ming languages mainly contain the characteristics of the context-free gram-
mars but they also contain small part that is not context-free. The attribute
grammars direct at the analysis of the part.

Chapter 9 introduces an algebraic method for compiler design. This chap-
ter may be seen as one of the high lights of the book. As far as we know, there
are very rare books on compilers that contain the content. We do so because
we believe that the algebraic method is not only useful for the design, it will
also be popular in the future.

Chapter 10 discusses the generation of the intermediate code. In this
chapter, we introduce some kinds of the intermediate languages that are
commonly used.

Chapter 11 deals with the issues on debugging and optimization. In this
chapter, a variety of ways for checking errors are discussed. The aim is simply
for eliminating these errors before the program is translated to the object pro-
gram. As for optimization, we provide the approaches to local optimization
and global optimization.

Chapter 12 deals with the issues on storage management. As some books
pointed out that the storage management does not belong to the category of
compilers, it should belong to that of operating systems. It is the operating
system that is in charge of the management of the storage. On the other
hand, no compiler is not concerned about the allocation of its symbol table,
its constant table, its object code as well as its source program, etc. Therefore,
in this way it is very natural that we have to discuss the issues on the storage
management.

Chapter 13 is the final issues on the compilers of procedural languages,
and the generation of the object code. The unique feature of the chapter is
that we adopt the MMIX machine as the target machine. In our point of view,
it is better to use a pseudo machine like MMIX than any specific machine as
MMIX is claimed to be the representative of the machines in the 21st century
while any specific machine will definitely be obsolete in the next few years.

Chapters 14 – 16, under the titles of compilation of object-oriented lan-
guages, compilation of parallel languages, and compilation of grid computing,
discuss the issues regarding the compilation of these new kinds of languages
or computing. These are frontiers of compilers. If any new book or mono-

References 23

graph on the field does not involve on these topics, it is hard to regard really
as the book on the field any more, or it can only be regarded as an obsolete
book on the field. However, as these fields are still growing, not mature at
all, we can only introduce the state of the art of current level.

Problems

Problem 1.1 For the compilation of programming languages, why are the
two phases— analysis and synthesis necessary? For the translation of
natural languages, what phase do you consider important?

Problem 1.2 From the design of programs, expound the necessity of lan-
guages for thinking.

Problem 1.3 According to your understanding of the text, analyze and
compare the pros and cons of single-pass and multi-pass scanning tech-
nique.

References

[1] Pinker S (1994) The language instinct: How the mind creates language.
Morrow, New York.

[2] Ritchie DM et al (1978) The C programming language. Bell Syst Tech J, 57,
6, 1991 – 2020.

[3] Backus JW et al (1957) The FORTRAN automatic coding system. Proc
Western Jt Comp Conf AIEE (now IEEE) Los Angles.

[4] Naur P (ed) (1963) Revised report on the algorithmic language ALGOL 60.
Comm ACM 6(1): 1 – 17.

[5] Iverson K (1962) A programming language. Wiley, New York.

[6] McCarthy J et al (1965) LISP 1.5 programmer’s manual, 2nd edn. MIT
Press, Cambridge.

[7] Farber DJ et al (1964) SNOBOL, a string manipulation language. JACM,
11(1): 21 – 30.

[8] Wirth N (1977) MODULA, a language for modular programming. Softw Prac
Exp. 7: 3 – 35.

[9] Kiviat P et al (1969) The SIMSCRIPT II programming language. Prentice
Hall. Englewood Cliffs.

[10] Wirth N (1971) The programming language pascal. Acta Inf, 1(1): 35 – 63.

[11] Knuth DE (1964) The remaining trouble spots in ALGOL 60. Comm ACM,
7(5): 273 – 283.

[12] Sammet J (1969) Programming Languages: History and fundamentals. Pren-
tice Hall, Englewood Cliffs.

[13] Goldberg et al (1980) Smalltalk-80: The language and its implementation.
Addison-Wesley, Boston.

[14] Horowitz E (1983) Fundamentals of programming languages. Springer,
Berlin.

24 Chapter 1 Introduction

[15] United States Department of Defense (1980) The Ada Language Reference
Manual, Washington D. C.

[16] Knuth DE (1974) Structured programming with GOTO statement. Comp
Surveys, 6(4): 261 – 301.

[17] Clark HH, Clark EV (1977) Psychology and language; An introduction to
psycholinguistics. Harcourt Brace Jovanovich, New York.

[18] Kintsch W (1974) The representation of meaning in memory. Hillsdale, Erl-
baum.

Chapter 2 Grammars and Languages

To explain how children acquire meanings, we charac-
terized children as scientists whose hypotheses are con-
strained by innate principles.Wecan use the same anal-
ogy to describe how children acquire the rules by which
units of meaning are combined into larger units— in
other words, grammar.

Richard J. Gerrig, Philip G. Zimbardo

2.1 Motivation of the Chapter

From the development of the mankind language, the language itself was cre-
ated first without the establishment of the grammar. As the knowledge of
mankind enriched and developed, the grammar was created to help the study
of the language and to make the language normalized. As any native language
is very complicate and the grammar was founded after the language, no mat-
ter what language is, not any grammar can totally describe the phenomena
of the language. In addition, there exist ambiguities in the native languages.
For the human being, in general, these phenomena of ambiguities can be
handled by human themselves. For computers, however, it is hard for them
to accept and even to understand ambiguity. Programming languages are dif-
ferent from native languages in that the generation of the language is almost
at the same time. The the purpose of the grammar is to help the users of the
language to avoid any ambiguity and to express the meaning correctly. The
program should be correctly written in order to be run on computer with
correct results. Therefore, the research on compilers should be started with
the discussion on the relation between grammars and languages.

2.2 Preliminary Knowledge

Definition 2.1 Character. Commonly used Latin alphabet, Arabic numer-

26 Chapter 2 Grammars and Languages

als, punctuation symbols, arithmetic operators, Greek alphabet, etc. all are
characters. For character, as for the point in geometry, we do not further
define it. We suppose that it is well known common sense. In the following
or in the future, we just use the lower case to denote the character while the
Latin alphabet is used for character list.

Definition 2.2 Alphabet. The finite set of the characters. In general, if the
Latin alphabet is taken as the alphabet, then the upper case is used for the
purpose. For example, we have A = {a, b, c, 1, 2}.
Definition 2.3 Character String. Any string that consists of 0 or more
characters is called a string. The string that consists of 0 character is called an
empty string. It is denoted as “ε”. It indicates that there is no any character
in the string. If A is defined as an alphabet as aforementioned, then a, 1, 1a,
abc, 1ba,. . . , all are the character strings over A or briefly strings. Usually
strings are denoted as Greek letters as α, β etc.

Definition 2.4 The operations on strings. Given A = {a, b, c, 1, 2}, the
strings over A are determined. There are three kinds of the operations over
the strings.

1) Concatenation or juxtaposition. For example, a and 1 are strings, then
a1 and 1a are concatenation or juxtaposition of them. In general, if α and β
are strings, then αβ and βα are strings too.

2) Disjunction or selecting one operation. If α and β are strings, α | β rep-
resents that selecting one from the two, the result is still a string. Obviously,
the operation satisfies the commutative law, i.e., α | β = β | α.

3) Closure. Given a string α, we can define the closure operation as follows.

α∗ = ε | α | αα | ααα | . . .
= ε | α1 | α2 | α3 | (2.1)

This is also called the Kleene closure. We can also define positive closure as
follows,

α+ = α | αα | ααα | . . .
= α | α2 | α3 | (2.2)

The introduction of closure operations makes it possible that finite num-
ber of strings or even a string may become the infinite number of strings. For
a finite set of strings A = {α, β, γ}, it may be regarded as A = (α | β | γ),
hence

A∗ = ε | A | A2 | A3 | . . .
= ε | (α | β | γ) | (α | β | γ)(α | β | γ) | (α | β | γ)(α | β | γ)(α | β | γ) |

(2.3)

2.3 Grammar 27

Similarly, we can also define

A+ = A | A2 | A3 | . . .
= (α | β | γ) | (α | β | γ)(α | β | γ) | (α | β | γ)(α | β | γ)(α | β | γ) |

(2.4)

From Eqs (2.1) – (2.4), we may get

α∗ = ε | α+ (2.5)
A∗ = ε | A+. (2.6)

We need to point out the difference between empty string ε and empty
set ∅. Empty string is a string without any character inside while empty set
is a set without any element. The two things share a fact that both contain
nothing. But they are different as one has no character in it and another has
no element (it may be characters or something else). For set, we may also
define its closure.

Definition 2.5 The closure of set. Let A = {a, b, c} be a set. The closure
operation of set A is defined as

A∗ = ε ∪A ∪AA ∪AAA ∪ . . .

= ε ∪A ∪A2 ∪A3 ∪ . . . (2.7)

Similarly, we have
A+ = A ∪A2 ∪A3 ∪ . . . (2.8)

What we get in this way is still a set, but it can be regarded as string too,
the set of strings.

Definition 2.6 Regular expression. Given a set, e.g., A = {a, b, c}. The
regular expression over A is defined as:

1) The element in A is regular expression.
2) If p, q are regular expressions, then after the following operation the

result is still a regular expression:
(1) concatenation, i.e., pq, pp, and qq;
(2) disjunction, i.e., p | q or q | p;
(3) closure, i.e., p∗ or q∗.
3) Return to 2), start from the regular expressions obtained by 1) or 2),

repeatedly perform the operations in 2), what we get all are regular expres-
sions.

2.3 Grammar

Definition 2.7 Formal grammar. According to linguist Noam Chomsky [1],
a grammar is a quadruple G = (VN, VT, P, S), where

28 Chapter 2 Grammars and Languages

• VN is a set of nonterminals. In general, we denote them as upper case
letters (e.g., A, B, C). The so-called nonterminal means that it may appear
at the left hand side of the productions to be explained soon, and it may
derive the terminals or nonterminals at the right hand side of productions.

• VT is a set of terminals. In general, we use lower case letters to denote
the element of the terminal set (e.g., a, b, c, etc.) The so-called terminal
means that there is no thing that can be derived from it, and it cannot
appear alone on the left hand side of productions. Here we have VN∪VT =
∅, that is that they are disjunctive, or they have no common element.

• S is a start or distinguished symbol, S ∈ VN.
• P is a set of productions (or rules). The production is as following

α→ β, (2.9)

where α is called the left part of the production while β is called the right
part, and

α ∈ (VN ∪VT)+,

β ∈ (VN ∪VT)∗.

That means that α is a nonempty string that consists of terminals and non-
terminals, while β is a string that also consists of terminals and nonterminals
but it may be empty.

Notice that the left part of productions cannot consist of terminals alone
as we have mentioned that terminal cannot be used for derivation.

Definition 2.8 Derivation. Given a grammar G = (VN, VT, P, S), a deriva-
tion means the following step:

If
α→ uwTvx (2.10)

is a production in P, where u, w, v, x ∈ (VN ∪VT)∗, and

T→ y ∪ z (2.11)

is another production in P, then T in Eq. (2.10) may be replaced by the right
part of Eq. (2.11) and Eq. (2.10) now becomes

α→ uw(y ∪ z)vx. (2.12)

This is a derivation step in G.

For a grammar, derivation is the only kind of operations. In general, the
first derivation starts with the production of which the left part is the start
symbol. Then the nonterminal within the right part of the production is
replaced by the right part of the production of which the left part is the
nonterminal. It is just like we did from Eqs. (2.10) and (2.11) to get Eq.
(2.12). The process will continue until finally there is no any nonterminal
again in the string obtained.

2.3 Grammar 29

Definition 2.9 Rightmost derivation. In the productions of the grammar,
if in the right part of the production to be used for derivation, there are more
than one nonterminals, then the derivation is carried out for the rightmost
nonterminal. If all the derivations are carried out with the rule, then it is
called rightmost derivation.

Definition 2.10 Leftmost derivation. In the productions of the grammar,
if in the right part of the production to be used for derivation, there are more
than one nonterminals, then the derivation is carried out for the leftmost
nonterminal. If all the derivations are carried out with the rule, then it is
called leftmost derivation.

Definition 2.11 Grammar hierarchy. Chomsky divides the grammars into
four types — Type 0, Type 1, Type 2, and Type 3.

We now explain these grammars separately.

Definition 2.12 Type 0 grammars. Within the grammar G = (VN, VT, P,
S) for the productions with the form α → β, where α = φAψ, where φ and
ψ are arbitrary strings in (VN ∪ VT)∗ (empty string is allowable) and A is
the start symbol S or other nonterminal; β = ξωø, ξ,ω, ø ∈ (VN ∪VT)∗ (that
means that all of them may be empty). Apart from these descriptions, there
is no any restriction again. This type of grammar is called of Type 0.

If we define that the length of a string be the number of terminals and
nonterminals, and denote | α | as the length of α. Then the definition of Type
0 means that there is no restriction on the lengths of α and β.

Type 0 grammar is the most general form of grammars. It is also called
phrase structure grammar.

Example 2.1 A Type 0 grammar is as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S→ ABSCD,

BA→ AB,

DC→ CD,

A→ aA,

B→ bB,

C→ cC,

D→ Dd,

BSC→ BC,

A→ ε,

B→ ε,

C→ ε,

D→ ε,

S→ ε.

(2.13)

In these productions, the only one that shrinks is BSC→ BC, for it we have
| α |>| β |. Apart from this one (excluding those that have empty right parts),

30 Chapter 2 Grammars and Languages

they have | α |�| β |. It is not a shrink grammar. As it has both | α |�| β |
and | α |>| β |, it is Type 0.

Definition 2.13 Type 1 grammar. In the grammar G = (VN, VT, P, S) for
the productions with the form α→ β in P, if we always have | α |�| β |, unless
| β |= 0, then the grammar is called Type 1 grammar. Type 1 grammar is
also called context-sensitive grammar (CSG).

Example 2.2 The following grammar G = (VN, VT, P, S) is a context-
sensitive grammar, where VN = {S, A, B, C, D, E, F}, VT = {a, b, c}.

The production set P consists of the following productions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S→ ABCS,

S→ F,

CA→ AC,

BA→ AB,

CB→ BC,

CF→ Fc,
CF→ Ec,
BE→ Eb,

BE→ Db,

AD→ Da,

D→ ε.

(2.14)

Definition 2.14 Type 2 grammar. In the grammar G = (VN, VT, P, S) for
the productions with the form α→ β in P, if they always have | α |= 1, that
is, the left part of every production consists of one nonterminal only, then the
grammar is called Type 2 grammar. It is also called context- free grammar
(CFG).

Example 2.3 The following grammar G = (VN, VT, P, S) is Type 2 gram-
mar, where VN = {S, A, B, C, D}, VT = {a, b, c, d, e}. And production set P
consists of the following productions.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S→ DCD,

D→ B,

D→ AD,

A→ b,

A→ c,
B→ d,

B→ a,

C→ ε.

(2.15)

Definition 2.15 Type 3 grammar. In the grammar G = (VN, VT, P, S), for
the productions with form α→ β in P, they have only two forms, i.e.,

A→ aB (2.16)

2.4 Language 31

or
A→ b.

It may be as
A→ Ba (2.17)

or
A→ b.

where A, B are nonterminals while a, b are terminals. This kind of grammars
is called Type 3 grammar. It is also called regular grammar (RG) or linear
grammar (LG). Depending on the right part of the production whether the
nonterminal appears on the left or on the right it is called the left linear
grammar or the right linear grammar. Therefore, correspondingly Eq. (2.16)
is called the right linear and Eq. (2.17) is called left linear.

2.4 Language

We define a language before we establish the relation between the grammar
and the language generated by the grammar.

Definition 2.16 Language. The any set of strings over a finite alphabet Σ,
i.e., the any subset of Σ∗ is called the language.

Simply speaking language is the set of strings. Hence, Σ∗, φ, and Σ all are
languages since the language is only a set of special kinds (the set of strings).
For any finite language we can determine the language by enumerating its
elements. For example, {abc, xyz, e, u} is a language over set {a, b, . . . , z}.
We are interested, however, in infinite languages. In general, in infinite lan-
guages cannot be determined by enumerating. Before we present the features
between grammars and languages, we like to further explore the languages.

At first we make some supplement about the operations of strings.

Definition 2.17 Reversal of the string. Given a string w, the reversal of
w, denoted as wR is a string generated from w via changing the order of the
characters in w so that the first in the original left to right order becomes the
last, and the second one becomes the second from the end, etc. For example,
(alphabet)R = tebahpla. By using mathematical induction method with the
length of the string, the reversal of the string may be formally defined:

1) If the length of w is zero, then w = wR = ε; if the length of w is 1, i.e.,
w is a character, say, a, then wR = aR = a = w.

2) Suppose that the reversal of a string with length n has been defined,
and w is a string with length n+1, let for a ∈ Σ, w = ua and | u |= n, then
wR = auR. Since for the string u with length n, we have defined its reversal,
it means that uR has been defined, wR is defined.

32 Chapter 2 Grammars and Languages

We will make use the definition to illustrate how mathematical induction
proof depends on the definition. We will prove that for arbitrary w and u,
(wu)R = uRwR.

For example, (textbook)R = (book)R(text)R = koobtxet. We now prove
this via mathematical induction over the length of u.

The basic step
For | u |= 0, u = ε, and (wu)R = (wε)R = wR = εRwR = εRwR = uRwR.
Induction hypothesis
If | u |� n, then (wu)R = uRwR.
Induction proof
Suppose that | u |= n + 1, and there exists some a ∈ Σ and x ∈ Σ∗ so

that u = xa, and | x |= n, then

(wu)R = (w(xa))R for u = xa
= ((wx)a)R for the concatenation is associative
= a(wx)R from the definition of reversal of (wx)a
= axRwR from the induction hypothesis
= (xa)RwR from the definition of reversal of xa
= uRwR since u = xa (2.18)

Now we extend our study from individual strings to the finite sets or
infinite sets of strings.

We mentioned above that Σ∗, φ, and Σ are languages. As a language is
only a special kind of set, for a finite language it is feasible to determine it
via enumerating its elements— strings. For example, as we have seen that
{school, car, is, of, y, z} is a language over {a, b, . . . , z}. But for a general
language, the enumeration method is no longer feasible to describe or deter-
mine a language as most of the languages are infinite. The languages that
can be considered is {0, 01, 011, 0111, . . . }, {w | w ∈ {0, 1}∗ and in w, the
number of 0’s and the number of 1’s are equal} and {w | w ∈ Σ∗, w = wR}.
The last language is called the palindrome. It is the same to read it forward
from the left and backward from the right. From now on we will describe our
language as

L = {w | w ∈ Σ∗, w has some properties} (2.19)

It is the same as the general form with which we describe the infinite set.
If Σ is infinite, then definitely Σ∗ is infinite too. But whether it is numer-

ablely infinite or not? It is not hard to see, it is numerablely infinite. In order
to prove the point, it is necessary to establish the one to one correspondence
between integer set N and Σ∗.In order to construct an one to one bimapping
f: N↔ Σ∗, at first it needs to determine the order of the finite alphabet,
e.g., Σ = {a1, a2, . . . , an}, where, a1, . . . , an are totally different. Then we
enumerate the elements of Σ∗ by the following method:

1) For each k � 0, the enumeration of all the strings with length k precedes
that of the strings with length k + 1.

2.4 Language 33

2) For the nk strings with length k, the enumeration is done according
to the lexical order, i.e., suppose for some m, 0 � m � k − 1, ai1, . . . , aik

precedes aj1, . . . , ajk, if for i = 1, . . ., m, i1 = j1, then im+1 < jm+1.
For example, if Σ = {0, 1}, then the order of elements of Σ∗ is as follows:

ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, (2.20)

If Σ is the Latin alphabet, then one may use Σ = {a1, a2, . . ., a26} to denote
{a, b, . . ., z}.

The order of the strings with the same length will be the lexical order in
the common dictionary. This order is different from the order that the long
strings precede the shorter ones.

As language is a set (the set of strings), the operations union, intersection,
and difference may be carried out on languages. When from the context one
may understand that Σ is a special finite alphabet, then we may use A to
denote the complement of A, in place of rather long notation Σ∗ −A.

Some operations only make sense for languages. At first, consider the
connection of languages. If L1 and L2 are two languages over the alphabet Σ,
then the connection of them is L = L1 ◦ L2 or briefly L = L1L2, where,

L = {w | w ∈ Σ∗, W = xy, where x ∈ L1, y ∈ L2}. (2.21)

For example, if Σ = {a, b}, L1 = {w | w ∈ Σ∗, w contains even number of a’s}
and L2 = {w | w starts with a and the rest is all b’s}, then L1 ◦ L2 = {w | w
contains odd number of a and the number of b’s is uncertain}.

The other operation of languages is Kleene closure, e.g., L∗, where L is a
language.

L∗ is the set of the connections of L itself, including that of zero L. The
connection of zero L is ε, the connection of one L is itself, hence

L∗ = {w | w ∈ Σ∗, w = w1w2...wk, k � 0, w1, . . ., wk ∈ L}. (2.22)

For example, if L = {ab, b, baa}, then bbaaabbbbaaabb ∈ L∗ as bbaaabbb-
baaabb = b ◦ baa ◦ ab ◦ b ◦ baa ◦ b ◦ b, and here b, baa, and ab belong to the
strings of L.

Notice here that there are two concepts. On one hand, for any finite
alphabet Σ, we use Σ∗ to denote all the strings over Σ. On the other hand,
we use L∗ to represent the Kleene closure of language L. The two notations
are exactly the same.

It is true. If we let L = Σ and apply the definition above, then Σ∗ rep-
resents the set of all strings w’s. that means that there exists k � 0, and
w1, . . ., wk ∈ Σ so that w = w1. . .wk. As wi is the language over Σ, hence,
according to the definition, Σ∗ is the set of strings (language) over Σ.

Example 2.4 Prove that φ∗ = {ε}.
Based on the definition above, let L = φ, then for k � 0, and w1, . . ., wk ∈ L,
the only possible connection is k = 0 and it is ε. Hence the only element of
L∗ is ε.

34 Chapter 2 Grammars and Languages

Example 2.5 Prove that if L is such a language that L = {w | w ∈ {a, b}+,
and in w the number of a’s and the number of b’s are different}, then L+ ⊆
{a, b}+.

We now prove it. At first, notice that for any languages L1, L2, if L1 ⊆ L2,
then L∗

1 ⊆ L∗
2. This can be obtained from the definition of closure. Further-

more, as {a, b} ⊆ L, and a and b are the strings with different numbers of
a and b. So {a, b} ⊆ L, but from the definition, L ⊆ {a, b}∗. Therefore,
L∗ ⊆ {{a, b}+}∗ = {a, b}+. We now can denote L+ as LL∗ and

L+ = {w | w ∈ Σ∗, and ∃w1. . .wk ∈ L, and k � 1 so that w1 ◦w2 ◦ . . . ◦wk}
(2.23)

L+ can be regarded as the closure of L under the connection operation.
Hence L+ is a minimal language that consists of L and the connections of all
elements of L. It means that if there are some languages that hold the same
elements, then L+ is the smallest one among them.

2.5 Language Generated by a Grammar

In Section 2.2, we defined grammar and pointed out that the only operation
for grammar is the derivation. The purpose of the derivation is to generate
the string that is composed of terminals. All the strings that are derived from
the grammar form the language. It is the language generated or accepted by
the grammar. In this section, we will exemplify a few languages generated by
their corresponding grammars [2].

Example 2.6 Consider the language generated by the grammar given in
Example 2.1. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S→ ABSCD,

BA→ AB,

DC→ CD,

A→ aA,

B→ bB,

C→ cC,

D→ dD,

BSC→ BC,

A→ ε,

B→ ε,

C→ ε,

D→ ε,

S→ ε.

(2.24)

At first, we have

S→ ABSCD→ ABCD→ ε ε ε ε→ ε.

2.5 Language Generated by a Grammar 35

Hence we have ε ∈ L(G), where L(G) means the language L generated by the
grammar G. Furthermore, S → ABSCD → ABCD → aABCD → aA → a.
So a ∈ L(G). Similarly, we may get b, c, d ∈ L(G). In addition,

S→ ABSCD→ ABABSCDCD
→ ABABCDCD
→ AABBCCDD
→ . . .

→ ambncpdq.

Finally by mathematic induction proof, we may get L(G) = {ambncpdq |
m, n, p, q � 0}.
Example 2.7 Consider the language generated by the grammar given in
Example 2.2. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S→ ABCS,

S→ F,

CA→ AC,

BA→ AB,

CB→ BC,

CF→ Fc,

CF→ Ec,

BE→ Eb,

BE→ Db,

AD→ Da,

D→ ε.

(2.25)

It is easy to find out that

S→ ABCS→ ABCABCS→ . . .→ (ABC)nF.

Making use the several last parts of productions, let see

S→ ABCABCF→ ABACBCF→ ABABCCF→ AABBCCF→
AABBCFc→ AABBEcc→ AABEbcc→ AADbbcc→
ADabbcc→ Daabbcc→ aabbcc.

In the process the three productions are important for obtaining the form we
desire to have. These productions are

CA→ AC,

BA→ AB,

CB→ BC.

36 Chapter 2 Grammars and Languages

With these productions we have the following derivations

S→ ABCABCABCF→ ABACBCABCF→ ABABCCABCF →
ABABCACBCF→ ABABACCBCF→ ABABACBCCF→
ABABABCCCF→ AAABBBCCCF.

Therefore, by repeatedly using these productions, we may derive S→AnBnCn.
Sequentially, by using the later productions, we may conclude that the gram-
mar generates the strings with form anbncn(n � 1). The only way to remove
the nonterminals from the strings is to follow the process shown above. Since
all the strings generated by the grammar have the same form anbncn, n � 1,
thereby the language generated is

L(G) = {anbncn | n � 1}.
Example 2.8 Consider the language generated by the grammar given in
Example 2.3. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S→ DCD,

D→ B,

D→ AD,

A→ b,

A→ c,

B→ d,

B→ a,

C→ e.

(2.26)

At first we have
S→ DCD→ BCB.

As B has two productions that takes it as left part, B → d and B → a, or
B→ (d | a) and C→ e, hence we have S→ (d | a) e (d | a) and (d | a) e (d |
a) ∈ L(G). On the other hand, S → DCD → ADCAD → AADCAAD →
. . . → AmDCAnD → AmBCAnB, hence S → (b | c)m(d | a) e (b | c)n(d | a).
So the language generated by the grammar is L(G) = (b | c)m(d | a) e (b |
c)n(d | a) | m, n � 0).

Example 2.9 Consider the grammar G = (Vn, VT, P, S), where VN =
{S, A}, VT = {a, b}.

The production set P consists of⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

S→ aS,

S→ ε,

S→ bA,

A→ bS,

A→ aA.

(2.27)

2.6 Turing Machine 37

For the grammar, the language generated by it is simple. It is the so-called
regular language as the grammar is the regular grammar. At first, it generates
ε and a, hence these two belong to the language it generates, ε, a ∈ L(G).
From S → bA → bbS → bbε → bb, we also have bb ∈ L(G). Then we do
the derivations S → aS → aaS → . . . → amS → ambA → ambbS → . . . →
am(bb)nS. So the language generated by the grammar has the following form

am, am(bb)n, am(bb)nap(bb)q, . . ., am(bb)l. . .ar, am(bb)l. . .ap(bb)qm. (2.28)

In order to discuss the properties of the languages generated by grammars, we
need to introduce the concept of Turing machine. Thereby the next section
will devote to it.

2.6 Turing Machine

Before we formally discuss the concept of Turing machines, it is necessary to
introduce the founder of the theory— Alan M. Turing (1912 – 1954). Turing
is an excellent mathematician and philosopher. As a boy, he was fascinated
by chemistry, performing a variety of experiments, and by machinery. In 1931
he won a scholarship to King’s College, Cambridge. After completing his dis-
sertation which included a rediscovery of the central limit theorem, a famous
theorem in statistics, he was elected a fellow of his college. In 1935 he was fas-
cinated with the decision problem posed by the great German mathematician
David Helbert. The problem asked whether there is a general method that
can be applied to any assertion to determine whether the assertion is true.
In 1936 he published the paper entitled “On Computable Numbers, with an
Application to the Entscheidungsproblem (problem of decidability) on Pro-
ceedings London Mathematical Society, vol. 42, 1936. It was in the paper
that he proposed the very general computation model, now widely known as
the Turing machine. During World War II he joined the Foreign Office, to
lead the successful effort in Bletchley Park (then the British Government’s
Cryptography School in Milton Keynes) to crack the German “Enigma” ci-
pher, which Nazi Germany used to communicate with the U-boats in the
North Atlantic. In this undertaking his contribution to the breaking of the
code of Enigma, played an important role in winning the war. After the war
Turing worked on the development of early computers. He was interested in
the ability of machines to think, proposing that if a computer could not be
distinguished from a person based on written replies to questions, it should be
considered to be “thinking”. He was also interested in biology, having written
on morphogenesis, the development of form in organism. In 1954 Turing com-
mitted suicide by taking cyanide, without leaving a clear explanation. The
Association for Computing Machinery [3] in the U.S.A. created the Turing
Award in 1966, to commemorate Turing’s original contribution.

As we mentioned above, the Turing machine is the most general model of

38 Chapter 2 Grammars and Languages

a computing machine. Basically, a Turing machine consists of a control unit,
the soul of the machine, which at any step is in one of finitely many different
states, together with a tape divided into cells and which has a boundary in the
left hand side (the restriction can be lifted so that it can be like the right side
too, but by the removal of the restriction does not change the computation
power of the Turing machine) but stretches infinitely in the right hand side.
Turing machine has read and write capabilities on the tape as the control
unit moves back and forth along this tape, changing states depending on the
tape symbol read. At first, the input message should be written on the tape,
then the control unit reads the leftmost message, the Turing machine starts
its running in this way, it may move forth and back on the tape, as well as
change the symbols on the tape, until considers that its running comes to the
end.

Definition 2.18 Turing machine. A Turing machine is a heptatuple
M = (K, Γ, Σ, δ, S, b, H).

K— the finite set of the states.
Γ —the alphabet, the symbols of the tape, including blank symbol b,

K ∩ Γ = φ.
Σ —the subset of Γ, not including b. It is the set of input.
δ— the transfer function, a mapping from (K−H)×Γ to K×Γ×{L, R},

where, L represents left (it stands for the left move of the write/read head
of the tape) while R represents right (it stands for the right move of the
write/read head of the tape). Hence δ represents the next state function, for
example:

(1) for ∀q ∈ K−H, if δ(q, a) = (p, R), it represents that the current state
of the Turing machine is q, with input a, it will have p as the next state and
the tape head will move right for one cell;

(2) for ∀q ∈ K − H, if δ(q, a) = (p.c, L), similarly, it represents that the
next state will be p, and the input symbol a will be changed to c, and the
tape head will move left for one cell.

S —∈ K, the initial state of the Turing machine.
b — the blank symbol on the tape. Notice that the input symbols do not

contain b.
H—⊆ K, the set of final states. It means that the number of final states

may be more than one.
We may use α1qα2 to denote an instantaneous description (ID) of the

Turing machine, where q(q ∈ K) is the current state of M, α1, α2 are strings
in Γ. α1 means the string from the left boundary of the tape until the symbol
under the tape head, and α2 means the string from the right of the tape
head till the first blank symbol on the right side of tape (notice that in α1

and α2 there may be the blank symbol b). The ID represents that the Turing
machine now is under control of state q, and the tape head is going to scan
the leftmost symbol in α2. If α2 = ε, then it represents that the tape head is
scanning a blank symbol.

2.6 Turing Machine 39

More exactly speaking, suppose that α1 = x1x2. . .xi−1, α2 = xi. . .xn, then
x1x2. . .xi−1qxi. . .xn is the current ID, and suppose that there is

δ(q, xi) = (p, y, L) (2.29)

in the mapping from (K−H)×Γ to K×Γ×{L, R}. It indicates that the next
state is p, and y will be written on where xi is located. Meanwhile the tape
head is moved to left for one cell. In addition if i− 1 = n, then xi is taken as
b, if i = 1, as tape is on the left boundary and tape head cannot move left
again, there will be no the next ID. If i > 1, then we may use the following
expression to represent the ID:

x1x2. . .xi−1qxi. . .xn |– x1x2. . .xi−2pxi−1yxi+1. . .xn. (2.30)

If yxi+1. . .xn is only a blank string, then it may be deleted. It indicates
that the machine stops running, but according to the definition, only when
the machine enters one of final states then can the computation normally
finishes, otherwise, the finish can only be regarded as abnormal stop.

δ(q, xi) may take another form, i.e.,

δ(q, xi) = (p, y, R). (2.31)

As Eq. (2.29), the next state is p, y will be written on where xi is located,
but this time the tape head will move right for one cell. In this circumstance,
we use the following expression to represent the ID:

x1x2. . .xi−1qxixi+1. . .xn |– x1x2. . .xi−1ypxi+1. . .xn. (2.32)

Notice that in this circumstance if i− 1 = n, then string xi+1. . .xn is a blank
string, then the next state is facing a blank.

Fig. 2.1 shows the visual model of the Turing machine.

Fig. 2.1 Turing machine model.

If two IDs are related via |–M, then we say that the second ID is yielded
from the movement of the first ID. If the ID is produced from the finite
number (including zero) of movements of the other ID, then we say that they
are related via |–M, and we denote it |–∗M. When no confusion will happen,
either |–M or |–∗M may be simplified as |– or |–∗.

40 Chapter 2 Grammars and Languages

Example 2.10 Consider the following Turing machine, it has

K = {q0, q1, q2, q3, q4},
Γ = {0, 1, x, y, b},
Σ = {0, 1},
H = {q4}.

The transition function δ is defined as follows.

At the beginning, let the tape contain 0n1n, following it being the infi-
nite number of b’s, i.e., blanks. Take 0212 as an example, according to the
definition of δ, we have the following computation:

q00011 |–→ xq1011 |–→ x0q111 |–→ xq20y1 |–→ q2x0y1 |–→
xq00y1 |–→ xxq1y1 |–→ xxyq11 |–→ xxq2yy |–→ xq2xyy |–→
xxq0yy |–→ xxyq3y |–→ xxyyq3 |–→ xxyybq4 (2.33)

The computation process above, i.e., machine M repeatedly substitutes
x for the leftmost 0, and move right to find the leftmost 1, then substitute
it with y. Then move left again to find the rightmost x, move one more cell
to find the leftmost 0. In this way, it forms a cycle. It then repeats the cycle
until M cannot find any 1 left. When M found that there is no any 0 left and
there is no any 1 left either, in this circumstance, it means that the number
of 0’s and the number of 1’s are equal. Then the string is accepted by M.
Otherwise if the number of 0’s is more than that of 1’s or vice versa, then M
does not accept.

The computation process commences with q0, its role is to start the whole
process. This is its unique role. After it found the leftmost 0, it changes the
state to q1 making the computation entering to the cycle above. Meanwhile,
the 0 is replaced by x, and it moves right to continue the searching of the
corresponding 1. Therefore, the role of q1 is to move right to continue the
search, passing 0’s and y’s to look for the leftmost 1. When it has found
the 1, its role also finished, and now it is the turn of q2. The role of q2 is
to move left for searching for x. When it found x, it suddenly changes to

2.6 Turing Machine 41

q0. Under the state q0, M moves right, looks for the leftmost 0 and begins
the other cycle. When M moves right to look for 1 under the state q1, if
it meets b or x before it meets 1, that means that the numbers of 0’s and
1’s are not consistent. Hence the string is rejected. As for state q3, it is the
state that replaces q0 when it found y on the tape (notice that y is not an
input symbol, the same as x, they are temporal symbols introduced during
the computation). The q3 is used for scanning y and checking whether there
is 1 left or not. If there is no 1 left, that means that b follows y, then q3 is
changed to q4, and the computation comes to the end, and the input string
is acceptable. Otherwise the computation cannot finish, or the input string
cannot be accepted. Therefore, state q4 is the final state.

Example 2.11 Consider a Turing machine M = (K, Γ, Σ, δ, q0, b, {q2}),
where

K = {q0, q1, q2},
Γ = {u, a, b}, (u is the left boundary symbol of the tape)
Σ = {a},
H = {q2}.

The transition function δ is defined as follows:

δ(q0, u) = (q0, R),
δ(q0, a) = (q1, b),
δ(q0, b) = (q2, b),
δ(q1, a) = (q0, a),
δ(q1, b) = (q0, R).

In this machine, when M starts with state q0 if it encounters the left
boundary symbol u of the tape, it does not change u but continues to move
right for one cell. When it encounters an a, the state is changed to q1. Mean-
while, input a is removed and the cell becomes b. When q1 meets b it is
turned to q0 and moves right. If q1 meets a, it is also turned to q0 but the
tape head does not move.

In order to more explicitly investigate the moves of the Turing machine,
assume that there are three a’s on the tape. The operations are shown in Fig.
2.2.

So far, the Turing machine enters the final state q2, the whole computation
process terminates. As we can see that the work of the Turing machine is to
delete the a’s on the input tape. No matter how many a’s there are on the
tape, it can delete all of them, but one per time.

Example 2.12 Consider the following Turing machine,

M = (K, Γ, Σ, δ, q0, b, {q1}),

42 Chapter 2 Grammars and Languages

Fig. 2.2 The other Turing machine.

where

K = {q0, q1},
Γ = {u, a, b}, (u stands for the left boundary symbol)
Σ = {a},
H = {q1}.

The transition function δ is defined by the following expressions:

δ(q0, a) = (q0, L),
δ(q0, b) = (q1, b),
δ(q0, u) = (q0, R).

2.6 Turing Machine 43

In order to observe the operations of the Turing machine more explicitly, we
do the same as we did above. We also assume that the input on the tape is
the string uaaabb. . . . We have

q0uaaabb |–→ uq0aaabb |–→ q0uaaabb |–→ uq0aaabb |–→
q0uaaabb |–→ uq0aaabb |–→ q0uaaabb. (2.34)

Therefore, in this circumstance the Turing machine only moves forward and
backward between the left boundary and the first non blank character a. It
cannot move to the blank character where it enters the final state. However,
if the input string is ubabb. . . , that means that the blank character follows
the left boundary symbol, then we have

q0ubabb |–→ uq0babb |–→ uq1babb. (2.35)

By moving only for one cell, it has encountered the blank character and it
immediately enters the final state.

We have given the definition of the Turing machine and three examples of
the machine. From these we may see that Turing machine carries the compu-
tation directing at the input on the input tape until it enters the final state.
The input that leads the Turing machine enters the final state is regarded
as the statement of the language the machine recognized or accepted. There-
fore, we can now define the language which the Turing machine recognizes or
accepts [4].

Definition 2.19 The language accepted or recognized by the Turing ma-
chine L(M). The set of those words in Σ∗that cause M to enter a final
state when M starts its operation with state q0 and the tape head of M
is initially located at the leftmost cell. Formally, the language accepted by
M = (K, Γ, Σ, δ, q0, b, H) is

{w | w ∈ Σ∗ ∧ q0w |–→ α1pα2 ∧ p ∈ H ∧ α1,α2 ∈ Γ∗}.
According to the definition, it is not hard to see that the three examples of
Turing machine above recognize their respective languages. The first Turing
machine recognizes {0n1n | n � 1}. The language which the second Turing
machine recognizes is {an | n � 0}. The third Turing machine recognizes
language {b}. From these examples, we can also see that given a Turing
machine that recognizes language L, without loss of generality, we can assume
that whenever the input is accepted, the machine enters a final state and it
no longer moves. There is another possibility, however, that for the character
or statement which it does not recognize, it never stops. The third example
belongs to the case.

Definition 2.20 Recursive language. Let M = (K, Γ, Σ, δ, b, q0, H) be a
Turing machine, where H = {y, n} consists of two discriminable final states
y (stands for yes) and n (stands for no). Any terminating instantaneous

44 Chapter 2 Grammars and Languages

description with the final state y is said to be a configuration accepted, while
the terminating instantaneous description with final state n is said to be a
configuration rejected. We say that M accepts input w ∈ (Σ− {u, b})∗, that
is, within w there is no any blank or left boundary symbol and q0w yields
an acceptable configuration. And we say that M rejects the input w if q0w
yields a configuration with n as the final state.

Let Σ0 ⊆ Σ − {u, b} be a finite alphabet, Σ0 is called input alphabet of
the Turing machine M. By fixing Σ0 as the subset of Σ − {u, b}, we allow
that during its computation M may use additional symbols of Γ apart from
the characters within the input alphabet. We say that a language L ⊆ Σ∗

0 is
decidable by M, if for any sentence w (i.e., the string) of the language L, M
will accepts it, while for any w ∼∈ L, M will rejects it.

If there exists a Turing machine that decides L, then a language L is said
to be recursive.

Definition 2.21 Recursive function. Let M = (K, Γ, Σ, δ, b, q0, H) be a Tur-
ing machine, Σ0 ⊆ Σ−{u, b} is a finite alphabet, and w ∈ Σ∗

0 is the input of
M. Suppose that M terminates upon input w and we have uq0bw ∗�−→ uhby
(h ∈ H, y ∈ Σ∗

0), then we say that y is the output of M upon input w and
we denote it M(w). Notice that only when for input w the machine M comes
to its end state, then the M(w) makes sense. In this case, M terminates with
the configuration y, where y ∈ Σ∗

0.

Now we say that a function f is recursive if there exists a Turing machine
M that computes f.

For the two definitions above, one uses the Turing machine to describe
a language, while another uses the Turing machine to describe a function.
Therefore, naturally we may imagine that the Turing machine is an algorithm
that correctly and reliably implements some computational task. Thereby we
introduce a new definition.

Definition 2.22 Recursively enumerable [5] language. Let M = (K, Γ, Σ, δ,
b, q0, H) be a Turing machine, Σ0 ⊆ Σ − {u, b} be a finite alphabet, and let
L ⊆ Σ∗ be a language. We say that M semi-decides language L, if for any
string w ∈ Σ∗

0 the following fact holds: w ∈ L if and only if M terminates
when it computes on input w. A language is said to be recursively enumerable
if and only if there exists a Turing machine M that semi-decides L.

Before we present the important conclusion of the language which a gram-
mar generates we need to present another concept.

Definition 2.23 Nondeterministic Turing machine. A nondeterministic
Turing machine, as its deterministic peer, is a heptatuple M = (K, Γ, Σ, Δ, b,
q0, H), where K, Γ, Σ have the same meaning as in its corresponding peer, q0

is also the same as in the original one. The difference happens on Δ and δ: Δ
is not a function like δ that uniquely maps (K−H)×Σ to K×(Σ∪{L, R}), in-
stead, it maps to a subset of K×(Σ∪{L, R}). That means that for an element

2.6 Turing Machine 45

of (K−H)×Σ there are arbitrary numbers of elements from K× (Σ∪{L, R})
that can be its mappings. Now the configuration and the relations �−→

M
and

∗�−→
M

are defined naturally, but they are not necessarily unique. That means

that a configuration may have arbitrary numbers of the configurations in the
next step.

Definition 2.24 The language which the nondeterministic Turing machine
semi-decides. Let M = (K, Γ, Σ, Δ, b, q0, H) be a nondeterministic Turing ma-
chine. We say that M accepts an input w ∈ (Σ−{u, b})∗ if uq0bw ∗�−→

M
uvhas,

where h ∈ H, a ∈ Σ, v, s ∈ Σ∗. Notice that a nondeterministic Turing machine
accepts an input as long as for the input at least there exists a computation
of M that terminates although there may be many non-terminable computa-
tions. We say that M semi-decides a language L ⊆ (Σ − {u, b})∗, if for any
w ∈ (Σ − {u, b})∗, the following condition holds: w ∈ L if and only if M
accepts w.

The definition talks about semi-deciding, we may further define a Turing
machine deciding a language, or deciding a function, although it is more
subtle.

Definition 2.25 The language which a nondeterministic Turing machine
decides. Let M = (K, Γ, Σ, Δ, b, q0, {y, n}) be a nondeterministic Turing ma-
chine, where y, n ∈ K, we say that M decides a language L ⊆ (Σ−{u, b})∗ if
for all w ∈ (Σ− {u, b})∗ the following conditions hold:

1) Depending on M and w, there exists a natural number N such that in
N steps, there exists no configuration C of M that satisfies uq0bw ∗�−→

M
C (C

stands for the instantaneous description (ID) mentioned above).
2) w ∈ L if and only if uq0bw ∗�−→

M
uvyas, where v, s ∈ Σ∗, a ∈ Σ.

The definition reflects the difficulty which the nondeterministic Turing
machine meets when it carries out the computation. At first for a nonde-
terministic Turing machine that decides a language, we require that all its
computation terminate. Thereby we assume that after N steps there will be
no computation going on, hence N is the upper bound that relates the ma-
chine and the input. Secondly, for machine M that decides a language, we
only require that among all the possible computations, there will be at least
one that terminates with accepting the input, here y stands for the termi-
nate state (yes). Other computations will terminate with the reject state (n).
This is an extremely unusual, anti-symmetric and anti-perceivable conven-
tion. Similarly, we have the following definition.

Definition 2.26 A function which a nondeterministic Turing machine com-
putes. We say that a nondeterministic Turing machine M = (K, Γ, Σ, Δ,
b, q0, H) computes a function f: (Σ − {u, b})∗ → (Σ − {u, b})∗, if for all
w ∈ (Σ− {u, b})∗ the following two conditions hold:

46 Chapter 2 Grammars and Languages

1) Depending on M and w, there exists a natural number N such that
after N steps there exists no configuration C of M that satisfies uq0bw N�−→

M
C.

C has the same meaning as in Definition 2.25.
2) uq0bw |–∗M uvhas, where v, s ∈ Σ∗, a ∈ Σ if and only if va=ub and

v = f(w).

For a nondeterministic Turing machine that computes a function, we re-
quire that the results of all the possible computations be consistent, other-
wise we cannot determine which one is correct. In deciding or semi-deciding
a language, we solve this problem via the assumption that the positive result
predominates.

Now we present the important conclusion on the language generated by
a grammar.

Theorem 2.1 A language is generated by a grammar if and only if it is
recursively enumerable.

Before the proof of the Theorem 2.1 is given, we need to extend the
concept of the Turing machine, introducing the concept of multitape Turing
machine.

Definition 2.27 The k tape Turing machine. Suppose that k � 1 is an
integer.

The k tape Turing machine M = (K, Γ, Σ, δ, b, q0, H) is almost the same
as the ordinary Turing machine, where the meanings of K, Γ, Σ, q0, H are
exactly the same as in the definition of ordinary Turing machine. However,
now for the δ, as the transition function, it is the mapping from (K−H)×Σk

to K × (Σ − {L, R})k. In other words, given each state q and input symbols
(a1, . . ., ak) on k tapes, then there will be δ(q, (a1, . . ., ak)) = (p, (b1, . . ., bk)),
where p stands for the next state of state q, and bj is that on jth tape the
result of the operation of M in place of aj. Naturally, for some j � k, if
aj=u then the tape head on the tape j will move right, that means that the
operation is R.

From the definition we know that for any integer k � 1, a k tape Tur-
ing machine is a Turing machine with k tapes and corresponding heads for
each tape and its control unit deals with the information on each tape. The
computation is performed with the input on all the k tapes. Therefore, the
configuration of the Turing machine must contain all the information on these
tapes.

Definition 2.28 The configuration of the k tape Turing machine. Let M =
(K, Γ, Σ, δ, b, q0, H) be an k tape Turing machine. The configuration of M is
an element of

K× (uΣ∗ × (Σ(Σ− {b}) ∪ {e}))k

where e ∈ Σ,that is, a configuration identifies the state, the contents of the
tapes and the positions of the tape heads, e represents the possible changes

2.6 Turing Machine 47

that happens on the tail of the tape.

Having these we now prove Theorem 2.1.

Proof Necessity. By necessity if the language is generated by the grammar
G, it must be recursively enumerable. That also means that there will be a
Turing machine that accepts it. Let G = (Vn, Vt, P, S) be a grammar. We
will design a Turing machine that semi-decides the language generated by G.
In fact, M is not deterministic, but in the theory of the Turing machine, the
following facts have been established that it is feasible to transform the non-
deterministic Turing machine into deterministic Turing machine, and both
the Turing machines semi-decide the same language.

The Turing machine which we construct is a 3 tapes Turing machine. The
first tape contains the input denoted by w and the content keeps unchanged.
On the second tape, M intends to reconstruct the derivations of G that starts
from S and carries out on input w. Hence, M starts with writing S on the
second tape, then according to the production M replaces S with the right side
of the production of which the left side is S. The sequential step is to replace
the nonterminal on the tape with the right side of the production of which the
nonterminal occupies the left side. Every step is just the repeat of the process
until w occurs on the tape. However, since it is a nondeterministic Turing
machine, every step starts with nondeterministic transformation, and it has
to guess among | P | productions, | P | means the number of the productions.
In every step, we have to choose which production is used. Suppose that
the production selected is u → v, where u ∈ (Vn ∪ Vt)+, v ∈ (Vn ∪ Vt)∗.
Then M scans the contents on the second tape from left to right, looking
for the nonterminal on the tape. If it found one, it replaces the nonterminal
with the right side of the production of which it stands on the left side. The
meaning of the nondeterministic is that we do not know in advance which
productions should be used for a number of the productions that all have
the same nonterminals stand on the left side. If the process did not generate
w on the tape, that means that the intention of generating w on the tape
fails. And the derivation should start again with other inputs. If finally w
occurs on the second tape after several derivation steps, then we say that w
is accepted by M. In this case, we have proven that w is really generated by
a Turing machine and the language is recursively enumerable.

By the way, the third tape is used for storing the productions of the
grammar G. When the Turing machine scans the content of second tape and
found a nonterminal, it has to check the third tape to find the production of
which the nonterminal occurs on the left side.

Sufficency The task of the proof is to define a grammar from the Tur-
ing machine that accepts the language, so that the grammar also accepts the
language. Assume that M = (K, Γ, Σ, δ, b, q0, H) is a Turing machine. Ac-
cording to the definition of Turing machine, of course, K and Γ are disjoint.
Both of them do not contain the new terminate symbol ↑. For convenience,
we further assume that if M terminates, then it always terminates on the

48 Chapter 2 Grammars and Languages

configuration uhb, i.e., it terminates after it deletes the contents of the tape.
As we have mentioned that any Turing machine that semi-decides a lan-
guage can be transformed into the equivalent Turing machine that satisfies
the same condition. We need to define a grammar that generates the language
L ⊆ (Σ−{u, b})∗ which M semi-decides. It is G = (Vn, Σ−{u, b}, P, S). Now
we need to specify the components of G.

The Vn of nonterminal symbol set of G consists of all the states of K,
including the start symbol S (the initial state q0 may be used as S), in addi-
tion, the left boundary symbol u, the blank symbol and the terminate token
↑. Perceivably, the derivations of G will simulate the backward computation
of M. We will simulate the computation through the initial configuration.
Consider the string uvaqw ↑. Then the productions of G are the actions that
simulate M backwardly. For each q ∈ K, and each a ∈ Σ, depending on δ(q,a)
there are following rules:

1) If for some p ∈ K and b ∈ Σ, δ(q, a) = (p, b), then in G there will be
production bp→ aq.

2) If for some p ∈ K, δ(q, a) = (p, R), then the corresponding production
in G will be: for all c ∈ Σ, acp→aqc and abq→aq↑ (this rule reverses the
extension of the tape to right via a blank symbol).

3) If for some p ∈ K and a �= b ∈ Σ, δ(q, a) == (p, L), then G will have
the corresponding production pa→aq.

4) If for some p ∈ K, δ(q, b) = (p, L), then for all c ∈ Σ, G will have the
corresponding production pab→aqc and p↑→bp↑. This rule is for deleting
the excessive blanks reversely.

We have to point out here that many books on the field usually assert the
equivalence of the transition function and the production, just through the
transformation from the former to the later. They did not indicate the differ-
ence between these two things. Actually, however, in grammar, the complete
derivation should be that in the final string there will be no any nonterminal,
i.e., no element of K. In the string, there are only the symbols of Σ, otherwise
the derivation is called the dirty derivation.

The productions obtained from function δ, however, are unavoidably con-
taining the nonterminal symbol in K. Therefore, in order to define completely
G, it is necessary to contain extra productions that are used for deleting the
nonterminals. Hence, we stipulate that G also contains the productions used
to the transformation of the start of the computation (the termination of the
derivation) and the termination of the computation (the start of the deriva-
tion). The production

S→ ubh ↑
forces that an cceptable computation will precisely finish the derivation at
the termination place. In addition, the production

ubs→ ε

will delete the last part of the left side of the input, and ↑→ ε will delete the
termination token, making only the input string left.

2.6 Turing Machine 49

The following assertion makes more precise the idea that grammar G
backwardly simulates the computation of M.

Assertion For two arbitrary configurations of M, u1q1a1w1 and
u2q2a2w2, there will be u1q1a1w1 �−→ u2q2a2w2 if and only if u2q2a2w2

↑ −→
G

u1q1a1w1 ↑.
The proof of the assertion is omitted here. We just point out that the

proof is a case analysis of the properties of the actions of M. We now almost
come to the end of the proof of the theorem. We need to prove that for
all w ∈ (Σ − {u, b})∗, M terminates upon w if and only if w ∈ L(G); but
w ∈ L(G) if and only if

S−→
G

ubh ↑ ∗−→
G

ubsw ↑ −→
G

w ↑ −→
G

w

Since S→ ubh ↑ is a production that involves S, and the productions ubs→ e
and ↑→ e are the productions that allow to delete the state and the termi-
nation token. Through the assertion above, ubh ↑ ∗−→

G
ubSw ↑ if and only if

uq0bw ∗�−→
M

uhb, and this happens if and only if M terminates upon w.

Now the proof of the sufficency aspect of the theorem is completed. The
proof of theorem is also completed.

However, in the proof we used the idea of multitape Turing machine. We
need to show the relation between single tape Turing machine and multitape
Turing machine to make our proof reliable in terms of its base. We have the
following theorem.

Theorem 2.2 If a language L is accepted by a multitape Turing machine,
it is accepted by a single tape Turing machine.

Proof Let L be accepted by M1, a multitape Turing machine with k tapes.
We can construct M2, a single tape Turing machine with 2k tracks (for this
concept, we will explain it later). Half these tracks simulate the tapes of M1,
and other half of the tracks each holds only a single marker that indicates
where the head for the corresponding tape of M is presently located. The
finite control of M2 stores the state of M1, along with a count of the number
of head markers to the right of M2’s tape head.

To simulate a move of M1, M2 must visit the k head markers so that M2

knows where are the tape heads of M1. It must remember how many head
markers are to its left at all time. After visiting each head marker and storing
the scanned symbol in a component of its finite control, M2 knows what tape
symbols (the input of M1) are being scanned by each of M1 heads. M2 also
knows the current state of M1, which it stores in M2’s own finite control. Thus
M2 knows how will M1move. M2 revisits each of the head markers on its tape
changes the symbol in the track representing the corresponding tapes of M1,
and moves the head marker left or right if necessary. Finally, M2 changes
the state of M1 as recorded in its own finite control. Until now, M2 has been
simulated one move of M1.

50 Chapter 2 Grammars and Languages

We select as M2’s accepting states all those states that record M1’s state as
one of the accepting states of M1. Thus whenever the simulated M1 accepts,
M2 also accepts. Otherwise M2 does not accept.

Now we turn to the concept of track which we mentioned above. We can
imagine that the tape of the Turing machine is divided into k tracks, for
k � 1 being integer. In this way, the tape can be considered as k tuples, one
component for each track. A 3-track Turing Machine is shown in Fig. 2.3.

Fig. 2.3 A 3-track Turing machine.

From the design of the multi track Turing machine, we can see that the
Turing machine with k-tracks is not much different from a Turing machine
with k tapes. Actually in the theorem we just proved above, we used the
same idea. We also have the following definition.

Definition 2.29 The Turing machine with two-way infinite tape. A Turing
machine with a two-way infinite tape is denoted by M = (K, Γ, Σ, δ, b, q0, H)
as in the original model. As the name implies that the tape is infinite both to
the left and to the right. The way we denote an ID of such a Turing machine
is the same as for the one-way (to the right) infinite Turing machine. We
imagine, however, that there is an infinity of blank cells both to the left and
right of the current nonblank portion of the tape.

The relation �−→
M

, which relates two ID’s if the ID on the right is obtained

from the one on the left by a single move, is defined as follows. The original
model with the exception that if δ(q, X) = (p, Y, L), then qXα �−→

M
pbYα

(in the original model, for this situation, no move could be made). And if
δ(q, X) = (p, b, R), then qXα �−→ pα (in the original model, the b would
appear to the left of p).

The initial ID is qw. While there is a left end tape in the original model,
there is no left end of the tape for the Turing machine to “fall off”. So it can
proceed left as far as it wishes. The trick behind the construction is to use
two tracks on the semi-infinite tape. The upper track represents the cells of
the original Turing machine that are at or to the right of the initial portion.
The lower track represents the positions left of the initial position, but in
reverse order. The exact arrangement can be as shown in Fig. 2.4.

2.6 Turing Machine 51

Fig. 2.4 A semi-infinite tape can simulate a two-way infinite tape.

In Fig. 2.5, the two-way infinite tape has been transformed into one-way
2-track infinite tape. The first cell of the tape holds the symbol in the lower
track, indicating that it is the leftmost cell and the following symbols are
the adjacent left symbols from right to left. The finite control of the Turing
machine tells whether it would scan a symbol appearing on the upper track
(corresponding to the original right-side of the two-way infinite tape) or the
lower track (corresponding to the original left-side of the two-way infinite
tape).

We now give a formal construction of M1 = (K1, Γ1, Σ1, δ1, b, q1, H1). The
states K1 are all objects of the form [q, U] or [q, D], where q ∈ K1, and the
symbol q1 is in K1 too. The second component will indicate whether M1 will
work on the upper (U stands for upper) or lower (D stands lower) track. The
tape symbols in Γ1 are all objects of the form [X, Y], where X and Y ∈ Γ.
In addition, Y may be , a symbol not in Γ. Σ1 consists of all symbols [a, b],
where a is in Σ. H1 is {[q, U], [q, D] | q is in H}. it should be evident that M1

can simulate M in the sense that while M moves to the right of the initial
position of its input head, M1 works on the upper track. While M moves to
the left of its tape head position, M1 works on its lower track, moving in the
direction opposite to the direction in which M moves. The input symbols of
M1 are input symbols of M on the upper track with a blank on the lower
track. Such a symbol can be identified with the corresponding input symbol
of M. b is identified with [b, b].

We summarize the idea and omit the formal proof with the following
theorem.

Theorem 2.3 Language L is recognized by a Turing machine with a two-
way infinite tape if and only if it is recognized by a Turing machine with a
one-way infinite tape.

We now almost come to the end of the discussion of the Turing machine.
In the discussion, we introduced the original concept of the Turing machine
that is one tape and deterministic, and then sequentially we modified or
extended it to nondeterministic and multitape Turing machine, including
extended it from one-way infinite tape to two-way infinite tape. However,
finally we found that all these extensions or modifications do not change
or extend the functions of the original Turing machine. Therefore, it also
means that the basic fact is Theorem 2.1 that a language is generated by
a grammar if and only if it is recursively enumerable, if and only if it is
accepted by a Turing machine. In this way, the Turing machine can be used

52 Chapter 2 Grammars and Languages

in the syntactic analysis. This is the reason why we like to introduce the
concept of Turing machine in the book compilation-oriented. The following
result is also important for us. Based on the Turing machine, we can identify
grammar with more useful computational model.

Definition 2.30 The grammar computation function. Let G = (VN, VT,
P, S) be A grammar, and let f: Σ∗ → Σ∗ be a function. We say that G
computes F if for all w’s and v’s ∈ Σ∗, the following expressions holds:

SwS ∗−→
G

v

if and only if v = f(w). That is, the string that consists of input w with a
start symbol of G in both sides of w would generate a string of Σ∗ under G,
and it is just the correct value v of the f(w).

Function f: Σ∗ → Σ∗ is called grammatically computable [6, 7] if and
only if there exists a grammar G that computes it. Similar to Theorem 2.1,
we have the following theorem.

Theorem 2.4 A function f: Σ∗ → Σ∗ is recursive if and only if it is gram-
matically computable.

2.7 Issues Concerning Grammars and Languages

In this chapter, we have discussed several issues concerning grammars and
languages. We now summarize them as follows:

1) Given a grammar, derive the language generated by the grammar.
If one wants to solve the problem, it must use the productions of the

grammar exhaustively to derive all possible statements of the grammar. As
it is impossible to do the exhaustive derivations, the feasible solution is to
use the mathematical induction. After deriving the necessary statements as
the basic ones and making the hypothetical one, one uses the mathematical
induction method to prove the general one— the language generated by the
grammar.

2) Given a language, search for a grammar that generates it.
This problem is the inverse problem of 1). If the problem above may be

solved with the derivations from the production given, then this problem is to
establish the grammar through the language, i.e., to establish the production
set of the grammar. Obviously, it is a difficult problem.

3) Given a grammar and a sentence (statement), decide whether the state-
ment is generated by the grammar.

The problem may have different layers. If the grammar given is the gram-
mar of words, then the statements of the grammar are the words. The problem
reduces to decide whether the word can be derived from the productions of
the grammar. More specifically, to decide whether the word belongs to the
vocabulary of the grammar.

Problems 53

If the grammar given is the grammar of statements or sentences, then
the statement or sentence given is a string of words. Hence the problem is
transformed into deciding whether the statement can be generated by the
grammar.

A grammar that defines the words may define many words in its vocabu-
lary. That means that the number of words may be very large. In this case, in
order to decide whether a word belongs to the grammar or not, the grammar
may need to make much effort to obtain the decision.

Similarly, a grammar that defines the statement may define many legal
statements. The grammar of the programming language is exactly the case,
as it can generate lots of legal programs. Therefore, the other task of the
compilation is to decide whether the statement (the program) belongs to
the language generated by the grammar. This is the topic of the syntax
analysis. Both lexical analysis and syntax analysis are the major topics of
the compilers, and are the major topics of the book.

4) Given two grammars, analyze whether the two are equivalent or not,
i.e., whether the languages they generate are the same or not.

As for the investigation of the problem, there are two methods. One is, to
analyze the grammars themselves, to see whether they are equal. However,
this can be very difficult. It is hard to perceive the equality or the difference
of the grammars. Therefore, in general this is not a feasible solution. The
second one seems more practical. We derive both the languages from both
the grammars. After we generate the languages, we may compare them to
see whether they are equal or not. Although this is not an easy thing either,
it can be carried out.

Centering on each one of these issues, the research methods may be dif-
ferent. In the book, we will concentrate on each one as more as possible. Of
course, the concerning problems are not limited to these. The issues that are
worth investigating include the relation between languages and the Turing
machines, the simplification of the grammars, etc. But for the goals of the
book we are not concerned very much about these issues and we will not
discuss them.

Problems

Problem 2.1 Prove that any grammar can be transformed into an equiv-
alent grammar that has the form uAv → uwv of production rule, where
A ∈ VN and u, v, w ∈ (VN ∪VT)∗.

Problem 2.2 Prove Theorem 2.1. For the only if direction, given a gram-
mar, how to construct a Turing machine so that when it has input w, it
outputs a string uΣ∗ such that SwS ∗−→

G
u, if such a string u exists. For

if direction, use a proof that is similar to the proof of Theorem 2.1 but
with forward (rather than backward) direction.

54 Chapter 2 Grammars and Languages

Problem 2.3 Design and completely write a Turing machine that scans
towards right until it found two consecutive 0’s. The set of characters on
the tape is {0, 1, b, u}, and the input set is {0, 1}.

Problem 2.4 Find out the grammars that generate the following languages:
1) {ww | w ∈ {a, b}∗};
2) {(x2) ↑ n | n � 0};
3) {(an) ↑ 2 | n � 0};
4) {ai | I is not a prime}.

Problem 2.5 Under what condition, the kleene closure of a language L is
equal to its positive closure?

References

[1] Chomsky N (1956) Three models for the description of language. IRE Trans
Inf Theory 2(3): 113 – 124.

[2] Hopcroft J E, Ullman J D (1969) Formal languages and theit relation to
Automata, Addison-Wesley, Reading, Mass.

[3] Hopcroft J E, Ullman J D (2007) Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, Reading, Mass.

[4] Knuth D E Trabb Pardo L (1977) Early development of programming lan-
guages. In Dekker M (ed) Encyclopedia of computer science and technology
7. Marcel Dekker, New York.

[5] Ledgard H f (1971) Ten mini-languages; a study of topical issues in program-
ming languages. Computing Surveys 3(3): 115 – 146.

[6] Simon M (1999) Automata theory. World Scientific, Singapore.

[7] Simovici D A, Tenney R L (1999) Theory of formal languages with applica-
tions, World Scientific, Singapore.

Chapter 3 Finite State Automata and Regular
Languages

Aspects of automata theory are essential tools in a va-
riety of new disciplines, ...

John E. Hopcroft, Rajeev Motwani
and Jeffrey D. Ullman

3.1 Motivations of the Chapter

One of the most important functions of a computer is to recognize specified
patterns. For example, a text-editing software often needs to replace a string
of symbols with another string of symbols, whereas a compiler system must
scan the symbols of a program to locate a certain key-word. In fact, the
fastest string search algorithm is based on pattern recognition, which is in
turn, based on automata theory.

Automata theory and formal languages are the most fundamental topics
in all subjects of modern computer science, especially in e.g., compiler con-
structions, artificial intelligence, computability and complexity theory. This
chapter, together with the later chapter on push-down automata and Tur-
ing machines, provide a theoretical foundation for compiler construction in
particular and for modern computer science in general.

3.2 Languages, Grammars and Automata

In this section, we shall provide an account of some basic concepts of lan-
guages, grammars and automata, which are fundamental to finite automata
in this chapter and the push-down automata in a later next Chapter 5.

Definition 3.1 An alphabet Σ is a finite set of symbols. A word or a string
over an alphabet Σ is a finite sequence of symbols from Σ. An empty word (or
string), denoted by λ, is the sequence consisting of no symbols. The length
of a word w, denoted by |w|, is the number of symbols in w.

56 Chapter 3 Finite State Automata and Regular Languages

Example 3.1 Let Σ = {a, b, c}. Then ω1 = acb and ω2 = aababc are two
words over Σ, and |w1| = 3 and |w2| = 6. Let w = λ, then |w| = 0. Suppose
ω = ab, then λab = abλ = ab.

Definition 3.2 Let Σ be an alphabet, and λ the empty word containing no
symbols. Then Σ∗ is defined to be the set of words obtained by concatenating
zero or more symbols from Σ. If the set does not contain λ, then we denote
it by Σ+. That is,

Σ+ = Σ∗ − {λ}. (3.1)

A language over an alphabet Σ is a subset of Σ∗.

Example 3.2 Let Σ = {a, b}. Then

Σ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, aba, baa, abb, bab, bba, bbb, . . .},
Σ+ = {a, b, aa, ab, ba, bb, aaa, aab, aba,baa, abb, bab, bba, bbb, . . .}.

The sets L1 and L2 given by

L1 = {a, b, aa, bb, aaaba},
L2 = {anbn : n ∈ N}

are all languages over Σ, where N denotes the set of positive integers (Z+ is
also used to represent the set of positive integers).

Definition 3.3 Let ω1 and ω2 be two words, and L1, L2 and L be sets of
words.

1) The concatenation of two words is formed by juxtaposing the symbols
that form the words.

2) The concatenation of L1 and L2, denoted by L1L2, is the set of all
words formed by concatenating a word from L1 and a word from L2. That is,

L1L2 = {ω1ω2 : ω1 ∈ L1,ω2 ∈ L2}. (3.2)

3) Powers of L are defined by the concatenation of L with itself the ap-
propriate number of times, e.g.,

(1) L0 = λ;
(2) L1 = L;
(3) L2 = LL;
(4) L3 = LLL;
(5) Lk = LL · · ·L︸ ︷︷ ︸

k times

.

4) The complement of a language L, denoted by L is defined by

L = Σ∗ − L. (3.3)

Example 3.3 The following are some examples of concatenation of two
words, two sets of words, and powers of a set of words:

3.2 Languages, Grammars and Automata 57

1) If ω1 = abc and ω2 = aabab, then ω1ω2 = abcaabab.
2) If L1 = {a, aba, cab, λ} and L2 = {ca, cb}, then

L1L2 = {aca, acb, abaca, abacb, cabca, cabcb, ca, cb}.
3) If L = {a, b}, then
(1) L0 = λ;
(2) L1 = {a, b};
(3) L2 = LL = {aa, ab, ba, bb};
(4) L3 = LLL = {aaa, aab, aba, abb, baa, bab, bba, bbb}.

Definition 3.4 Let L be a set of words. Then L∗, the Kleene closure of L,
is defined by

L∗ = L0 ∪ L1 ∪ L2 ∪ · · · =
∞⋃
i=0

Li (3.4)

and L+, the positive closure of L is defined by

L+ = L1 ∪ L2 ∪ L2 ∪ · · · =
∞⋃
i=1

Li. (3.5)

Example 3.4 If Σ = {0, 1} and L = {0, 10}, then L∗ consists of the empty
word λ and all the words that can be formed using 0 and 10 with the property
that every 1 is followed by a 0.

Definition 3.5 A grammar G is defined as a quadruple

G = (V, T, S, P), (3.6)

where
V is a finite set of objects called variables;
T is a finite set of objects called terminal symbols;
S ∈ V is a special symbol called start variables;
P is a finite set of productions.

Definition 3.6 Let G = (V, T, S, P) be a grammar. Then the set

L(G) = {w ∈ T∗ : S ∗=⇒w} (3.7)

is the language generated by G, where S ∗=⇒w represents an unspecified num-
ber of derivations (including zero, if not including zero, we then use S +=⇒w)
that can be taken from S to w.

Example 3.5 Find the grammar that generates the language

L(G) = {anbn : n ∈ N}.
Both grammar G1 defined by

G1 = ({S}, {a, b}, S, P1)

58 Chapter 3 Finite State Automata and Regular Languages

with P1 consisting of the productions

S→ aSb,

S→ λ,

and grammar G2 defined by

G2 = ({S, A}, {a, b}, S, P2),

with P2 consisting of the productions

S→ aAb|λ,

A→ aAb|λ
will generate the language L = {anbn : n ∈ N}.

Automata are abstract (mathematical) machines, that can read informa-
tion from input and write information to output. This input/output process
is controlled by its finite state control unit (see Fig. 3.1). An automaton can
be thought as a model of algorithm, or a compiler of a language, or even a
general computer. In artificial intelligence, for example, automata are em-
ployed to model both behavioral situations and intelligent systems, including
game playing, human intelligence, machine learning, nervous system activity,
and robotic motion systems.

Fig. 3.1 A general automaton.

An automaton whose output is limited to a simple answer “yes” or “no”
is called a (decision) problem solver or a language accepter. On an input with

3.3 Deterministic Finite Automata 59

a string, the accepter either accepts (recognises) the string or rejects it. A
more general automaton, capable of producing strings of symbols as output,
is called a function transducer.

There are essentially two different types of automata: deterministic au-
tomata and nondeterministic automata. In deterministic automata,each move
is uniquely determined by the current internal state, the current input symbol
and the information currently in the temporary storage. On the other hand,
in nondeterministic automata, we cannot predict the exact future behaviour
of a automaton, but only a set of possible actions. One of the very impor-
tant objectives of this chapter and the next chapter is actually to study the
relationship between deterministic and nondeterministic automata of vari-
ous types (e.g., finite automata, push-down automata, and more generally,
Turing machines).

3.3 Deterministic Finite Automata

Finite-state automata or finite automata for short, are the simplest automata
(see Fig. 3.2). In this and the subsequent sections, we shall study the ba-
sic concepts and results of finite automata (both deterministic and non-
deterministic), and the properties of regular languages, with an emphasis
on the relationship between finite automata and regular languages.

Fig. 3.2 Finite automaton.

Definition 3.7 A deterministic finite automaton (DFA), denoted by M, is
a quintuple algebraic system (more specifically, a semigroup):

M = (Q, Σ, δ, q0, F), (3.8)

where
Q is a finite set of internal states;
Σ is the input alphabet;
q0 ∈ Q is the initial state;
F ⊆ Q is the set of final states, or accepting states;

60 Chapter 3 Finite State Automata and Regular Languages

δ is the state transition function

δ : Q× Σ→ Q. (3.9)

Remark: The above DFA is defined without output; we can, of course,
define it with additional output as follows:

M = (Q, Σ, U, δ, σ, q0, F),

where
U is the output alphabet;
σ is the output function

σ : Q× Σ→ U. (3.10)

Example 3.6 Let M be a DFA defined by

M = (Q, Σ, δ, q0, F)
= ({A, B, C}, {0, 1}, δ, A, {B}),

where the transition function δ is given by the following formulas:

δ(A, 0) = A δ(A, 1) = B
δ(B, 0) = C δ(B, 1) = B
δ(C, 0) = C δ(C, 1) = C

or alternatively by the following table, called a transition table:

0 1

A© A B

B©© C B

C© C C

Initial state: A Final state: B

Then the DFA can be represented by a directed graph shown in Fig. 3.3,
where the initial state A has a starting right arrow, and the final state B has
been double circled.

The machine defined above can read a given finite input tape containing
a word and either accepts the word or rejects it. The word is accepted if after
reading the tape, the machine is in any one of the accepting states.

Example 3.7 Consider the machine defined in Example 3.6. Suppose now
that the machine reads the word 00011. Then the following are the actions
of the machine as it reads 00011:

3.3 Deterministic Finite Automata 61

Fig. 3.3 A DFA that accepts strings 0m1n with m � 0 and n � 1.

Since the machine is in the final state B after having read the input word, then
the word 00011 is accepted by this machine. However, the machine cannot
accept the word 000110, because

62 Chapter 3 Finite State Automata and Regular Languages

That is, the machine does not stop at the final state B after having read the
word 000110. In fact, it stopped at the state C which is not a final state.

There are several other ways to describe actions of an automaton. One
very useful way can described as follows (for the same automaton defined
above and the same word 00011):

It is plain to verify that the automaton described in Fig. 3.3 can accept
the following words:

0,

1,

01,

001,

011,

0000011,

00111111111,

· · · ,
0m1n, with m � 0 and n � 1.

In set notation, the set of words L that can be accepted by the DFA is

L = {0m1n : m � 0, n � 1}.
Example 3.8 Fig. 3.4 shows another example of a DFA, M, which has two

Fig. 3.4 A DFA that accepts strings with two consecutive 0’s or 1’s.

3.3 Deterministic Finite Automata 63

final states D and E. The DFA, M is defined by

M = (Q, Σ, δ, q0, F)
= ({A, B, C, D, E}, {0, 1}, δ, A, {D, E}),

where the transition function is given by the following transition table:

0 1

A© B C

B© D C

C© B E

D©© D D

E©© E E

Initial state: A Final states: D and E

It is clear that the following strings can be accepted by this DFA:

00,

11,

0011110,

01001111000,

110111101001010,

1010101010101010100,

0101010101010101011.

But the followings strings cannot be accepted by this DFA:

01,

10,

010101010101010101,
0101010101010101010,

1010101010101010101.

An automaton is finite in the sense that there are only finite states within
the automaton. For example, in the automaton in Fig. 3.3, there are only
three states: A, B and C. A finite automaton is deterministic in the sense
that for a given state and a given input, the next state of the automaton
is completely determined. For example, again in the automaton in Fig. 3.3,
given state A and input 0, the next state can only be A.

64 Chapter 3 Finite State Automata and Regular Languages

3.4 Nondeterministic Finite Automata

In contrast to deterministic automata, nondeterminism allows a machine to
select arbitrarily from several possible responses to a given situation, includ-
ing the possibility of selecting from several initial states. If one of the various
responses to a word leaves the machine in an accepting state, then the word
is said to be accepted. In this subsection, we study non-deterministic finite
automata.

Definition 3.8 A Non-deterministic finite automaton (NFA), M, is a quin-
tuple algebraic system:

M = (Q, Σ, δ, S, F), (3.11)

where
Q is a finite set of states;
Σ is the input alphabet;
S ⊆ Q is the set of initial states, usually S = {q0} as DFA, but it may be

the case that it contains more than one state;
F ⊆ Q is the set of final states;
the transition function is defined by

δ : Q× (Σ ∪ λ)→ 2Q, (3.12)

where 2Q is the set of all subsets of Q.

Example 3.9 Let M be the non-deterministic finite automaton defined by

M = (Q, Σ, δ, S, F)
= ({A, B, C, D, E}, {0, 1}, δ, {A, B}, {E}),

where δ is given by

δ(A, 0) = {A, C}, δ(A, 1) = A,

δ(B, 0) = B, δ(B, 1) = {B, D},
δ(C, 0) = E, δ(C, 1) = λ,

δ(D, 0) = λ, δ(C, 1) = E,

δ(E, 0) = E, δ(D, 1) = E.

Then the NFA can be represented by the directed graph in Fig. 3.5, or alter-
natively, by the following transition table:

0 1

A© {A, C} A

B© B {B, D}
C© E λ

D© λ E

E©© E E

Initial state: A Final state: E

3.5 Regular Expressions 65

Fig. 3.5 A NFA that accepts strings with two consecutive 0’s or 1’s.

3.5 Regular Expressions

We have seen that finite-state automata can be used as language recognisers
(or accepters). But what sets can be recognised (or accepted) by these ma-
chines? In this and the next a few sections, we shall answer this question by
showing that the sets which can be recognised by finite-state automata are
regular sets.

Definition 3.9 Let Σ be an alphabet. The regular expressions over Σ are
defined recursively as follows:

1) ∅ is a regular expression;
2) λ (empty string) is a regular expression;
3) x is a regular expression if x ∈ Σ;
4) r1 ∪ r2 is a regular expression if r1 and r2 are regular expressions;
5) r1r2 is a regular expression if r1 and r2 are regular expressions;
6) r∗ is a regular expression if r is a regular expression.
Each regular expression represents a set specifically by the following rules:
1) ∅ represents the empty set, i.e., the set with no string;
2) λ represents the set {λ} containing the empty string;
3) x represents the set {x} containing the string with one symbol x;
4) r1 ∪ r2 represents the union of the sets represented by r1 and r2;
5) r1r2 represents the concatenation of the sets represented by r1 and r2;
6) r∗ represents the Kleene closure of the set represented by r.

Definition 3.10 The language generated by a regular expression, denoted
by L(r), is defined recursively as follows:

1) L(∅) = ∅;
2) L(λ) = λ;
3) L(r) = {r}, if r ∈ Σ;
4) L(r1 ∪ r2) = L(r1) ∪ L(r2);

66 Chapter 3 Finite State Automata and Regular Languages

5) L(r1r2) = L(r1)⊗ L(r2);
6) L(r∗) = (L(r))∗.

So it is natural now to give a definition for regular languages:

Definition 3.11 The regular languages are defined recursively as follows:
1) ∅ is a regular language;
2) {λ} is a regular language;
3) {x} is a regular language if x ∈ Σ;
4) L1 ∪ L2 is a regular language if L1 and L2 are regular languages;
5) L1L2 is a regular language if L1 and L2 are regular languages;
6) L∗ is a regular language if L is a regular language.

Thus, regular expressions are a shorthand way of describing regular lan-
guages.

Example 3.10 Let Σ = {a, b}. Then the following regular expressions rep-
resent the indicated sets of strings:

1) a : represents the set {a};
2) a∗ : represents the set {a}∗ = {λ, a, aa, aaa, · · · };
3) b : represents the set {b};
4) ab : represents the set {a}{b} = {ab};
5) a ∪ b : represents the set {a} ∪ {b} = {a, b};
6) (ab)∗ : represents the set {ab}∗ = {λ, ab, abab, ababab, · · · };
7) a∗ ∪ (ab)∗ : represents the set

{a} ∪ {ab}∗ = {λ, a, aa, aaa, · · · , ab, abab, ababab, · · · };
8) a∗b : represents the set {a}∗{b} = {b, ab, aab, aaab, · · · };
9) b(ab)∗ : represents the set {b}{ab}∗ = {b, bab, babab, · · · };
10) a∗b(ab)∗ : represents the set of all strings that begin with any number

(possibly 0) of a, followed by a single b, followed by any number (possibly 0)
of pair ab.

Example 3.11 Let Σ = {a, b}. By definition, ∅ and λ are regular sets. In
view of the previous example, the following sets are also regular:

1) {a};
2) {λ, a, aa, aaa, · · · };
3) {b};
4) {a, b};
5) {λ, ab, abab, ababab, · · · };
6) {b, ab, aab, aaab, · · · }.

3.6 Regular Grammar

The second way of describing regular languages is by means of a certain
grammar, the regular grammar.

3.6 Regular Grammar 67

Definition 3.12 A grammar G = (V, T, S, P) is said to be right-linear if
all productions are of the form

A→ xB, (3.13)
A→ x,

where A, B ∈ V and x ∈ T∗.
A grammar G = (V, T, S, P) is said to be left-linear if all productions are

of the form

A→ Bx, (3.14)
A→ x.

A regular grammar is one that is either right-linear or left-linear.

Example 3.12 The grammar G1 = ({S}, {a, b}, S, P1), with P1 given by

S→ abS,

S→ a

is right-linear, whereas the grammar G2 = ({S, S1, S2}, {a, b}, S, P2), with P2

given by
S→ S1ab,

S1 → S1ab,

S1 → S2,

S2 → a

is left-linear. Both G1 and G2 are regular grammars.
By G1, we can have the following derivations:

S =⇒ abS

=⇒ aba

S =⇒ abS

=⇒ ababS

=⇒ ababa

=⇒ (ab)2a

S ∗=⇒ ababS

=⇒ abababS

=⇒ abababa

=⇒ (ab)3a
...

=⇒ (ab)na, for n � 1.

68 Chapter 3 Finite State Automata and Regular Languages

The regular language L, denoted by L(G1), generated by the regular grammar
G1 is thus

L(G1) = {(ab)na : for n � 1}.
Similarly, by G2, we have

S =⇒ S1ab

=⇒ S2ab

=⇒ aab

S =⇒ S1ab

=⇒ S1abab

=⇒ S2abab

=⇒ aabab

=⇒ a(ab)2

S ∗=⇒S1abab

=⇒ S1ababab

=⇒ S2ababab

=⇒ aababab

=⇒ a(ab)3

...

=⇒ a(ab)n, for n � 1.

The regular language L, denoted by L(G2), generated by the regular grammar
G2 is thus

L(G2) = {a(ab)n : for n � 1}.
Theorem 3.1 Let G = (V, T, S, P) be a regular grammar (either right-
linear or left-linear). Then L(G) is a regular language.

Theorem 3.2 A language L is regular if and only if there exists a regular
grammar (either left-linear or right-linear) G, such that L = L(G).

Thus, regular languages and regular grammars are, in fact, equivalent
concepts. From a regular language, we can get it’s regular grammar. From a
regular grammar, we can also generate it’s regular languages.

3.7 Kleene’s and Moore’s Theorems

The third way to describe regular languages is by finite automata (FA). In
1956, Stephen Kleene proved that regular sets are the sets that are accepted
by a finite automaton. Consequently, this result is called the Kleene’s Theo-
rem.

3.8 Pumping Theorems and Closure Properties for LREG 69

Theorem 3.3 (Kleene’s Theorem) A language L over an alphabet Σ is
regular if and only if it is acceptable (recognisable) by a finite automaton FA,
M = (Q, Σ, δ, q0, F).

The proof of the only if part of the theorem involves showing that
1) ∅ is accepted by a finite automata;
2) {λ} is accepted by a finite automata;
3) For each x ∈ Σ, x is accepted by a finite automata;
4) AB is accepted by a finite automata if both A and B are;
5) A ∪ B is accepted by a finite automata if both A and B are;
6) A∗ is accepted by a finite automata if A is.

The proof of the if part of the theorem can be done by induction on the
number of states in a finite automaton FA that accepts L.

The Kleene’s theorem is one of the central results in automata theory.
It outlines the limitations as well as the capabilities of finite automata, be-
cause there are certainly many languages that are not regular, and hence not
accepted by finite automata.

Finally, we introduce another important result about regular sets, the
equivalence theorem, discovered by E. F. Moore in 1956:

Theorem 3.4 (Moore’s Theorem) There exists an algorithm to deter-
mine whether or not two given regular sets over Σ are equivalent.

The Moore’s theorem is one of the results of decidability for regular lan-
guages. There are some more decidability results for regular languages. How-
ever, we do not study them here due to the limitation of space.

3.8 Pumping Theorems and Closure Properties for LREG

As we have seen, a language L is regular if and only if there exists a finite
automata (FA) to accept it; if no FA can accept it, it is then not a regular
language. Our next result will provide another technique showing languages
nonregular.

Theorem 3.5 (Pumping Theorem for Regular Languages) Let L be
a regular language. There exists a positive integer N (depending on L) such
that for any x ∈ L and |x| � n, there exist strings u, v and w, satisfying the
following conditions:

x = uvw, (3.15)
|v| > 0, (3.16)
|uv| � N, (3.17)
uviw ∈ L, ∀i � 0. (3.18)

The number N is called the pumping number for the regular language L.

70 Chapter 3 Finite State Automata and Regular Languages

This theorem describes a property that is common to all regular lan-
guages. So we can use it to show that a language is nonregular if we can show
that the property fails to hold for the language.

Example 3.13 Use the pumping theorem to show that

L = {anbn : n ∈ Z
+}

is not a regular language.
Suppose that

L = {anbn : n ∈ Z
+} = aa · · ·a︸ ︷︷ ︸

n times

bb · · ·b︸ ︷︷ ︸
n times

is regular and let N be the pumping number for L. We must show that no
matter what N is, we may find x with |x| � N, that produces a contradiction.
Let x = aNbN. According to Theorem 3.5, there are strings u, v, and w, such
that Eqs. (3.15) – (3.18) in the theorem hold. From Eqs. (3.15) and (3.16) we
can see that uv = ak for some k. So from Eq. (3.17) we have v = aj form for
some j > 0. Then Eq. (3.18) says that uvmw ∈ L, ∀m � a. But

uvmw = (uv)vm−1w
= ak(aj)m−1aN−kbN

= aN+j(m−1)bN (w = 0N−kbN, since uv = ak)
= aN+tbN. (let t = j(m − 1) when m > 1)

Clearly, there are t more consecutive a’s than there are consecutive b’s in x.
Since this string is not in the form anbn, then it is not regular.

Finally we present some closure properties for regular languages.

Theorem 3.6 The family of regular languages is closed under the opera-
tions union, intersection, difference, concatenation, right-quotient, comple-
mentation, and star-closure. That is,

L1 and L2 are regular =⇒ L1∪L2, L1∩L2, L1−L2, L1L2, L1, L∗
1 are regular.

(3.19)

3.9 Applications of Finite Automata

One of the applications of automata theory in computer science is compiler
construction. For instance, a compiler must be able to recognize which strings
of symbols in the source program should be considered as representations of
single objects, such as variables, names, numerical constants, and reserved
words. This pattern-recognition task is handled by the lexical analyzer within
the compiler. The design of lexical analysers depends more or less on au-
tomata theory. In fact, a lexical analyzer is a finite automaton.

3.9 Applications of Finite Automata 71

Example 3.14 Suppose that we wish to design a lexical analyzer for iden-
tifiers; an identifier is defined to be a letter followed by any number of letters
or digits, i.e.,

identifier = {{letter}{letter, digit}∗}.
It is easy to see that the DFA in Fig. 3.6 will accept the above defined
identifier. The corresponding transition table for the DFA is given as follows:

state/symbol letter digit

A© B C

B©© B B

C© C C

Initial state: A Final state: B

Fig. 3.6 DFA that accepts identifier.

For example, all the elements in set S1 are acceptable identifiers by the DFA,
whereas all the elements in set S2 are unacceptable identifiers:

S1 = {C, A21, x2w101, s13579},
S2 = {87, 2add, 7w101}.

Example 3.15 Suppose that we now want to design a lexical analyzer for
real numbers; a real number can be either in decimal form (e.g., 45, 79) or in
exponential form (e.g., 34. 0E-9). The DFA described in Fig. 3.7 will accept
the real numbers just defined. The corresponding transition table for the DFA
is given as follows:

72 Chapter 3 Finite State Automata and Regular Languages

State/symbol Digit · E + −
1© 2

2© 2 3 5

3© 4

4©© 4 5

5© 7 6 6

6© 7 5

7©© 7

Initial state: 1 Final state: 4 and 7

Fig. 3.7 DFA that accepts real numbers.

For example, all elements in the set

S = {54.3, 54.3E7, 54.3E+ 7, 54.3E− 7, 54E7, 54E + 7, 54E− 7}

are acceptable real numbers by the DFA defined above.

3.10 Variants of Finite Automata

In this section, we shall provide a brief introduction to some variants of finite-
state automata, including stochastic automata, fuzzy automata, Petri nets,
connectionist machines, and cellular automata. These automata are the nat-

3.10 Variants of Finite Automata 73

ural extensions of the classical finite automata (particularly nondeterministic
finite automata) and are very useful in certain areas of computer science.

Stochastic Automata

Intelligent behavior is very often characterised by a lack of deterministic
predictability. Given the same input, an intelligent being (e.g., a robot’s
brain) might appear to act in varying ways. The apparent uncertainty in
behavior requires models that reflect that uncertainty. One way of achieving
such a model is through the use of probability. Stochastic automata are types
of probabilistic automata, which are, in fact, very similar to nondeterministic
automata (NFA) discussed in the previous sections.

Definition 3.13 A stochastic automaton, M, is a six-tuple:

M = (Q, Σ, V, δ, q0, F), (3.20)

where
1) Q is a finite set of states;
2) q0 ∈ Q is the initial state;
3) F ⊆ Q is the set of final states or accepting states, denoted by a double

circle;
4) Σ is a finite set of inputs or instructions;
5) V is the valuation space [0, 1];
6) δ is transition function

δ : Q× Σ×Q→ V. (3.21)

It is required that for anyfixednon-final state q and any fixed instruction a∑
q′∈Q

δ(q, a, q′) = 1. (3.22)

This requirement allows us to interpret

δ(q, a, q′) = x (3.23)

as meaning that x is the probability of the machine going from state q to
state q′ utilising the instruction a and the sum of the probability must be 1.

Example 3.16 Let M = (Q, Σ, V, δ, q0, F) be a stochastic automaton with

Σ = {a, b}
Q = {A, B, C} q0 = A F = C

δ(A, a, A) = 0.7 δ(B, a, A) = 1 δ(C, a, C) = 1

δ(A, a, C) = 0.1 δ(B, b, B) = 0.6 δ(C, b, C) = 1

δ(A, a, B) = 0.2 δ(B, b, C) = 0.4

δ(A, b, B) = 0.9

δ(A, b, C) = 0.1

74 Chapter 3 Finite State Automata and Regular Languages

where
∑
q′∈Q

δ(q, a, q′) = 1. This stochastic automaton can be diagrammati-

cally shown in Fig. 3.8. Suppose that we now wish to calculate the probability
that the automaton will go to state C from A given instructions a and b:

δ′(A, ab, C} =
∑
q∈Q

δ(A, a, q) · δ(q, b, C)

= δ(A, a, A) · δ(A, b, C) + δ(A, a, B) · δ(B, b, C) +
δ(A, a, C) · δ(C, b, C)

= 0.7× 0.1 + 0.2× 0.4 + 0.1× 1
= 0.25.

Fig. 3.8 A stochastic automaton.

Fuzzy Automata

In stochastic automata, the uncertainty was modelled by probability. We now
introduce another similar automata in which the uncertainty was modelled
by fuzziness, rather than by probability. A fuzzy automaton is again similar
to a nondeterministic automaton in that several destination states may be
entered simultaneously; however, it is also similar to a stochastic automaton
in that there is a measure of the degree to which the automaton transitions
between states, that measure being between 0 and 1.

Definition 3.14 A fuzzy automaton, M, is a six-tuple

M = (Q, Σ, V, δ, q0, F), (3.24)

where
Q is a finite set of states;
q0 ∈ Q is the initial state;
Σ is a finite set of inputs or instructions;
F ⊆ Q is the set of final states or accepting states, denoted by a double

circle;

3.10 Variants of Finite Automata 75

V is the valuation space [0, 1];
δ is transition function:

δ : Q× Σ×Q→ V. (3.25)

Example 3.17 Let M = (Q, Σ, V, δ, q0, F) be a fuzzy automaton with

Σ = {a, b}
Q = {A, B, C} q0 = A F = C

δ(A, a, A) = 0.8 δ(B, a, C) = 0.9 δ(C, b, B) = 0.4

δ(A, a, B) = 0.7

δ(A, a, C) = 0.5

δ(A, b, C) = 0.4

Then M can be graphically described in Fig. 3.9. Note that a fuzzy automata
is not necessarily stochastic, say, e.g.,

∑
q′∈Q

δ(C, b, q′) = 0.4 �= 1. Suppose that

now we also wish to calculate the certainty that the automaton will go to
state C from A given instructions a and b:

δ′(A, ab, C} =
∨
q∈Q

[δ(A, a, q) ∧ δ(q, b, C)]

= [δ(A, a, A) ∧ δ(A, b, C)] ∨ [δ(A, a, B) ∧ δ(B, b, C)] ∨
[δ(A, a, C) ∧ δ(C, b, C)]

= (0.8 ∧ 0.4) ∨ (0.7 ∧ 0.4) ∨ (0.5 ∧ 0.7)
= 0.4 ∨ 0.4 ∨ 0.5
= 0.5.

Fig. 3.9 A fuzzy automaton.

Note that “∧” (resp. “∨”) means that the minimum (resp. maximum) is being
taken over all the possible states.

76 Chapter 3 Finite State Automata and Regular Languages

Fuzzy automata are an important tool for modelling uncertainty in arti-
ficial intelligence, particularly in fuzzy logic based expert systems.

Cellular Automata

Cellular automata, also known as tessellation structures, and iterative circuit
computers, is a model of parallel computation. The basic ideas for cellular
automata are due to John von Neumann (1903 – 1957), who introduced them,
probably not because of interest in them, but rather as vehicles to study the
feasibility of designing automata to reproduce themselves. This is why we
call cellular automata self-reproducing automata. We shall only give a very
brief introduction to this powerful automata.

Consider a two-dimensional lattice of cells extending indefinitely in all
directions (see Fig. 3.10). Suppose that each cell (e.g., A) is a finite automaton
that can assume any one of the n states, q1, q2, · · · , qn. All cells are identical
in their structure, but at any given time they may be in different states. At
each time step, every machine assumes a state which is determined by the
states of its four neighboring cells B, C, D, E and of itself at the preceding
time step. One of the possible states is a “quiescent” one and if a given cell
and its four neighbours are in this quiescent state at time t then the given
cell remains in the same state at time t + 1. If all cells in the array arrive
at the quiescent state at the same instant, no further changes of state are
possible. In the following, we shall present a formal definition for a simple
linear cellular automaton:

Fig. 3.10 Two-dimensional lattice of cells.

Definition 3.15 A bi-infinite linear cellular automaton, M, is a 5-tuple al-
gebraic system defined by

M = (Z, Σ, q, N, δ), (3.26)

where
Z = {· · · ,−i, · · · , 0, · · · , i, · · · } is the set of cells; i ∈ Z is the location of

the cell i.

Problems 77

Σ = {0, 1, 2, · · · , k − 1} is a finite non-empty set of (cell-)states; At each
step of the computation, each cell is in a particular state.

N = (a1, · · · , ar) is the neighborhood; it is a strictly increasing sequence
of signed integers for some r � 1, giving the addresses of the neighbours
related to each cell. This means that the neighbours of cell i are indexed
by i + a1, · · · , i + ar. We call r = |N| the size of the neighborhood. Cells are
simultaneously changing their states at each time step according to the states
of their neighbours.

δ is the local transition function defined by

δ : Σ|N| → Σ. (3.27)

If at a given step the neighbours of a cell are respectively in states p1, · · · , pr,
then at the next step the state of the cell will be δ(p1, · · · , pr).

q ∈ Σ is the distinguished quiescent state, which satisfies the condition
δ(q, · · · , q) = q.

We remark, in conclusion, that a cellular automaton is, in a way, a neural
network except that the atomic cells have the power of an arbitrary finite-
state automaton but are, on the other hand, restricted to be identical to
each other. In fact, cellular automata can be simulated by a particular neural
network defined as follows: A bi-infinite neural network is a 5-tuple algebraic
system:

M = (Z, Σ, W, B, δi) (3.28)
where

1) Z = {· · · ,−i, · · · , 0, · · · , i, · · · } is the set of neurons. of the cell i;
2) Σ = {0, 1, 2, · · · , k− 1} is a finite non-empty set of (neuron-) states;
3) W = (wij)i,j ∈ Z, wij ∈ R is the bi-infinite connection matrix, satisfying

∀x = (xi)i∈Z ∈ ΣZ

and
∀i ∈ Z ⇒

∑
j

wijxj (3.29)

is convergent;
4) B ∈ R

Z is the threshold vector;
5) δi is the activation function of neuron i, defined by

δi : R→ Σ. (3.30)

We refer interested readers to Refs. [4] and [5] for more information about
cellular automata and neural-like cellular automata.

Problems

Problem 3.1 Find the grammar that generates the language

L(G) = {anbn+1 : n ∈ N}.

78 Chapter 3 Finite State Automata and Regular Languages

Find the language generated by the grammar with productions:

S→ Aa
A→ B
B→ Aa.

Problem 3.2 Use the pumping theorem to show that

L = {aibj : i �= j, i, j ∈ Z
+}

and

L = {x ∈ {0, 1}∗ : x contains equal numbers of 0’s and 1’s}

are not regular languages.
Problem 3.3 Let L1 and L2 are regular languages. Show that L1/L2 and

L1 � L2 are regular, where L1/L2 and L1 � L2 are defined as follows:

L1/L2 = {x : xy ∈ L1 for some y ∈ L2}
L1 � L2 = {x : x ∈ L1 or x ∈ L2, but x is not in both L1 and L2}.

Problem 3.4 Pattern Matching: On UNIX operating system, we can e.g.,
use the following command

rm ∗sy∗

to remove all the files with letters sy in the middle of their names; for
example, files with names ysy011, 100sypaper, and 01syreport will be
removed. Design an automaton for an operating system, that can accept
all the patterns of the form:

{{letter, digit}∗{letter, digit}∗}.

For example, the patterns 123abd, doc311, d1f22 are all accepted by the
automaton.

References

[1] Yan S Y (1988) Introduction to formal languages and machine computation,
World Scientific, New Jersey. (The materials in this chapter are mainly based
on this book of the second author.)

[2] Hopcraft J E, Motwani R, Ullman J D (2006) Introduction to automata the-
ory, languages and computation, 3rd edn. Addison-Wesley, Reading, Mass.
(A general reference in finite automata and regular languages.)

Chapter 4 Lexical Analysis

Our review of the underlying cognitive mechanisms in-
volved in word recognition has covered a wide range of
topics— from the contextual effects phases, to logogens,
to connectionism, to lexical decision task (LDT).

Lexicaldecision task is a priming task in which a subject
is shown a related word and asked to evaluate quickly
whether a second string of letters makes a legal word
or not.

Robert L. Solso

4.1 Motivation of the Chapter

According to the cognitive science, the understanding of the language by
mankind starts with the word recognition. Without the phase, the under-
standing of language cannot take place at all. Similarly, as the first phase of
a compiler, the main task of the lexical analyzer is to read the input charac-
ters of the source program, group them into lexemes, and produce as output
of a sequence of tokens for each lexeme in the source program. However,
before we discuss the lexical analyzer further, we would like to discuss the
language understanding in terms of intelligence first. We want to explore why
we need the lexical analysis in language understanding.

Among the various intelligences that human being possesses, language
ability no doubt is a very important one which people use to communicate
each other, to express minds and feelings, to keep the past, present, and
future things for oneself or for others. If the oral language is said also an
ability which other high-level animals possess, the written language ability
certainly is a unique characteristic of mankind.

From the perspective of intelligence, how does the human being produce
language and understand language? From the research and discovery of cog-
nitive scientists we know that the baby starts learning language from grasping
the words or vocabulary [1]. Only when one grasps enough words, can he/she
understand the real things in his/her surroundings. Some estimates (Baddele,

80 Chapter 4 Lexical Analysis

1990) showed that the number of words a person knows shall be about 20000
to 40000 and the recognition memory would be many times of that num-
ber. With these words in mind, a person is able to know the meaning of the
string of words if he/she also knows the arrangement of these words. There-
fore to understand a language starts from understanding of words. Language
is composed of sentences and each sentence is the string of words arranged
according to some existing rules. For written language, the hierarchy of a
sentence is lexeme → word or morphology → phrase → sentence. As for the
sentence expressed via sound the hierarchy is phoneme → syllable → sound
words → sound sentence. Among them each layer has to be bound by the
grammar rules. Therefore, according to the modern linguists, to understand
a language involves five layers: phonetic analysis, lexical analysis, syntac-
tic analysis, semantic analysis and pragmatical analysis. Phonetic analysis
means that according to the phoneme rules the independent phonemes are
separated one by one from the speech sound stream. Then according to
phoneme morphological rules, the syllable and its corresponding lexeme or
words are found one by one. As for the analysis of the sentence of written
language, the phonetic analysis is not necessary, because the lexical analysis
is done via the reading in order for one to understand the meaning. When
a person reads a language which he/she is familiar with, the understanding
layers are what we mentioned above, excluding the layer of phonetic anal-
ysis. When one wants to understand oral language, the phonetic analysis
must be included. Therefore, the phonetic analysis is the essential basis for
understanding oral language.

Take English as an example. In English, there are approximately 45 dif-
ferent phonemes. For example, when you hear some one saying “right” and
“light”, if you are English native speaker, you will not have any difficulty
in discerning between phonemes r and l. But if the native language of the
speaker is Japanese, then it is likely that he/she could not pronounce them
clearly. Since in Chinese there are many words that have the same pronuncia-
tion, the same situation is likely to happen. Only when the analysis is carried
out for the whole context, may the discerning of these words be possible.

The lexical analysis, therefore, is an essential step for language under-
standing, as well as for the compilation because it is also taken as the basis
of understanding programs. This is why we have the chapter, and we also
regard it as the commencement step of the compilation.

4.2 Lexical Analyzer

Talking about the role of the lexical analyzer, we first should talk about the
role of the compiler since the lexical analyzer is part of it. The role of the
compiler is to compile or to translate a kind of languages into another, usu-
ally into a language executable on computer. In other words, it compiles or

4.2 Lexical Analyzer 81

translates a program written in a human-oriented language into a machine
code that is machine-oriented. As the implementer of the first phase of com-
pilation, the role of the lexical analyzer is to read the input characters (the
composition of the program) and produce the output as a sequence of tokens
that the syntactical analyzer (parser) uses for the syntax analysis [2].

No matter whether the program is inputted into memory via the input of
characters through key board one by one, or via the file that is stored in the
memory in advance, the source program is present in form of the character
stream.

Suppose that we have a simple C program as follows:

/* c program−− 1 */

main()

{
printf (“c program−− 1\n”);
}

Suppose that the length of words of memory is 32 bits (4 bytes). Then
the initial input form of the program is as follows:

/ * C

p r o

g r a m

— 1 *

/ m a

i n (

) {
p r i n

t f (“

c p r

o g r a

m — 1 \
n ”) ;

}

4.2.1 Role of Lexical Analyzer

The main task of the lexical analyzer is to read these characters one by
one from the buffer, then group them into tokens according to different
situations [3]. These tokens will be encoded. In this way, the original charac-
ter string now becomes the token string or token stream, providing the input

82 Chapter 4 Lexical Analysis

to the syntax analyzer. Later we will see how the lexical analyzer works on
the input above, to form the token string from it.

Apart from the main task that transforms the input character stream into
a token string, the lexical analyzer may also perform certain secondary tasks
at the user interface [4]. Such task is to strip out from the source program
comments and white space in the form of blank, tab, and newline characters.
Another task is to correlate error messages from the compiler with the source
program. For example, the lexical analyzer may keep track of the number of
newline seen, so that a line number can be associated with an error message.
In some cases, the lexical analyzer is in charge of making a copy of the source
program with the error messages marked in it. If the source language supports
some macro-preprocessor function, these preprocessor functions may also be
implemented as the lexical analysis [5] takes place.

For some compilers, they may divide the lexical analyzer into two phases,
the first is called scanning and the second lexical analysis. The scanner is in
charge of the simple task while the lexical analyzer is really doing the more
complex operations.

Now we return to our example above. The lexical analyzer reads the input
characters one by one. Then according to the regulation of lexical grammar
of C language, the character stream is grouped into different tokens and
so, it becomes the stream of tokens. In C language, the tokens can be key
words, they are usually reserved for specific uses, not allowing to be used for
the identifiers; then identifiers, integers, real numbers, a notation of single
character, comments, and character string (user uses for printing), etc [6].
The lexical analyzer starts its work with reading the first word of the input.
It reads the “�” , it knows that this is not a letter, rather it is an operator.
However, here it should not have expression, so it continues its reading to
the second character to see if it is “*” or not. If it is not “*”, then it confirms
that it is wrong. Otherwise it knows that the combination of “/” and “*”
forms the identification of the start of comment line, and all the character
string before the identification of the end of comment line — the combination
of “*” and “/” is the comment. Regarding this, we have the definition that
states that

#define is-comment-starter(chch) ((ch)(ch)=="/" "*")

and
#define is-comment-stopper(chch) ((ch)(ch)=="*" "/")

These two regulations specify the starter and the stopper of a comment,
“/” “*”and “*” “/”. Comment is written for programmers who wrote the
program for other in order to provide some information or memorandum to
them. Hence the comment need not to provide to the compiler. But when the
compiler prints the list of the program, it is necessary to print the comment
as it occurs in the original form. Therefore, the comments should be stored
in a specific place where they occur in the original order. Hence the comment

4.2 Lexical Analyzer 83

area needs to store the contents of the comments; in addition, it should also
retain the places or addresses where they are located in order for them to “go
home”. In the current programming languages, the comments may occur at
any place. So in a program there may be many comments.

As we have mentioned above that the main task of the lexical analyzer
is to group the input character string, it needs also to decide the end of
the input, and to discern the layout characters [7]. Therefore, in the lexical
grammar that is used by the lexical analyzer for reference of doing its job,
there is also the need to define the upper case, the lower case, etc. In the
following, we list part of it for the demonstration.

#define is-end-of-input(ch) ((ch)=="�0")

#define is-layout(ch) (!is-end-of-input (ch)&&(ch)<=")

where the first one defines the identification of the end of input while the
second defines the layout symbol.

#define is-uc-letter(ch) ("A"<=(ch)&&(ch)<="Z")

#define is-lc-letter(ch) ("a"<=(ch)&&(ch)<="z")

#define is-letter(ch) (is-uc-letter(ch)||is-lc-letter(ch))

#define is-digit(ch) ("0"<=(ch)&&(ch)<="9")

#define is-letter-or-digit(ch) (is-letter(ch)||is-digit(ch))

These are the definitions of letters and digits. The first one defines the
upper case of the letters and the second defines the lower case; the third one
defines the upper case or lower case; the fourth defines digits; and the last
one defines letters or digits.

#define is-underscore(ch) ((ch)==" ")

#define is-operator(ch) (strchr(+-×÷),(ch))!=0)

#define is-separator(ch) (strchr(";(){ }",(ch))!=0)

These are the definitions of underscore, arithmetic operators and sepa-
rators. In addition, there are the definitions of the relation operators. The
six relation operators are <, <=, =, <>, >, >= and the followings are their
definitions:

#define is-relop-LT ((ch)=="<")

#define is-relop-LE ((ch)(ch)=="<" "=")

#define is-relop-EQ ((ch)=="=")

#define is-relop-NE ((ch)(ch)=="<" ">")

#define is-relop-GT ((ch)==">")

#define is-relop-GE ((ch)(ch)==">" "=")

The lexical analyzer needs to discern such the tokens as key words (or
reserved words), identifiers, relation operators, comments, etc. Every pro-
gramming language has the dictionary used for the reserved words that are
the words used in the statements. In the dictionary, it also contains the codes

84 Chapter 4 Lexical Analysis

of these words in machine. When the lexical analyzer found a reserved word
in the input, it checks the correctness of the word (the spelling, the exis-
tence) from the dictionary. If it can find the same word from the dictionary,
the correctness is satisfied. Then from the place of the word in the dictio-
nary, the code used in the machine for the word is also found. The code will
take place of the word in the intermediate form of the program. One of the
advantages of the intermediate form is that for every identifier as well as the
reserved word, they all have the same length and have identity bits to show
their attributes. Otherwise they have different lengths and will take time to
handle. Let us have a look at the dictionary of C language. It contains the
following words (this is not exhaustive):

auto break case char const continue

default do double else enum extern

float for goto if in long

register return short signed sizeof static

struct switch typedef union unsigned void

volatile while

Apart from these reserved words, there are also other data type declara-
tion words, main(), opt, #include, #define, #line, #error, #pragma etc that
need to be discerned. Notice that the dictionary must be complete that it
contains all the legal words used in the C language as the statement names
and so on. Otherwise if some are missing when the lexical analyzer found its
appearance in the program, it will not recognize it and will consider it as an
error. Notice that the list above is not the real list occurring in machine as in
machine, each one should also have its code. The sorting of these words are
not very necessary as it does not contain many words and so its searching
will not be consuming. Even by sequential searching method, the efficiency
is still acceptable.

4.2.2 Identifier analysis

We have known from previous discussion that any identifier is a string that
must start with a letter and followed by any number (but in the concrete
implementation, the number shall be limited) of letters, digits, and under-
scores. It can be seen as a regular expression. We can describe the identifiers
of C language by

[a-z A-Z][a-z A-Z 0-9]∗

Then the grammar that generates the regular expressions may be written as
follows:

letter→a|b|...|z|A|B|...|Z|

digit→0|1|...|9

4.2 Lexical Analyzer 85

id→[a-z A-Z]A

A→[a-z A-Z 0-9]A

A→ ε

Notice, that the “A” as the nonterminal is not the “A” as the letter. And
the regular expression can also be written as

letter (letter |digit)∗

Having the expression, we can check the correctness of the identifier via con-
trasting it with the expression to see if the identifier coincides in the structure.
But as we have mentioned that in practice, the identifier is somewhat differ-
ent from the expression that the number of components of the identifier is
limited. Hence when the lexical analyzer scanned the string of the identifier it
must count the number of the components. When the length of the practical
identifier exceeds the limit then either it cuts it off (then it needs to check the
uniqueness of the identifier) or declares that an error occurs, the identifier is
too long.

After checking the correctness of each identifier, it is stored in the table
specially used for the identifiers. It is called the symbol table in which the
identifiers are stored and each is assigned an address for storing its value.
The identifier is also replaced by its intermediate code. In general the lexical
analyzer encodes the identifiers according to the order that they occur in
the program. For example, the first identifier may be encoded as I1 (where
I stands for an identifier) and correspondingly the second one is encoded as
I2, etc. Usually, the identity bits occupy two bits of the words. For example,
we use λ to denote the identity, and respectively, we use λ = 00 to represent
reserved words, λ = 01 to represent identifiers, λ = 10 to represent integers
and λ = 11 to represent real constants, other bits in the word represent the
number of the identifiers or the address in the memory that stores the value
of the item.

In the lexical analysis of the identifiers, there is an important task, i.e.,
to decide the declaration of the identifier. For most programming languages,
there is such requirement, that is, the declaration of the identifier (it is called
the definition occurrence of the identifier) should precede the occurrence of it
in the program (it is called the application occurrence). Therefore, the prin-
ciple is called the definition occurrence precedes the application occurrence.
The principle implies that for an identifier there needs a declaration only,
otherwise it will commit the error of repeated definition. It does not allow
twice definitions with the two having different types. It is not allowed to use
an identifier without definition. If these regulations are violated, then the
lexical analyzer will handle it as an error case.

86 Chapter 4 Lexical Analysis

4.2.3 Handling of Constants

The handling of constants is more complicate than that of identifiers.
As for identifier, integers and real numbers may also be expressed as the

regular expression. For example, in general text books on compilers, they
usually expressed the real numbers as follows:

(+|-|)digit∗.digit digit∗(e(+|-|)digit digit∗|)

The expression indicates that a real number may or may not contain sign
symbol (+ or −). Following the symbol (if any) is zero or many digits, then
a decimal point follows. After the decimal point, it must have at least one
digit. If the number contains the exponent part, it should start with a letter
e (implies the exponent) then a sign symbol follows again, or it is absent,
then at least one digit follows.

If an unary postfix operator ? is introduced to mean “zero or one occur-
rence”. That is, r? is equivalent to r|ε, or put another way, L(r?) = L(r)∪{ε}.
Then another expression

digit(.digit)?(E[+-]?digits)?

is given [8].
These two expressions want to express the same thing, real numbers.

We cannot say that they are not correct. In terms of the structure of real
numbers, they are absolutely right. But on the other hand, if we consider some
restrictions of real numbers, they do not conclude them in the expression. We
know that in the expression of real numbers, the leading zeros should not be
allowed. It is also required that the zeros tail be eliminated. But as digit
represents any digit from 0, 1, . . . , 9, that means in both the expressions
above, the leading zeros and zeros tail are included.

Apart from the two minor bugs, the two expressions above are basically
correct. Therefore, we may define a grammar that generates the regular ex-
pression.

N→+R|

-R|

digit R |

.P

R→digit R|

.P

P→digit L|

digit

L→digit L|

e A|

digit

A→+ M|

-M|

4.2 Lexical Analyzer 87

digit M|

digit

M→digit M|

digit

The productions above really generates the regular expression of real num-
bers but may include the leading zeros and zeros tail. The lexical analyzer
may base on the grammar to handle real numbers [9]. The handling method
is to group the digits that represent integer or real numbers together to form
digit string, then translate the number into the binary number and put it in
the constant number table [10]. The order of handling is also according to
the order by which these constants occur. That is, after the first number had
been handled in this way and store in the constant table, when the second
number occurs, at first it is checked to see whether it has occurred or not in
the table. If it has existed in the table, then it does not need to store in the
constant table again. Otherwise it will be handled as the first number and
put into the constant table.

As for the identifier, however, constant numbers have also the properties
that are not regular. In any programming language, as the restriction of
the capacity of the memory, in general, one integer can only occupy one
word of the memory (32 bits or 64 bits), and one real number occupies the
double or two times of the integer number. Therefore, when doing spelling
and transformation of the constant number, the size or the value of the
number will be checked. When the length or the size of the number exceeds
the restriction, the lexical analyzer will report the error.

In order to present a legal expression of the real number without the
leading zeros or the tail zeros, we want to modify the expression. We introduce
the new terminal digit1 to represent [1..9], the original digit still represents
[0..9]. Then the modified regular expression of real numbers now becomes
following:

(+|-|)(0|digit1 digit∗).(0|digit1|digit1 digit|digit

digit1∗)(e(+|-|)digitdigit1)?

The reader may check which kinds of real numbers are included in the ex-
pression.

4.2.4 Structure of Lexical Analyzer

So far, we have analyzed the works of lexical analysis on handling comments,
reserved words, identifiers and constants. By these, we have seen the role of
the lexical analyzer. Sequentially, we introduce the structure of the lexical
analyzer.

The basic task of the lexical analyzer is that given a set S that specifies

88 Chapter 4 Lexical Analysis

the tokens, and the place p in the input stream, then the lexical analyzer
decides which regular expression in S matches the input segment starting
from p, and decides the role of the segment in the program.

According to the task of the lexical analyzer, the analyzer can be con-
structed manually or automatically by computer. Both are done based on
the tokens designated by the regular expression [11]. Here we mainly explain
the structure of the manually generated lexical analyzer. Fig. 4.1 demon-
strates the heading file of the lexical analyzer lex.h that defines 7 kinds of
tokens: comment lines, identifiers, reserved words, constants, tokens with
single character, ERRONEOUS token, and EOF token. The so-called token
with single character means operators such as +, −, × (or ∗), ÷ (or /), sep-
arators such as ; , . . . , (,), {, }, etc. Fig. 4.1 shows the form of Token-types
with the extending field. The field records the starting position of the token
in the input, it also contains the definition of constants-like.

Fig. 4.1 Heading file lex.h of manually generated lexical analyzer.

The main program of the lexical analyzer consists of the following parts:
the declaration of local data that manages input files; the declaration of global
variables Token; the routine start-lex() that starts the lexical analyzer; and
get-next-token(). The get-next-token(0) is used to scan the input stream,
and get the next token and put the data into Token table. Fig. 4.2 shows the
data and commencement of the lexical analyzer.

The main program of the lexical analyzer repeatedly invokes subroutine
get-next-token(). The get-next-token() and its subprogram check the current
input character to see what kind of token it belongs to, then it prints the

4.2 Lexical Analyzer 89

Fig. 4.2 Data and commencement part of manually generated lexical analyzer.

information found from the Token. When an EOF is recognized and handled,
the loop ends. Fig. 4.3 shows the main program of the lexical analyzer.

Fig. 4.3 Main program of manually generated lexical analyzer.

We do not introduce the details of work of get-next-token(). After jump
out from comment and layout character, get-next-token() records the posi-
tion of the token, and the position is stored in the Token-pos field. Sequen-
tially, the get-next-token() separates the first character of the token based
on the current input stored in input-char. There are five cases: letter, digit,
operator/separator, erroneous, and EOF.

What we talked about handling mainly includes two aspects. On the one
hand, we represent the source program in the intermediate language form;

90 Chapter 4 Lexical Analysis

on the other hand, we construct a variety of tables from information in the
input. For reserved words, as we have mentioned before, there is no need
to construct table, there is a dictionary stored inside the compiler already.
Each reserved word has been encoded with fixed code. Hence for the reserved
word, the only thing which we need to do with its occurrence in the source
program is to replace it with its code, then we got its intermediate form. For
the identifier, it is different story. At first, we need to group the components
into one token, then according to the order of occurrence by which it occurs
in the source program, it is assigned a number with the token sign. There is
one more thing for it, i.e., the assignment of address in memory that is used
for storing its value. As for constants, it contains integers and real numbers
(floating point numbers) and they are separately stored in different areas.
Therefore, the areas which the lexical analyzer uses include [12]:
• DR[i] retains the reserved word dictionary, i is the index;
• SA[j] source program area, j is the address;
• IA[k] Intermediate language area, it corresponds to the source program

area, but it has represented every component with its intermediate form.
Suppose that we stipulate that reserved words, identifiers, and constants

have the following identity code:

λ (identity)

reserved word 0 reserved word i → the index of the reserved word

in dictionary

identifier 1 identifier id → the address of the id in LT table

integer 2 constant ct1 → the address of ct1 in CT1 table

real constant 3 constant ct2 → the address of ct2 in CT2 table

The handling method for reserved words is, at first the components of
the reserved word are grouped together to form a word, then check the word
contrasting the words in the dictionary to see whether it matches one of them
or not. If it matches, then take the code of the word in the dictionary and the
code is the intermediate form of the word and put it into the intermediate
language area that corresponds to the source program area. On the other
hand, if it does not match any word in the dictionary, that means that the
word does not belong to reserved word, it is an error. So an erroneous message
should be issued to the programmer about the word.

The handling method for identifiers is, like for the reserved words, at first
the components of the identifier are grouped into a token, then against the
existing identifier table (IT), the token is checked to see whether it has existed
or not [13]. Only the first identifier can meet the situation that the IT table is
empty. If the identifier is not equal to any that already exists in the IT table,
that means that this is a newly defined identifier, hence it should be put
into IT table and in the intermediate language area, then the representation
shown above will take place of the original identifier so that every identifier
now has the same length with the same identity. If the identifier has already
existed in the IT table, then it does not need to put in the table, the only

4.2 Lexical Analyzer 91

thing needed to do is to put its intermediate code into the IA area. Fig. 4.4
shows this correspondence.

Fig. 4.4 Intermediate form of the identifier versus the IT table.

When handling the constants, the first step is also to group the compo-
nents of it. But there is one thing that differs from that of identifiers. That is,
the constant should be converted from decimal one to binary one as the value
in machine. The handling process for integers is the same for real numbers.
But the real numbers will occupy double words as many as the integers do.
Since for integers, each occupies one word length, then the real number will
occupy two word length. Fig. 4.5 shows the difference [14].

Fig. 4.5 Constant representation and constant table.

As for the handling of identifiers, after the constant is grouped, it has to
be checked against the constant table to see if the table contains the constant
already. If it does then it is not necessary to put the constant into the table
again. But if it does not occur in the table, then it is stored in the table
sequentially and the address which the constant stores in is taken as the
intermediate representation that occurs in the intermediate language area. If
it has already existed in the constant table, it does not need to be put into

92 Chapter 4 Lexical Analysis

the table. Only the corresponding address needs to be put into intermediate
language area to replace the original occurrence in the source program.

In the following a simple program in C and its corresponding intermediate
language form are given. We will make it more directly perceived through the
senses as much as possible so that the reader will be able to understand the
working process of the lexical analysis [15]. Fig. 4.6 shows the process via the
contrast of the source program with its intermediate peer.

Fig. 4.6 Source programs versus intermediate language representation.

Remark in Fig. 4.6 above, the code 4 has exceeded the extent of two bits.
But it is only for the purpose of explanation. In practice we may need to use
more bits as the identity bits.

The lex works in the following manner: At first the source program is

4.2 Lexical Analyzer 93

written by lex as lex.1, then it is compiled by the compiler of lex to produce
lex.yy.c in C language. The program lex.yy.c involves transformation map
that is constructed from regular expression of lex.1 and the standard subrou-
tines that recognize lexicons. The transformation map is the state transfor-
mation obtained from each configuration definition state of the right part of
production. For example in S→ABC, it may have the following configuration
states:

S→ ·ABC,

S→ A · BC,

S→ AB · C,

S→ ABC·

These configurations should be considered along with other configurations
obtained from other productions. For example, If there is another production
that has A as its left part,

A→ Bβ

where β is a string consisting of terminals and nonterminals, then

S→ ·ABC
A→ ·Bβ

should be taken as a basic term, or considered as a state. Consequently, from

S→ ·ABC

to
S→ A · BC

is a state transformation. For all the productions of a grammar, we have to
write down all the state transformations. In the syntactical analysis later, we
will discuss the state transformation in more details. In lex.1 the transfor-
mation map is represented in table where the actions associated with regular
expressions are represented as code in C, they are directly moved to lex.yy.c.
Finally, lex.yy.c is compiled into object program a.out. And it is just the
lexical analyzer that transforms the input strings into token sequence.

The process above is shown in Fig. 4.7.

Fig. 4.7 Lexical analyzer based on regular expressions constructed by lex.

94 Chapter 4 Lexical Analysis

In order for the reader understand the lex.1 deeper, we list the skeleton of
it as shown in Fig. 4.8. It contains three parts: the first part is the definitions
of rules, the second part is the regular expressions and code segment, and
the third part is the code in C language. It is also the one directly moved to
lex.yy.c mentioned above.

Fig. 4.8 The skeleton of lex that automatically generates lexical analyzer.

In lex, the comment is neglected. This is different from practice. In prac-
tice, the comments are kept for use in printing the list of the source program.

In addition, prominently, it does not contain the handling of reserved
words as the reserved words cannot be handled as regular expressions.

Now look at the lex itself. For input, lex produces the file in C called
lex.yy.c. The file contains a routine yylex. Routine int yylex (void) contains
an inner loop.When the routine is invoked, it begins spelling the characters
in input file according to regular expressions in the second part. For each
recognized token the related C code is executed and the following handling
is carried out. The representation form of the token can be found from array

4.3 Output of Lexical Analyzer 95

char yytext []. When C language code executes the statement with numeric
return value, the return value is just the value of the token. It represents
that they are the values of corresponding tokens. After the relative handling
is finished, the inner loop yylex ends. The class operator/separator is single
char token and it is the first character of array yytext [] (hence it is yytext
[0]).

The third part is the C language code that is truly executable. The lexical
analyzer generated by lex does not need to initiate and the routine start.lex(
) is empty. The routine let-next-token() starts with invoking yylex(). This
invocation jumps over the comments and format symbols until it found the
real token. Then it returns the value of the token class and carries out the
corresponding process for the token class. When it detects the end of input,
routine yylex() returns 0. The malloc() statement in this part is used to
allocate space for array yytext [] as the space will store the result which the
execution of get-next-token() obtains, that is, to store the token obtained in
the space allocated while routine yywrap() is used to aid the processing of
the end of file.

4.3 Output of Lexical Analyzer

In the last section, we have mentioned that after the analysis of the lexi-
cal analyzer, the source program input is transformed into the program in
intermediate language and stored in intermediate language area. These iden-
tifiers, constants, and reserved words with arbitrary lengths all are replaced
by tokens with fixed lengths and with different signs. At first the reserved
words will be replaced by the corresponding code in the reserved word dic-
tionary. Secondly, the identifier is replaced by an integer, following the sign
bit (for example λ = 1). Meanwhile, however, in using token to take place of
the identifier, a table is needed for storing the identifiers for check. As the
amount of identifiers in a program varies, in general, it is more than that of
constants, hence how to build the table of identifiers is a problem that causes
special concern of the compiler.

The symbol table (identifier table) may be seen as the extended record
array indexed by the character string (rather than the number) and the char-
acter string is just the identifier. The relative record contains the relative in-
formation collected for the identifier. The structure of the symbol table may
be represented as follows:

struct identifier {
char a[int];

int ptr;

}
Therefore, the basic interface of the symbol table module consists of a func-

96 Chapter 4 Lexical Analysis

tion identity: function identity (identifier name).
It returns the pointer that points to the record of the identifier, i.e., the

machine code of the identifier. The pointer points to the address which stores
the information of the identifier. After this no matter how many times which
the character string is called, they always return the value. When we receive
the information that relates to the identifier, we keep the information in the
corresponding store unit.

In the compiler of C language, the symbol table module may contain the
following information:

(1) The real character strings used for printing the source program and
object program.

(2) Macro definition. A macro definition is to take the definition of iden-
tifiers as a macro, an instruction similar to a subroutine, and it takes some
character string as a value.

(3) Definition of a series of types, variables, and function.
(4) Definition of a series of structures, common body names.
(5) Definition of a series of structures, field selection symbols of common

bodies.
A simple method to implement the symbol table is the linear table, that

is, when the declaration of some identifier is met in the declaration part of
programs, then the identifier is registered in the symbol table, along with the
address for storing its value, it looks like (identifier, value). The manner for
implementing symbol tables is comparatively simple, as searching an item
needed can be done by linear search. If the size of the table is not big, the
efficiency is not a problem either. However, if the program is large and the
symbol table is very big, then the data structure may be unsuitable due to
its inefficiency. Instead the hash function may be the best substitution. Hash
function is a mapping from name space N to address space A [16], namely,
Hash N→A. In general, |N| � |A|. In other words, given an identifier id, Hash
(id) is a value in A and it is the address for storing id. When the identifier is to
be accessed again, the function Hash (id) is computed first. When the value
results then the address is found. Since |N| � |A|, however, it is likely that
two different id1 and id2 compute Hash(id1) = Hash(id2). When the thing
happens, it is called conflict. Obviously conflict is not desirable. In order to
resolve conflict, two methods are available. One is to chain the identifiers with
the same hash value so that in the chain all the identifiers possess the same
hash value. As such identifiers are not many, searching the desirable item
from the chain is not difficult. Another method is called rehash. When the
conflict occurs, then another hash function Rehash is invoked to recomputed
the address assigned to the identifier. When the identifier is to be accessed,
Hash and Rehash need to be computed again.

Hence the key problem is how to design a better hash function that causes
conflicts as few as possible, this is not a simple problem. If a hash function
causes many conflicts, it is definitely not a good Hash function. McKenzie,
Harries and Bell proposed following Hash function based on the analysis of

4.4 Error Handling 97

several widely used Hash functions in 1990. After using it in practice, it
showed that it has good performance, where two parameters N and k are
used, and their best values are N = 1 008 and k = 613. In addition, ci is the
ASCII value of ith character of identifier, n is the length of the identifier.

h0 = 0
hi = k× hi−1 + ci, 1 � i � n
H = BITS(hn, 30) Mod N

Function BITS (h, m) produces rightmost m digits of integer h. Hence in
the computation above, we take 30 digits of the rightmost. If we take k as
4, and N as 1 403, then the speed of the iterative algorithm is fastest as
multiplying by 4 is simply left shift twice. But if the value of k is too small,
then similar identifiers will be aggregated. In contrast, if the value of N is
big, the opportunity that conflict occurs is smaller but the amount of storage
occupied will correspondingly increase. The investigation shows that when k
is 613 and N is 1 008, then we get 610 as the length hash value, 812 as the
width hash value, and 1005 as height hash value.

4.4 Error Handling

Errors which lexical analyzer discovers may be grouped into the following
classes as we described above:

1) wrong spellings of the reserved words.
2) Identifier errors.
3) number errors.
4) punctuation errors.
There are two attitudes towards errors:
One is strictly following the rules (the grammar) to treat errors, once

an error is found, then the error report is issued immediately to user or
programmer and the error type and position are also reported as one can as
possible. In general case, however, to provide such an information is not easy.
The common lexical analyzer can only report the possible error type, it is
very difficult for it to locate the specific location of the error.

Another treatment manner is more tolerant or more human nature,namely,
when the error is found, the lexical analyzer manages to correct the error it-
self, rather than to issue immediately a report to user or programmer. The
aim is to save the time of user or programmer and to improve efficiency.

For example, if the error takes place in the spelling of the reserved word, if
it is discovered that the wrong reserved word differs from the correct one only
in one letter, then the lexical analyzer will regard it as correct and correct
the wrong letter.

If the error takes place in the input of the identifier, and it is determined
that it is not another identifier, then the same treatment may be taken.

98 Chapter 4 Lexical Analysis

If for reserved words, identifiers or numbers, the errors are caused by
excess in typing or mistyping. For example for a number if it contains two
decimal points, then obviously the correction can be done by eliminating one
decimal point, but which one should be deleted needs to be decided.

If the error is caused by missing of character, it also needs to decide what
character should be added to make it correct.

If the error is caused by that the application occurrence precedes the
definition occurrence, then a definition occurrence should be added before
the application occurrence. But if for one item there are two definitions, and
they are inconsistent, then one of them should be deleted. Nevertheless which
one should be reserved needs to carefully decided.

Comparatively speaking, the types of errors in the lexical analysis are not
many and their handlings are rather simple. Most of the errors are caused
by mistyping of one or more characters, missing or excess in typing, or mis-
spelling, etc. The key points should be put on these classes. It is unnecessary
to attend to every and each aspect of the matter.

Problems

Problem 4.1 Write a program using the language which you are familiar
with that recognizes the real numbers and identifiers.

Problem 4.2 Some one gives the regular expression of real numbers as

(+|-|) digit∗.digit digit∗(e(+|-|)digit digit∗|)

Explain what problem will the regular expression cause? If the problem
is to avoid, how should it be written?

Problem 4.3 Write a complete input scanner.
Problem 4.4 Suppose that your symbol table can admit 10 – 100 identi-

fiers while sometimes you need to handle 100 000 000 identifiers with
proper efficiency. Hence allocating a hash table with the size of admitting
100 000 000 is not consistent with the requirement of the problem. Design
a suitable hash table algorithm to solve the problem.

References

[1] McCullough WS, Pitts W (1943) A logical calculus of the ideas immanent
in nervous activity, Bull. Math. Biophysics 5: 115 – 133.

[2] Lesk ME Lex-a lexical analyzer generator, Computing Science Tech Re-
port, 39, Bell Laboratories, Murray Hill, N J. It also appears in Vol.2 of
the Unix Programming’s Manual, Bell Laboratories with the same title but
with E.Schmidt as coauthor. Murray Hill, N J. http://dinosaur.compil- er-
tool.net/lex/index.html.

References 99

[3] Kleene SC Representation of events innerve nets and finite automata. In:
Shannon CE, McCarthy J (eds) Automata studies, 34, pp. 3 – 40.

[4] http://www.cs.princeton.edu/∼appel/modern/java/JLex. Accessed 12 Oct
2009.

[5] Hopcroft JE, Motwani R, Ulman JD (2006) Introduction to automata theory,
languages and computation. Addison-Wesley, Boston.

[6] Huffman DA (1954) The synthesis of sequential machines. J Franklin Inst.
257, pp 3 – 4, 161, 190, 275 – 303.

[7] http://jflex.de/. Accessed 19 Nov 2009.

[8] Aho AV, Corasick MJ (1975) Efficient string matching, an aid to biblio-
graphic search. Comm ACM, 18(6): 333 – 340.

[9] Free software Foundation. http://www.gnu.org/software/flex/. Accessed 19
Nov 2009.

[10] Aho AV (1990) Algorithms for finding patterns in strings. In Laeuwen J van
(ed) Handbook of theretical computer science. MIT Press, Cambridge.

[11] Shannon C, McCarthy J (eds) (1956) Automata Studies. Princeton Univ
Press, NJ.

[12] Thompson K (1968) Regular expression search algorithm. Comm ACM 11
(6): 419 – 422.

[13] McNaughton R, Yamada H (1960) Regular expressions and state graph for
automata, Ire Trans. On Electronic Computers EC-9:1: 38 – 47.

[14] Moore EF, Gedanken experiments on sequential machines, in [15], pp. 129 –
153.

[15] Knuth DE, Morris JH, Pratt WR (1997) Fast Pattern matching in strings,
SIAM J. Computing 6:2: 323 – 350.

[16] McKenzie BJ, Harries R (1990) Bell TC. Selecting a hashing algorithm.
Software —Practice and Experience, 20(2): 672 – 689.

Chapter 5 Push-Down Automata and
Context-Free Languages

Context-free grammars have played a central role in
compiler technology since the 1960s There is an
automaton-like notation, called the “pushdown automa-
ton”, that also describes all and only the context-free
languages.

John E. Hopcroft, Rajeev Motwani
and Jeffrey D. Ullman

5.1 Motivation of the Chapter

Push-down automata (PDA) form the most important class of automata be-
tween finite automata and Turing machines. As can be seen from the previous
chapter, deterministic finite automata (DFA) cannot accept even very simple
languages such as

{xnyn | n ∈ N},
but fortunately, there exists a more powerful machine, push-down automata,
which can accept it. Just as DFA and nondeterministic finite automata (NFA),
there are also two types of push-down automata: deterministic push-down
automata (DPDA) and non-deterministic push-down automata (NPDA). The
languages which can be accepted by PDA are called context-free languages
(CFL), denoted by LCF. Diagrammatically, a PDA is a finite state automaton
(see Fig. 5.1), with memories (push-down stacks). In this chapter, we shall
study PDA and their associated languages, context-free languages LCF. For
the sake of completeness of the automata theory and formal languages, We
shall also study Turing machines and their associated languages.

102 Chapter 5 Push-Down Automata and Context-Free Languages

Fig. 5.1 Push-down automata.

5.2 Push-Down Automata

We first give a formal definition of the NPDA.

Definition 5.1 A non-deterministic push-down automata (NPDA) is de-
fined by

M = (Q, Σ, Γ, δ, q0, z, F), (5.1)

where
Q is a finite set of internal states;
Σ is a finite set called the input alphabet;
Γ is a finite set of symbols called the stack alphabet;
δ is the transition function, which is defined as

δ : Q× (Σ ∪ {λ} × Γ→ finite subsets of Q× Γ∗; (5.2)

z ∈ Γ is the stack initial symbol;
q0 ∈ Q is the initial state;
F ⊆ Q is the set of final states.

Example 5.1 Let an NPDA, M, be M = (Q, Σ, Γ, δ, q0, z, F) with

Q = {q0, q1, q2, q3},
Σ = {a, b},
Γ = {0, 1},
z = 0,

F = q3,

5.3 Context-Free Languages (LCF) 103

and

δ(q0, a, 0) = {(q1, 10), (q3, λ)},
δ(q0, λ, 0) = {(q3, λ)},
δ(q1, a, 1) = {(q1, 11)},
δ(q1, b, 1) = {(q2, λ)},
δ(q2, b, 1) = {(q2, λ)},
δ(q2, λ, 0) = {(q3, λ)}.

Then the automaton accepts the language

L = L(M) = {anbn : n ∈ N} ∪ {a}.

A deterministic push-down automaton (DPDA) is an automaton that
never has a choice in its move:

Definition 5.2 A push-down automata (PDA) is said to be deterministic,
if it is an automaton, M = (Q, Σ, Γ, δ, q0, z, F), as in Definition 5.1, subject
to the following two restrictions: for every q ∈ Q, a ∈ Σ ∪ {λ} and b ∈ Γ,

(1) δ(q, a, b) contains at most one element;
(2) if δ(q, λ, b) is not empty, then δ(q, c, b) must be empty for every c ∈ Σ.

5.3 Context-Free Languages (LCF)

This section establishes the relationship between push-down automata and
context-free languages. We first discuss context-free grammars and context-
free languages.

Definition 5.3 A grammar G = (V, T, S, P) is said to be context-free if all
productions have the form

A→ x, (5.3)

where A ∈ V, and x ∈ (V ∪ T)∗.
A language L is said to be context-free if there is a context-free grammar

G such that L = L(G).

Example 5.2 The grammar G(V, T, S, P), with productions

S→ abB,

A→ aaBb,

B→ bbAa,

A→ λ

104 Chapter 5 Push-Down Automata and Context-Free Languages

is context-free. Some typical derivations in this grammar are:

S =⇒ abB
=⇒ abbbAa
=⇒ abbba

S =⇒ abB
=⇒ abbbAa
=⇒ abbbaaBba
=⇒ abbbaabbAaba
=⇒ abbbaabbaba

S ∗=⇒ abbbaabbAaba
=⇒ abbbaabbaaBbaba
=⇒ abbbaabbaabbAababa
=⇒ abbbaabbaabbababa
=⇒ ab(bbaa)2bba(ba)2

S ∗=⇒ abbbaabbaabbAababa
=⇒ abbbaabbaabbaaBbababa
=⇒ abbbaabbaabbaabbAabababa
=⇒ ab(bbaa)3bba(ba)3

...

S =⇒ ab(bbaa)nbba(ba)n, for n � 0.

Thus, the language generated by this grammar is

L(G) = {ab(bbaa)nbba(ba)n : n � 0}.

Remark: Every regular grammar is a context-free grammar, so a regular
language is a context-free language. For example, we know that

L = {anbn : n � 0}

is not a regular language, but this language can be generated by the grammar
G = ({S}, {a, b}, S, P) with P given by S → aSb and S → λ, which is ap-
parently a context-free grammar. So, the family of context-free languages is
the superset of the family of regular languages, whereas the family of regular
languages is the proper subset of the family of context-free languages.

We call a string x ∈ (V∪T)∗ a sentential form of G if there is a derivation
S ∗=⇒ x in G. But notice that there may be several variables in a sentential
form, in such a case, we have a choice of order to replace the variables. A

5.4 Pumping Theorems for Context-Free Languages 105

derivation is said to be leftmost if in each step the leftmost variable in the
sentential form is replaced. If in each step the rightmost variable is replaced,
then we called the derivation rightmost.

Example 5.3 Let G = ({S, A}, {a, b}, S, P) with P given by

(i) S→ AA,

(ii) A→ AAA,

(iii) A→ bA,

(iv) A→ Ab,

(v) A→ a.

Then we have the following three distinct derivations for string L(G) =
ababaa :

S i=⇒ AA S i=⇒ AA S i=⇒ AA
v=⇒ aA v=⇒ Aa v=⇒ aA
ii=⇒ aAAA ii=⇒ AAAa ii=⇒ aAAA
iii=⇒ abAAA iii=⇒ AAbAa v=⇒ aAAa
v=⇒ abaAA v=⇒ AAbaa iii=⇒ abAAa
iii=⇒ ababAA iii=⇒ AbAbaa iii=⇒ abAbAa
v=⇒ ababaA v=⇒ Ababaa v=⇒ ababAa
v=⇒ ababaa v=⇒ ababaa v=⇒ ababaa

Derivation(1) Derivation(2) Derivation(3)

It is clear that derivation (1) is left-most, (2) is right-most, whereas (3) is
neither.

5.4 Pumping Theorems for Context-Free Languages

Theorem 5.1 (Pumping Theorem for Context-free Languages)
Let L be a context-free language. There exists a positive integer N ∈ Z

+

(depending on L) such that for any z ∈ L and |z| � N, there exist strings
u, v, w, x and y satisfying the following conditions:

z = uvwxy, (5.4)

|v|+ |x| > N, (5.5)

uviwxiy ∈ L, ∀i � 0. (5.6)

The number N is called pumping number for the context-free language L.

106 Chapter 5 Push-Down Automata and Context-Free Languages

Like its counter-part for regular languages, the pumping theorem for
context-free languages provides a tool for demonstrating that languages are
not context-free.

5.5 Push-Down Automata and Context-Free Languages

Now we investigate the relationship between push-down automata and context-
free languages.

Theorem 5.2 A Language L is context-free if and only if it is acceptable
(recognisable) by some PDA. A Language L is deterministic context-free if
and only if it is acceptable (recognisable) by some DPDA.

Remark: It is interesting to note that nondeterminism does not add more
computing power to deterministic finite automata (DFAs). That is, DFAs
and NFAs accept exactly the same languages. In contrast, this is not the case
for push-down automata (PDA). There are languages that can be accepted
by NPDA but that cannot be accepted by DPDA. So the class of determinis-
tic context-free languages forms a proper subclass of the class of context-
free languages. Since the languages of logic, mathematics and programming
(with some exceptions) are readily described by context-free grammars, push-
down automata provide an appropriate mechanism for parsing sentences in
programming languages.

Finally we present some closure/nonclosure properties for context-free
languages.

Theorem 5.3 The family of context-free languages is closed under the op-
erations union, concatenation, and star-closure. That is

L1 and L2 are context-free =⇒ L1 ∪ L2, L1L2, L∗
1 are context-free. (5.7)

Theorem 5.4 The family of context-free languages is not closed under in-
tersection and complementation. That is

L1 and L2 are context-free =⇒� L1 ∩ L2, L1 are not context-free. (5.8)

Theorem 5.5 Let L1 be a context-free language and L2 be a regular lan-
guage. Then L1 ∪ L2 is context-free, but not necessarily regular. That is, the
family of context-free languages is closed under regular intersection.

5.6 Applications of Context-Free Languages

Context-free grammars and languages have important applications in program-
ming language definition and compiler construction. The most popular lan-
guage definition method, Backus-Naur Form (BNF), after John Backus, who

5.7 Turing Machines 107

invented the method and Peter Naur, who refined it for the programming lan-
guage ALGOL, directly corresponds to context-free grammar. In fact, many
parts of a ALGOL-like or Pascal-like programming languages are susceptible
to definition by restricted forms of context-free grammars.

Example 5.4 The following grammar (context-free grammar, but using
BNF notation) defines a language of even, non-negative integers.

〈even-integer〉 ::= 〈even-digit〉|〈integer〉〈even-digit〉
〈integer〉 ::= 〈digit〉|〈digit〉〈integer〉
〈digit〉 ::= 〈even-digit〉|〈odd-digit〉
〈even-digit〉 ::= 0|2|4|6|8
〈odd-digit〉 ::= 1|3|5|7|9

With this grammar, we can easily generate the even integers, and show
their parse trees, which are useful in syntax analysis and code generation in
compiler construction.

5.7 Turing Machines

As we have seen, finite automata (FA) can recognise regular languages (LREG),
but not non-regular languages, such as L = {anbn | n ∈ N}, which is known
to be context-free language. PDA, however, can recognise all the context-
free languages LCF generated by context-free grammars GCF. There are lan-
guages, however, say for example, context-sensitive languages LCS, such as
L = {anbncn | n ∈ N}, that cannot be generated by context-free gram-
mars. Fortunately, there are other machines, called Linear Bounded Au-
tomata (LBA), more powerful than push-down automata, that can recognise
all the languages generated by context-sensitive grammars GCS. However,
LBA cannot recognise all languages generated by phrase-structure grammars
GPS. To avoid the limitations of the above mentioned three special types
of automata, a Turing Machine (TM), named after the British mathemati-
cian Alan Turing is used. Turing machines can recognise all the languages
generated by phrase-structure grammars, called the recursively enumerable
languages LRE, that includes, of course, all the regular languages, context-
free languages and context-sensitive languages. In addition, Turing machines
can also model all the computations that can be performed on any computing
machine. In this section, we shall study Turing machines and their associated
languages LRE.

A standard Turing machine (see Fig. 5.2) has the following features:
1) The Turing machine has a tape that is unbounded in both directions.
2) The Turing machine is deterministic.
3) There are no special input and output files.

108 Chapter 5 Push-Down Automata and Context-Free Languages

Definition 5.4 A Turing Machine (TM) is defined by

M = (Q, Σ, Γ, δ, q0, �, F) (5.9)

where
Q is a finite set of internal states;
Σ is a finite set of symbols called the input alphabet, we assume that

Σ ⊆ Γ− {�};
Γ is a finite set of symbols called the tape alphabet;
δ is the transition function, which is defined as

δ : Q× Γ→ Q× Γ× {L, R}; (5.10)

� ∈ Γ is a special symbol called the blank;
q0 ∈ Q is the initial state;
F ⊆ Q is the set of final states.

Fig. 5.2 Standard Turing Machine.

5.8 Turing Machines as Language Accepters

A Turing machine can be viewed as an accepter in the following sense. A
string w is written on the tape, with blanks filling out the unused portions.
The machine is started in the initial state q0 with the read-write head posi-
tioned on the leftmost symbol of w. If, after a sequence of moves, the Turing
machine enters a final state and halts, then w is considered to be accepted by
the Turing machine. We shall provide a precise definition for the above de-
scriptions and present some examples of how Turing machines accept strings
that can not be accepted by a DFA or PDA.

Definition 5.5 Let M = (Q, Σ, Γ, δ, q0, �, F) be a Turing machine. Then
the languages that can be accepted by M are defined by

L(M) = {w ∈ Σ∗ : q0w
∗
� w1qfw2, for qf ∈ F, and w1, w2 ∈ Γ∗}. (5.11)

5.8 Turing Machines as Language Accepters 109

Example 5.5 Let Σ = {a, b}. Design a Turing machine that accepts the
language

L = {anbn : n � 1}.
As we have seen from the preceding section that this language is a context-free
language and can be accepted by a push-down automata. In this example,
we shall see that this language can be accepted by a Turing machine as well.
Let q0 be the initial state, and suppose that we use the x’s to replace a’ and
y′s to replace b′. Then we can design the transitions as follows (see Fig. 5.3):

δ(q0, a) = (q1, x, R),
δ(q1, a) = (q1, a, R),
δ(q1, y) = (q1, y, R),
δ(q1, b) = (q2, y, L),
δ(q2, y) = (q2, y, L),
δ(q2, a) = (q2, a, L),
δ(q2, x) = (q0, x, R),
δ(q0, y) = (q3, y, R),
δ(q3, y) = (q3, y, R),
δ(q3, �) = (q4, �, R).

So finally, the designed Turing machine is as follows:

M = (Q, Σ, Γ, δ, q0, �, F)
= ({q0, q1, q2, q3, q4}, {a, b}, {a, b, x, y, �}δ, q0, �, {q4}).

Fig. 5.3 A Turing Machine That Accepts {anbn|n � 1}.

110 Chapter 5 Push-Down Automata and Context-Free Languages

For a particular input aaabbb, we have the following successive instanta-
neous descriptions (IDs) of the designed Turing machine:

q0aaabbb � xq1aabbb
� xaq1abbb
� xaaq1bbb
� xaq2aybb
� xq2aaybb
� q2xaaybb
� xq0aaybb
� xxq1aybb
� xxaq1ybb
� xxayq1bb
� xxaq2yyb
� xxq2ayyb
� xq2xayyb
� xxq0ayyb
� xxxq1yyb
� xxxyq1yb
� xxxyyq1b
� xxxyq2yy
� xxxq2yyy
� xxq2xyyy
� xxxq0yyy
� xxxyq3yy
� xxxyyq3y
� xxxyyyq3�
� xxxyyy�q4�

At this point the Turing machine halts in a final state, so the string aaabbb
is accepted by the Turing machine. The above successive instantaneous de-
scriptions can also be showed diagrammatically as follows:

5.8 Turing Machines as Language Accepters 111

112 Chapter 5 Push-Down Automata and Context-Free Languages

Remark: The above example shows that Turing machines can accept lan-
guages that can be accepted by push-down automata. It is, of course the case
that Turing machines can accept languages that can be accepted by finite
automata. For example, the following regular language

LREG = {w ∈ {a, b}∗ : w contains the substring aba}.
can be accepted by both Turing machines and finite automata; Fig. 5.4 gives
a Turing machine and a finite automaton that accept the above language.

Example 5.6 Design a Turing machine that accepts the language

L = {anbncn : n � 1}.
As we already know that this language is not a context-free language, thus it
cannot be accepted by a push-down automata. In this example, we shall show

5.8 Turing Machines as Language Accepters 113

Fig. 5.4 A TM and a DFA that accept the language {a, b}∗{aba}{a, b}∗.

that it is possible to design a Turing machine that accepts this language.

δ(q0, a) = (q1, x, R),
δ(q1, a) = (q1, a, R),
δ(q1, y) = (q1, y, R),
δ(q1, b) = (q2, y, L),
δ(q2, y) = (q2, y, L),
δ(q2, a) = (q2, a, L),
δ(q2, x) = (q0, x, R),
δ(q0, y) = (q3, y, R),
δ(q3, y) = (q3, y, R),
δ(q3, �) = (q4, �, R).

We design the Turing as follows:

M = (Q, Σ, Γ, δ, q0, �, F),

114 Chapter 5 Push-Down Automata and Context-Free Languages

where

Q = {q0, q1, q2, q3, q4, q5},
Σ = {a, b, c},
Γ = {a, b, cx, y, z, �},
F = {q4},
δ : Q× Γ→ Q× Γ× {L, R} is defined by

δ(q0, a) = (q1, x, R),
δ(q1, a) = (q1, a, R),
δ(q1, y) = (q1, y, R),
δ(q1, b) = (q2, y, R),
δ(q2, z) = (q2, z, R),
δ(q2, b) = (q2, b, R),
δ(q2, c) = (q3, z, L),
δ(q3, a) = (q3, a, L),
δ(q3, b) = (q3, b, L),
δ(q3, y) = (q3, y, L),
δ(q3, z) = (q3, z, L),
δ(q3, x) = (q0, xR),
δ(q0, y) = (q4, y, R),
δ(q4, �) = (q5, �, R).

For the particular input aabbcc, we have the following successive instan-
taneous descriptions of the designed Turing machine:

q0aabbcc � xq1abbcc
� xaq1bbcc
� xayq2bcc
� xaybq2cc
� xayq3bzc
� xaq3ybzc
� xq3aybzc
� q3xaybzc
� xq0aybzc
� xxq1ybzc
� xxyg1bzc
� xxyyq2zc

5.9 Equivalence of Various Turing Machines 115

� xxyyzq2c
� xxyyq3zz
� xxyq3yzz
� xxq3yyzz
� xq3xyyzz
� xxq0yyzz
� xxyq4yzz
� xxyyq4zz
� xxyyzq4z
� xxyyzzq4�
� xxyyzz�q4�

Fig. 5.5 gives a Turing machine that accepts {anbncn : n � 1}.

Fig. 5.5 A Turing machine that accepts {anbncn : n � 1}.

Theorem 5.6 The class of Turing-acceptable languages properly includes
the classes of regular languages and context-free languages.

5.9 Equivalence of Various Turing Machines

We could, of course, list many more different types of Turing machines. How-
ever, all the different types of Turing machines have the same power. This
establishes the following important result about the equivalence of the various
Turing machines.

116 Chapter 5 Push-Down Automata and Context-Free Languages

Theorem 5.7 A Language L is accepted by a multitape, or multidimen-
sional, or nondeterministic, or probabilistic Turing Machine, if and only if it
is accepted by a standard Turing machine.

We now establish another important result for Turing machines.
Let Σ = {a, b, c}. We said the set S = Σ+ is countable if we can find

an enumeration procedure that produces its elements in some order, e.g.,
dictionary order.

Theorem 5.8 The set of all Turing Machines, although infinite, is count-
able.

Theorem 5.9 Let S be an infinite countable set. Then its power set 2S is
not countable.

5.10 Recursively Enumerable Languages (LRE)

In this section, we shall study languages associated with Turing machines.

Definition 5.6 A language L over an input alphabet Σ is said to be re-
cursively enumerable, denoted by LRE, if there exists a Turing machine that
accepts it. Recursively enumerable languages are also called Turing accept-
able languages, or Turing recognisable languages.

Definition 5.7 A language L over an input alphabet Σ is said to be recur-
sive, denoted by LREC, if there exists a Turing machine that accepts L, and
that halts on every input w ∈ Σ+. Recursive languages are also called Turing
decidable languages, or recursively decidable languages; we shall discuss the
concept “decidable” in Chapter 7.

The term “recursive” comes from the theory of recursive functions. It is
clear that a recursive language is also a recursively enumerable, but on the
other hand, a recursively enumerable language is not necessarily recursive.
That is:

Theorem 5.10 There exists a recursively enumerable language that is not
recursive. That is

LREC ⊂ LRE. (5.12)

From a Turing machine point of view, both recursively enumerable languages
and recursive languages are Turing acceptable; the only difference between
the two types of languages is that recursive languages will halt on every input
w ∈ Σ+; whereas recursively enumerable languages may not halt on every
input w ∈ Σ+, that is, they may fall into an infinite loop on some input
w ∈ Σ+.

We list in the following some important properties about recursive and
recursively enumerable languages:

5.11 Context-Sensitive Languages (LCS) 117

Theorem 5.11 A language L is recursive if and only if both L and its
complement L are recursively enumerable.

Theorem 5.12 There is a recursively enumerable language L whose comple-
ment L is not recursively enumerable.

Interestingly, recursively enumerable languages are not the highest lan-
guages; there exist languages that cannot be accepted by any Turing machine:

Theorem 5.13 For any nonempty alphabet Σ, there exist languages over
Σ that are not recursively enumerable.

There is yet another approach to studying Turing acceptable languages,
namely, the grammatical approach:

Definition 5.8 A grammar G = (V, T, S, P) is called a phrase-structure
grammar or a unrestricted grammar if all productions have the form

x→ y, (5.13)

where x ∈ (V ∪ T)+, and y ∈ (V ∪ T)∗.

Definition 5.9 Any language generated by an unrestricted grammar is re-
cursively enumerable.

Theorem 5.14 For every recursively enumerable language L, there is an
unrestricted grammar G, such that L = L(G).

5.11 Context-Sensitive Languages (LCS)

The context-sensitive grammar represents an intermediate step between
context-free grammars and unrestricted grammars. No restrictions are placed
on the left-hand side of a production, but the length of the right-hand side
is required to be at least as long as the left.

Definition 5.10 A phrase-structure grammar G = (V, T, S, P) is called a
context-sensitive grammar, denoted by GrmCS, if all productions have the
form

x→ y, (5.14)

where x, y ∈ (V ∪T)+, and length (x) � length (y) (or briefly as |x| � |y|).
A language L is called a context-sensitive language, denoted by LCSL,

if there exists a context-sensitive grammar G, such that L = L(G) or L =
L(G) ∪ λ.

Example 5.7 Design a context-sensitive grammar to generate the context-
sensitive language

L = {anbncn : n > 0}.

118 Chapter 5 Push-Down Automata and Context-Free Languages

We can construct the grammar G(V, T, S, P) with the following productions:

(i) S→ abc

(ii) S→ aAbc

(iii) A→ abC

(iv) A→ aAbC

(v) Cb→ bC

(vi) Cc→ cc.

By Definition 5.10, it is context-sensitive. Some typical derivations in this
grammar are:

S
(i)

=⇒ abc

Derivation (1)

S
(ii)
=⇒ aAbc
(iii)
=⇒ aabCbc
(v)
=⇒ aabbCc
(vi)
=⇒ aabbcc

Derivation (2)

S
(ii)
=⇒ aAbc

(iv)
=⇒ aaAbCbc
(iii)
=⇒ aaabCbCbc
(v)
=⇒ aaabbCCbc
(v)
=⇒ aaabbCbCc
(v)
=⇒ aaabbbCCc
(vi)
=⇒ aaabbbCcc
(vi)
=⇒ aaabbbccc

Derivation (3)

We have examined several variants of the standard Turing machines that
do not alter the set of languages accepted by the machines. Restricting the
amount of available tape for computation decreases the capabilities of a Tur-
ing machine computation. A linear bounded automata is a restricted Turing
machine in which the amount of available tape is determined by the length
of the input string. The input alphabet contains two symbols “〈” and “〉”,
that designate the left and right boundaries of the tape.

Definition 5.11 A linear bounded automaton (LBA) is an algebraic struc-
ture

M = (Q, Σ, Γ, δ, q0, 〈, 〉, F), (5.15)

where Q, Σ, Γ, δ, q0, and F are the same as for a nondeterministic Turing
machine. The symbols 〈 and 〉 are distinguished elements of Γ.

Theorem 5.15 For every context-sensitive language L, denoted by LCS, not
including λ, there is some LBA, M, that accepts LCS. That is, LCS = L(M).

Theorem 5.16 If a language L is accepted by some LBA, M, then there
exists a context-sensitive grammar G that accepts L. That is L = L(G).

5.12 Hierarchy of Machines, Grammars and Languages 119

Theorem 5.17 Every context-sensitive language L is recursive. That is,
∀LCS ∈ LREC.

Theorem 5.18 There exists a recursive language that is not context-
sensitive. That is, LCS ⊂ LREC.

5.12 Hierarchy of Machines, Grammars and Languages

In this section, we shall study the Chomsky hierarchy of formal languages
and their generating grammars and their corresponding machines.

5.12.1 Hierarchy of Machines

All the classes (families) of machines we have studied so far are finite (state)
machines, but some of the machines have exactly the same power (here by
the same power, we mean they accept exactly the same language), whilst
some of the machines have more power than others. For example, deter-
ministic finite automata (DFA) have the same power as nondeterministic
finite automata (NFA); nondeterministic push-down automata (NPDA) have
more power than deterministic push-down automata (DPDA); push-down
automata (PDA) with two push-down stores have more power than the push-
down automata (PDA) with only one push-down store; but push-down au-
tomata (PDA) with more than two push-down stores have the same power as
push-down automata with two push-down stores. Interestingly enough, push-
down automata with two or more push-down stores have the same power as
Turing machines; All different types of Turing machines (such as determin-
istic, nondeterministic, probabilistic, multitape and multidimensional, etc.)
have the same power. However, restricting the amount of available tape for
computation decreases the capabilities of a Turing machine; linear bounded
automata is such a type of restricted Turing machines in which the amount
of available tape is determined by the length of the input string. The relation
between the various classes of finite machines over the same alphabet Σ can
be summarized as follows:

Deterministic Finite Automata (DFA)

�
Nondeterministic Finite Automata (NFA)⋂
Deterministic Push-Down Automata (DPDA)⋂

120 Chapter 5 Push-Down Automata and Context-Free Languages

Nondeterministic Push-Down Automata (NPDA)⋂
Linear-Bounded Automata (LBA)⋂
Deterministic Push-Down Automata (DPDA)

with two push-down stores

�
Nondeterministic Push-Down Automata (NPDA)

with two push-down stores

�
Deterministic Turing Machines (DTM)

�
Nondeterministic Turing Machines (NTM)

�
Probabilistic Turing Machines (PTM)

�
Multitape Turing Machines

�
Multidimensional Turing Machines

So, there are essentially four main classes of machines: finite automata (FA),
push-down automata (PDA), linear-bounded automata (LBA) and Turing
ma-chines (TM). The hierarchy of these classes of machines can be described
as follows:

Finite Automata (FA)⋂
Push-Down Automata (PDA)⋂
Linear-Bounded Automata (LBA)⋂
Turing Machines (TM)

5.12.2 Hierarchy of Grammars and Languages

Now we move on to the study of the Chomsky hierarchy of formal grammars
and their generating languages. First let us recall that two grammars are

5.13 Relations Among Machines, Languages and Grammars 121

called equivalent if they generate the same language.

Definition 5.12 A generative grammar G = (V, T, S, P) is said to be of
type i if it satisfies the corresponding restrictions in the following list:

Type 0: No restrictions. That is, every production in P is just in the
general form x→ y, where x ∈ (V∪T)+ and y ∈ (V∪T)∗. Type 0 grammars
are often called unrestricted grammars, or phrase-structure grammars, de-
noted by GPS. The languages generated by Type 0 grammars are called Type
0 languages, or recursively enumerable languages, denoted by LRE.

Type 1: Every production in P has the form x → y, where x, y ∈
(V ∪ T)+, and |x| � |y|. Type 1 grammars are also called context-sensitive
grammars, denoted by GCS. The languages generated by Type 1 grammars
are called Type 1 languages, or context-sensitive languages, denoted by LCS.

Type 2: Every production in P has the form A → x, where A ∈ V,
and x ∈ (V ∪ T)∗. Type 2 grammars are also called context-free grammars,
denoted by GCF. The languages generated by Type 2 grammars are called
Type 2 languages, or context-free languages, denoted by LCF.

Type 3: Every production in P has the form either A→ Bx and A→ x,
or A → xB and A → x, where A, B ∈ V, and x ∈ T∗. Type 3 grammars
are called regular grammars, denoted by GREG. The languages generated by
Type 3 grammars are called Type 3 languages, or regular languages, denoted
by LREG.

We have, in fact, already studied all the above listed grammars and their
generating languages in the previous sections of this chapter. What we are
interested in here is the hierarchy of the grammars and their corresponding
languages, which may be described as follows:

Type 0 Grammars (GPS) ⇔ Type 0 Languages (LRE)⋂ ⋂
Type 1 Grammars (GCS) ⇔ Type 1 Languages (LCS)⋂ ⋂
Type 2 Grammars (GCF) ⇔ Type 2 Languages (LCF)⋂ ⋂
Type 3 Grammars (GREG) ⇔ Type 3 Languages (LREG)

5.13 Relations Among Machines, Languages and
Grammars

We have already seen that languages and grammars are actually equivalent
concepts; on one hand, given a language, we can find the grammar which
generates the language; on the other hand, given a grammar, we can find the
set of languages generated by the given grammar. Remarkably enough, lan-

122 Chapter 5 Push-Down Automata and Context-Free Languages

guages also have a one-to-one correspondence with the various machines.
Fig. 5.6 shows the hierarchical relationships between various formal lan-
guages and their accepting machines. That is, regular languages (LREG)
generated by regular grammars (GREG) are acceptable by finite-state au-
tomata (FA), context-free languages (LCF) generated by context-free gram-
mars (GCF) are acceptable by push-down automata (PDA), context-sensitive
languages (LCS) generated by context-sensitive grammars (GCS) are accept-
able by linear bounded automata (LBA), and recursively enumerable lan-
guages (LRE) generated by phrase-structure grammars (GPS) are acceptable
by Turing machines. Thus, we finally arrive at the hierarchical relations be-
tween various languages, grammars and machines as follows:

Fig. 5.6 Hierarchical relations among various languages, grammars and their Ma-
chines.

Grammars GREG ⊂ GCF ⊂ GCS ⊂ GRE

� � � �
Languages LREG ⊂ LCF ⊂ LCS ⊂ LRE

� � � �
Machines FA ⊂ PDA ⊂ LBA ⊂ TM

5.13 Relations Among Machines, Languages and Grammars 123

Literally, the relationships between the various grammars, languages and
machines can also be summarized as follows:

Grammars Languages Accepting Machines

Type 0 grammars
(or phrase-structure grammars,
unrestricted grammars)

Recursively
enumerable
languages

Turing Machines

Type 1 grammars
(or context-sensitive grammars,
monotonic grammars)

Context-
sensitive
languages

Linear-bounded au-
tomata

Type 2 grammars
(or context-free grammars)

Context-free
languages

Push-down automata

Type 3 grammars
(or regular grammars,
linear grammars)

Regular
languages

Finite automata

If we wish to include some other (small) language families such as determin-
istic context-free languages and recursive languages, we will then arrive at
an extended hierarchy as shown in Fig. 5.7.

Fig. 5.7 Extended hierarchy of formal languages.

124 Chapter 5 Push-Down Automata and Context-Free Languages

Problems

Problem 5.1 Use the above pumping theorem to show that

L = {anbncn : n � 0}

is not a context-free language.
Problem 5.2 Show that the family of context-free languages is not closed

under the operation difference in general, but it is closed under regular
difference, that is,

L1 is regular are L2 is context-free =⇒ L1 − L2 is context-free.

Problem 5.3 Show that the Turing machine constructed in Example 5.5
cannot accept the language L = {anbm : m � 1, n > m}.

Problem 5.4 Construct Turing machines that accept the languages L1 =
{anb2n : n � 1} and L2 = {a2n

: n � 1} over Σ = {a, b}.
Problem 5.5 Construct a Turing machine that accepts the language

L = {akbmcn : k, m, n > 0, k = m or k = n or m = n}

over Σ = {a, b, c}.
Problem 5.6 Find a context-sensitive grammar for the languages L1 =
{anbna2n : n > 0} and L2 = {anbmcndm : n, m > 0}.

References

[1] Yan S Y (1988) Introduction to formal languages and machine computation,
World Scientific, New Jersey. (The materials in this chapter are mainly based
on this book of the second author.)

[2] Hopcraft J E, Motwani R, Ullman J D (2006) Introduction to automata the-
ory, languages and computation, 3rd end. Addison-Wesley, Reading, Mass.
(A general reference in push-down automata and context-free languages.)

Chapter 6 Context-Free Grammars

Language is a process of free creation, its law and prin-
ciples are fixed, but the manner in which the principles
of generation are used is free and infinitely varied. Even
the interpretation and use of words involves a process
of free creation.

Noam Chomsky

6.1 Motivation of the Chapter

In the compilation of source programs, the second phase of the process is the
syntactical analysis. Based on the lexical analysis, the syntactical analysis
checks the correctness of the source programs in terms of the grammar of
the language used. And it is well-known that most of the properties of the
programming languages are context-free. Therefore, naturally if we want to
check whether a program is correct or not in terms of syntax, we should check
if the syntax of the program is consistent with context-free, at least for most
of it. In order to do so, the basis is to know about the context-free grammars.
This chapter and Chapter 5 together form the preparation of the syntactical
analysis.

The context-free grammars generate the context-free languages, and the
context-free languages were initially introduced to provide a model of nat-
ural languages. Hence they are very important for understanding natural
language. Later the investigation of programming languages will show that
they are equally important in the area of programming language. We can
even say that the importance of programming languages is even more vital
than natural languages. Because in common conversation between people,
it is not so strictly obeying the rules of the context-free grammar so that
the counterpart of the conversation may still understand the meaning or in-
tention of the speaker. But for computer, it is not the case. Even a minor
mistake in program will affect the understanding of the compiler, so that it
will not be able to correctly compile the program and the program will not be
executable. After all, at the present time, the computer is not as intelligent
as human.

126 Chapter 6 Context-Free Grammars

Therefore, in one word, the motivation of the chapter is, together with the
last chapter, to provide sufficient knowledge for the next chapter— syntax
analysis. The three chapters provide the core knowledge for the whole course.

6.2 Context-Free Grammars

In Chapter 2, we have briefly introduced context-free grammar, i.e., Type-2
grammar. In this chapter, we will concentrate on the investigation of this
type of grammars, especially the aspects related to syntactical analysis. For
the sake of completeness, we will mention other types of grammars too in the
beginning of our discussion.

We refer to symbols VN and VT as nonterminal alphabet and terminal
alphabet respectively, we denote V = VN ∪VT, and they satisfies that VN ∩
VT = ∅. We refer to the symbols in VN and VT as nonterminal symbols (or
simply nonterminals) and terminal symbols (or simply terminals). Then we
have the following definition:

Definition 6.1 Let G = (VN, VT, S, P) where S is the distinguished or start
symbol of the grammar, and P is the set of productions. The production has
the form of α→ β, we denote π = α→ β ∈ P. We say that it is generative if
α (a string) contains at least one nonterminal symbol, and it is analytic if β
contains at least one such symbol. It is clear that π is a generative production
if and only if its reverse π−1, or β→ α is analytic.

Example 6.1 The productions in the following grammar

G = ({X, Y, Z}, {x, y}, X, {xxX→ xyXYx, XxY → ε, Z→ yyx})
are classified as follows:

π0: xxX→ xyXYx analytic and generayive

π1: XxY → ε generative

π2: Z→ yyx generative

Definition 6.2 A grammar G is generative if all its productions are gener-
ative. G is analytic if all its productions are analytic.

If G is a generative grammar, then the language generated by G relative
to its terminal alphabet

LG(G | VT) = {α ∈ V∗
T | S ∗=⇒

G
α} (6.1)

will be referred to the language generated by G. To simplify the notation, we
just denote L(G) = {α ∈ VT | S ∗=⇒

G
α}. If G is an analytic grammar, then

the language recognized by G relative to its terminal alphabet

LG(G | VT) = {α ∈ VT | α ∗=⇒
G

S} (6.2)

6.2 Context-Free Grammars 127

will be referred to the language recognized by G.
If there is no risk of confusion, we may denote both the language gener-

ated by a generative grammar G, or the language recognized by an analytic
grammar G, by L(G). From now on, we just focus predominantly on genera-
tive grammars. They are classified according to the form of their productions.
The term grammar will be used for generative grammar in order to simplify
the exposition.

Definition 6.3 A derivation α0
G=⇒α1

G=⇒ . . .
G=⇒αn in a generative gram-

mar G = (VN, VT, S, P) is complete if α ∈ V∗
T.

If S ∗=⇒
G
α, we refer to α as a sentential form of G.

Clearly, every word in L(G) is a sentential form of G that contains no
nonterminal symbols.

Definition 6.4 Let VN, VT be two disjoint alphabets. A production α→ β

is
1) a context-free production on VN, Vt if α consists of one nonterminal

symbol A and β ∈ (VN ∪VT)∗;
2) a context-sensitive production if α = α′Aα′′ and β = α′γα′′ where

A ∈ VT, α′,α′′, γ ∈ (VN ∪VT)∗ and γ �= ε.

Example 6.2 Let VN = {X, Y, Z} and VT = {x, y}. The following produc-
tions are of context-free over VN and VT:

π0 : X→ xyXYx,

π1 : Y → ε,

π2 : Z→ yyx

while the production π3: xYXy→xyXZXy is context-sensitive. Note that
π3 involves replacing y by yXZ when Y is surrounded by x at left and Xy
at the right, that is, Y occurs in the context of x and Xy. This is why it
is called context-sensitive. Context-free productions of the form X → ε are
called null productions or erasure productions. The effect of X→ ε is to erase
the symbol X.

A grammar without erasure production is said to be ε-free.
The classes of generative grammars that correspond to the restriction on

productions described in Definition 6.4 are introduced next. This classifica-
tion is due to Noam Chomsky and it is called Chomsky hierarchy.

Definition 6.5 [1] Let G = (VN, VT, S, P) be a grammar.
1) Every grammar is a grammar of Type 0. That means that Type 0

grammar is most common one. There is no any restriction over it.
2) G is Type 1 (or, context-sensitive) if its productions contain context-

sensitive one with the possible exception of a production S→ ε; If P contains
S→ ε, then S does not occur in the right part of any production of G.

3) G is Type 2 (or, context-free) if all its productions are context-free.

128 Chapter 6 Context-Free Grammars

4) G is Type 3 (or, regular) if every production has the form X→ uY or
X→ u, where X, Y ∈ VN and u ∈ V∗

T.

In addition, we shall say that G is a length-increasing grammar if all its
productions length-increasing (due to | α |�| β | in α→ β) with the possible
exception of a production S→ ε.

It is clear that every grammar of Type 3 is also of Type 2, every grammar
of Type 2 is also of Type 1, and every grammar of Type 1 is also of Type 0
and every context-sensitive grammar is also length-increasing.

For Type 3 grammars, productions may include those of the form X→ Y,
or X→ ε.

If G = (VN, VT, S, P) is a grammar, then we use upper case of letters with
or without subscripts, to denote single nonterminals, lower case of letters in
the alphabet (u, v, w, x, y, z) to denote words in V∗

T, and lower case of Greek
letters to denote words in (VN ∪ VT)∗. With this convention, the language
generated by G is given by

L(G) = (u ∈ V∗
T | S ∗=⇒

G
u). (6.3)

Definition 6.6 Let Γ be a class of grammars. A language L is a Γ-language
if there is a grammar G in Γ such that L(G) = L.

For example, L is a context-free language if there exists a context-free
grammar G such that L = L(G). Similarly, K is a length-increasing language
if there is a grammar G1 such as that K = L(G1), etc. We denote by Li the
class of languages generated by grammars of type i for 0 � i � 3. Clearly, we
have L3 ⊆ L2 ⊆ L1 and L1 ⊆ L0. Actually, they are

L3 ⊆ L2 ⊆ L1 ⊆ L0. (6.4)

As with the grammars, the corresponding classes of language Li are referred
to as the Chomsky hierarchy. All the inclusions can be shown to be strict.
Also, it is clear that every language in L1 is length-increasing. Actually, we
shall prove that L1 coincides with the class of length-increasing languages.

Example 6.3 The language generated by the context-free grammar

G = ({S}, {a, b}, S, {S→ ε, S→ aSb})
is {anbn | n ∈ N}.

We now prove it by induction on n � 0 that anbn ∈ L(G) for every n ∈ N.
The case n = 0 follows from the existence of the production π0: S → ε

in G. Suppose now that anbn ∈ L(G), so S ∗=⇒
G

anbn. Using the production
S→ aSb we obtain the derivation

S ∗=⇒
G

aSb ∗=⇒
G
· · · ∗=⇒

G
aanbnb = an=1bn+1

that shows that an+1bn+1 ∈ L(G).

6.2 Context-Free Grammars 129

Conversely, we prove by induction on the length m � 1 of the derivation
S ∗=⇒

G
u that u has the form u = anbn for some n ∈ N.

If m = 1, S ∗=⇒
G

u implies x = ε since S → ε is the single production that
erases S. Therefore, x = anbn for n = 0.

Suppose that the statement holds for derivation of length m and let S ∗=⇒
G

u
be a derivation of length m+1. If we write the step of this derivation explicitly
we have

S ∗=⇒
G

aSb ∗=⇒
G

u,

so u = avb where S ∗=⇒
G

v is a derivation of length m. By the induction

hypothesis, y = anbn for some n ∈ N, so u = an+1bn+1, that concludes our
argument.

Example 6.4 Consider the length-increasing grammar

G = ({S, X, Y}, {a, b.c}, s, P),

where P consists of the following productions:

π0 : S→ abc, π1 : S→ aXbc,

π2 : Xb→ bX, π3 : Xc→ Ybcc,

π4 : bY → Yb, π5 : aY → aaX,

π6 : aY → aa.

We claim that L(G) = {anbncn | n ∈ P}.
We have the induction basis abc ∈ L(G) that corresponds to n = 1. For

anbncn where n > 1, the symbol Y must be generated starting from S, and
the first production applied is S→ aXbc.

Note that for every i � 1 we have aiXbici ∗=⇒ ai+1Xbi+1ci+1. Actually, we
have

aiXbici 1=⇒
π2

aibiXci

1=⇒
π3

aibiYbci+1

1=⇒
π4

aiYbi+1ci+1

1=⇒
π5

ai+1Xbi+1ci+1. (6.5)

We claim that a word α contains the infix aY (which allows us to apply the
production π5) and S ∗=⇒α if and only if α has the form α = aiYbi=1ci+1

for some i � 1. An easy argument by induction on i � 1 shows that if
α = aiYbi+1ci+1, then S ∗=⇒α. We need to prove only the inverse implication.
This can be done by strong induction on the length n � 3 of the derivation
S ∗=⇒α.

130 Chapter 6 Context-Free Grammars

The shortest derivation that allows us to generate the word containing
the infix aY is

S =⇒ aXbc =⇒ abXc =⇒ abYbcc =⇒ aYb2c2, (6.6)

and this word has the prescribed form. Suppose now that for derivation
shorter than n the condition is satisfied, and let S ∗=⇒

G
α be a derivation

of length n such that α contains the infix aY. By the induction hypothe-
sis the previous word in this derivation that contains the infix aY has the
form α′ = ajYbj+1cj+1. To proceed from α′ we must apply the production π5

and replace y by X. Thus we have

S ∗=⇒
G

ajYbj+1cj+1 =⇒
G

aj+1Xbj+1cj+1. (6.7)

Next, the symbol x must be shifted to the right using the production π2,
transform itself into an Y (when in touch with the cs̄) and Y must be shifted
to the left to create the infix aY. This can happen only through the applica-
tion of the productions π3 and π4 as follows:

Aj+1Xbj+1cj+1 j+1=⇒
π2

aj+1bj+1Xcj+1

1=⇒
π3

aj+1bj+1Ybcj+2

1=⇒
π4

aj+1Ybj+2cj+2. (6.8)

That proves that α has the desired form. Therefore, all the words in the
language L(G) has the form anbncn.

Although this grammar is not context-sensitive (only productions π0, π1,
π5, and π6 are context-sensitive), we will exhibit a context-sensitive grammar
for this language. Moreover, we will show that this language is not context-
free. So it will serve to show that L2 ⊆ L1.

Now we turn our attention to real programming language.

Example 6.5 Suppose that E stands for expression, T stands for term, F
stands for factor, then the following productions will generate the arithmetic
expressions that consist of +, −, ×, /.

E→ E + T,

E→ E− T,

E→ T,

T→ T× F,

T→ T/F,

T→ F,

F→ (E),
F→ a | b | c.

6.2 Context-Free Grammars 131

The language which the grammar recognizes is all the arithmetic expressions
that consist of operators +, −, × and / and three variables a, b, and c.
That means that all the arithmetic expressions can be derived from these
productions step by step. For example, the arithmetic expression

(a× b + b× c + c× a)/(a + b + c)

may be derived from the productions above step by step

E→ T
→ T/F
→ F/F
→ (E)/F
→ (E + T)/F
→ (E + T + T)/F
→ (T + T + T)/F
→ (T× F + T + T)/F
→ (F× F + T + T)/F
→ (a× F + T + T)/F
→ (a× b + T× F + T)/F
→ (a× b + F× F + T)/F
→ (a× b + b× F + T)/F
→ (a× b + b× c + T)/F
→ (a× b + b× c + F)/F
→ (a× b + b× c + c× a)/F
→ (a× b + b× c + c× a)/(E)
→ (a× b + b× c + c× a)/(E + T)
→ (a× b + b× c + c× a)/(E + T + T)
→ (a× b + b× c + c× a)/(T + T + T)
→ (a× b + b× c + c× a)/(F + T + T)
→ (a× b + b× c + c× a)/(a + T + T)
→ (a× b + b× c + c× a)/(a + F + T)
→ (a× b + b× c + c× a)/(a + b + T)
→ (a× b + b× c + c× a)/(a + b + F)
→ (a× b + b× c + c× a)/(a + b + c).

Therefore, we may claim that (a× b + b× c + c× a)/(a +b +c) is a sentence
which the grammar aforementioned recognizes.

In the derivation above, the reader may find out that in each step or
each derivation, only one nonterminal was replaced or only one action was

132 Chapter 6 Context-Free Grammars

done. And the step always changes the leftmost nonterminal either by a new
nonterminal or by a terminal. The derivation done in this manner is called
leftmost derivation. On the other hand, if the derivation always changes the
rightmost nonterminal, then the derivation is called rightmost derivation.
The so-called change nonterminal, actually it replaces the nonterminal with
the right part of the production of which the left part is the nonterminal.

Using derivation tree may make the derivation more directly perceived
through the sense. Corresponding to the derivation given above, we draw the
derivation tree as shown in Fig. 6.1.

Fig. 6.1 Derivation Tree.

The derivation tree may be formally described as follows:
Let G = (VN, VT, S, P) be a context-free grammar. The derivation tree of

a sentence of G is as follows:
1) Every vertex has a label that is a symbol in VN ∪VT ∪ ε.
2) The label of the root is S.
3) If a vertex is an inner vertex and its label is A, then A ∈ VN. In other

words, All the inner vertices of the tree are of nonterminals.
4) If a vertex n has label A and vertices n1, n2, . . . , nk are the subnodes

of n from left to right, and their labels are X1, X2, . . . , Xk respectively. Then

A→ X1X2. . .Xk (6.9)

must be a production of P.
5) If a vertex n has the label ε, then n must be a leaf, and it is the only

child of its parent node.
6) All the leaf nodes of the tree from left to right form the sentence.

6.2 Context-Free Grammars 133

In the formal description of the derivation tree, we did not involve leftmost
derivation. Actually, the derivation tree may also be constructed through the
rightmost derivation. The key is whether the leftmost derivation tree is the
same as the rightmost derivation tree? It may also be asked whether the
leftmost derivation and rightmost derivation of a sentence are the same? as
derivation completely corresponds to derivation tree.

Definition 6.7 [2] Grammar G = (VN, VT, S, P) is called non-ambiguous if
for all the sentences which it recognizes each only has one derivation tree.

There exists ambiguous grammar. The following is an example of ambigu-
ous grammar.

Example 6.6 The production set P of grammar G = (VN, VT, S, P) con-
sists of the following productions:

E→ E + T,

E→ T,

T→ T× F,

T→ F,

F→ (E),
F→ a | b | c.

For example, sentence (expression) a × b + b × c + c × a has two different
derivation trees as shown in Fig. 6.2.

Fig. 6.2 The two derivation trees of a× b + b× c + c× a.

For two derivation trees, it looks like that their derivations are the same.

E→ E + E
→ E + E + E
→ T + E + E

134 Chapter 6 Context-Free Grammars

→ T× F + E + E
→ F× F + E + E
→ a× F + E + E
→ a× b + E + E
→ a× b + T + E
→ a× b + T× F + E
→ a× b + F× F + E
→ a× b + b× F + E
→ a× b + b× c + E
→ a× b + b× c + T
→ a× b + b× c + T× F
→ a× b + b× c + F× F
→ a× b + b× c + c× F
→ a× b + b× c + c× a.

Actually, the two derivations are different in that in the right side E + E
one is to replace the first E to get E + E + E while the another is to replace
the second E to get E + E + E. Strictly speaking, they are (E + E) + E and
E + (E + E). Since with an expression a × b + b × c + c × a, there are two
derivation trees, i.e., the leftmost derivation tree and the rightmost derivation
tree. They are different. So this is an ambiguous grammar.

Given a grammar, how to decide whether it is ambiguous or not. We now
present a sufficient condition for it.

Theorem 6.1 In a grammar, if in its productions, there is one that there
are more than two occurrences of a nonterminal that consecutively appear
while on the left of the production, it is the nonterminal too. Then the gram-
mar must be ambiguous.

Proof Without losing generality, suppose that the production is as follows:

A→ AA. . ..

It is easy to imagine that using the leftmost and rightmost derivation to the
same production, we must get different derivation trees. Therefore, that this
is an ambiguous grammar is proved.

Directly perceiving through the sense, the derivation tree of an ambiguous
must have the following form: its two same subtrees may either appear on
the left subtree or appear on the right subtree of the whole tree. And these
two positions are adjacent.

6.3 Characteristics of Context-Free Grammars 135

6.3 Characteristics of Context-Free Grammars

In this section we discuss several elementary characteristics of context-free
grammars. We first introduce two normal forms for context-free grammars,
then we discuss other characteristics that are useful for syntactic analysis.

Definition 6.8 The normal form for a kind of grammars means that for this
kind of grammars, all the productions of them may have the same expression
form. For example, for regular grammars, left linear expression, or right linear
expression is the normal form of these grammars.

Definition 6.9 A context-free grammar G = (VN, VT, S, P) is in the Chom-
sky normal form (CNF), if all the productions of it are either of the form
X→ YZ or of the form X→ a, where X, Y, Z ∈ VN, and a ∈ VT.

If G is in Chomsky normal form, then G is ε-free, so ε /∈ L(G).

Theorem 6.2 Given any context-free grammar G = (VN, VT, S, P) such
that ε /∈ L(G), then there is an equivalent grammar in the Chomsky normal
form.

Proof As we mentioned above, we can assume that G is ε-free grammar.
We can also assume that there is no production X→ Y. And every production
that contains a terminal symbol is of the form X→ a. The productions of G
have either the form X→ a or the form X→ X11X12. . .X1k with k � 2.

Productions of the form X→ a or X→ Xi1Xi2 already conform to Chom-
sky normal form, if π: X → Xi1Xi2 . . .Xik is a production of P with k � 3,
then we can introduce k− 2 new nonterminals Z1, Z2, . . ., Zk−2 and the pro-
ductions

X→ Xi1Z1, Z1 → Xi2Z2, . . ., Zk−2 → Xi(k−1)X1k. (6.10)

Now we define grammar G′ = (VN ∪V′
N, VT, S, P′′) where V′

N consists of all
symbols Zj(j = 1, . . ., k − 2) and P′ consists of all the original productions
with the forms X → a or X → Xi1Xi2, and of productions obtained from
productions of P having the form X → Xi1. . .Xik with k � 3. By applying
the method we used above, it is easy to see that G′ is equivalent to G and
G′ is in the Chomsky normal form.

Example 6.7 Let G = ({S1, S2, S3}, {a, b}, S1, P) be the context-free gram-
mar with P consisting of the following productions:

S1 → aS3, S1 → bS2, S2 → a,

S2 → aS1, S2 → bS1S1, S3 → b,

S3 → bS1, S3 → aS3S3.

By introducing the new nonterminal symbols Xa, Xb, Z1, Z2 and transforming
the original productions to the following productions, we obtain a grammar

136 Chapter 6 Context-Free Grammars

in the Chomsky normal form:

S1 → XaS3, S1 → XbS2, S2 → a,

S2 → XaS1, S2 → XbZ1, Z1 → S1S1,

S3 → b, S3 → XbS1, S3 → XaZ2,

Z2 → S2S2, Xa → a, Xb → b

Obviously the grammar that has nonterminal symbols S1, S2, S3, Z1, Z2, ter-
minal symbols a and b, and the productions above is a context-free grammar
and is in the Chomsky normal form. It is also equivalent to grammar G given.

Using the Chomsky normal form we can prove an important decidability
result for the class of Type 2. The result relates the length of a word to the
length of derivation.

Lemma 6.1 [3] Let G = (VN, VT, S, P) be a context-free grammar in the
Chomsky normal form. Then if S ∗=⇒

α

x we have | α |� 2 | x | −1.

Proof The proof is slightly stronger than the statement stated in the
lemma, namely, if X ∗=⇒

α

x for some X ∈ VN, then | α |� 2 | x | −1.

We prove the lemma by induction on n =| x |� 1. If n = 1, we have
x = a for a ∈ VT and the derivation X ∗=⇒

α

x consists in the application of

production π: X→ a. Therefore, for | α |= 1, the inequality holds.
Suppose that the statement holds for words of length less than n, and let

x ∈ L(G) be a word such that | x |= n, where n > 1. Let the first production
applied be X → YZ. Then we can write x = uv, there Y ∗=⇒

β

u, and Z ∗=⇒
γ

v,

and we have | α |=| β | + | γ | +1, because the productions used in the last
two derivations are exactly the ones used in X ∗=⇒

α

x. Applying the inductive
hypothesis we obtain

| α | = | β | + | γ | +1 � 2 | u | −1 + 2 | v | −1 + 1 = 2(| u | + | v |)− 1
= 2 | x | −1. (6.11)

Theorem 6.3 There is an algorithm to determine for a context-free gram-
mar G = (VN, VT, S, P) and a word x ∈ V∗

T whether or not x ∈ L(G).

Proof Before we start our proof, we have to mention the following facts:
At first, for every context-free grammar G, there is a context-free, ε-free
grammar G′ such that L(G′) = L(G) − {ε}. Furthermore, if G is a context-
free grammar, then there is an equivalent context-free grammar G′ such that
one of the following cases occurs:

1) if ε /∈ L(G), then G is ε-free.
2) if ε ∈ L(G), then G′ contains a unique erasure production S′ → ε

where S′ is the start symbol of G′, and S′ does not occur in any right part of
any production of G′.

Having these facts, we may construct a grammar G′ equivalent to G
such that one of the following two cases occurs:

6.3 Characteristics of Context-Free Grammars 137

1) If ε /∈ L(G), G′ is ε-free.
2) If ε ∈ L(G), G′ contains a unique erasure production S′ → ε, where

S′ is the start symbol of G′, and S′ does not occur in any right part of any
production of G′.

If x = ε, then x ∈ L(G) if and only if S → ε is a production in G′.
Suppose that x �= ε. Let G1 be a context-free grammar in the Chomsky
normal form such that L(G1) = L(G′)− {ε}. We have x ∈ L(G1) if and only
if x ∈ L(G). By Lemma 6.1, if S ∗=⇒

α

x, then | α |� 2 | x | −1, so by listing all

derivations of length at most 2 | x | −1 we can decide if x ∈ L(G).

Definition 6.10 A context-free grammar G = (VN, VT, S, P) is in the
Greibach normal form if all its productions are of the form X → aα, where
X ∈ VN, a ∈ VT, and α ∈ V∗

N.

If G is in the Greibach normal form, then G is ε-free, so ε /∈ L(G).
Every ε-free context-free grammar has an equivalent grammar in the

Greibach normal form. In the following discussion we will prove the fact. But
in order to do so we have to introduce some more preliminary knowledge.

Definition 6.11 Left-recursive symbol. Let G = (VN, VT, S, P) be a context-
free grammar. A nonterminal symbol X is left-recursive (right-recursive) if
there exists a derivation X +=⇒

G
Xα(X +=⇒

G
αX) for some α ∈ (VN ∪VT)∗.

The concept of the left-recursive symbol is important in compiler design.
A context-free grammar G is immediately left-recursive (or immediately

right-recursive) if it contains a production X→ Xα(X→ αX).
G is left-recursive (right-recursive) if it contains a left-recursive nonter-

minal (right-recursive nonterminal) [4].

Lemma 6.2 Let G = (VN, VT, S, P) be a context-free grammar, and let
X,Y be two nonterminal symbols. Suppose that X→ αYβ ∈ P and let

Y → γ1, . . ., Y → γn

be the list of all productions in P whose left part is Y. Then G is equivalent
to the grammar G′′ = (VN, VT, S, P′), where

P′ = (P− {X→ αYβ} ∪ {X→ αγiβ | 1 � i � n}.
Proof Obviously we have L(G′) ⊆ L(G). Indeed if a production X→ αγiβ
(1 � i � n) is used in a derivation step

γ′Xγ′′ =⇒
G
γ′αγiγ′′,

then we can write in G:

γ′Xγ′′ =⇒
G
γ′αYβγ′′ =⇒ γ′αγiβγ′′. (6.12)

To prove the converse inclusion, L(G) ⊆ L(G′), we prove by induction on n,
the length of a derivation u ∗=⇒

G
ω, that we have u ∗=⇒

G
ω where u ∈ (VN∪VT)∗

138 Chapter 6 Context-Free Grammars

and ω ∈ V∗
T. For n = 1, the statement of the lemma is immediate. Suppose

that this statement holds for derivation of length less than n and let u n=⇒
G
ω.

If the production X→ αYβ is not used in this derivation, then we obviously
have u ∗=⇒

G
ω. Otherwise this derivation can be written as

u ∗=⇒
G
ω′Xω′′ =⇒ω′αYβω′′ ∗=⇒

G
ω. (6.13)

Thus, ω can be written as a product, ω=u′uαuYuβu′′, where ω′ ∗=⇒
G

u′,α ∗=⇒
G

uα,

Y ∗=⇒
G

uY, β
∗=⇒
G

uβ,ω
′′ ∗=⇒

G
u′′ are derivations that are shorter than n. By the

inductive hypothesis, we have the derivations

ω′ ∗=⇒
G

u′, α
∗=⇒
G

uα,

β
∗=⇒
G

u′, ω′′ ∗=⇒
G

u′′.

Also, the existence of the derivation Y ∗=⇒
G

uY entails the existence of a

derivation γi
∗=⇒
g

uY. By the inductive hypothesis, we obtain the derivation

γi
∗=⇒
G

uY. Thus we obtain the derivation u = ω′αXβω′′ ∗=⇒
G
ω′αγiβω′′ = ω.

By taking u=S, we obtain the desired conclusion.
The following theorem indicates that it is possible to eliminate immediate

left-recursiveness in context-free grammars.

Theorem 6.4 Let G = (VN, VT, S, P) be a context-free grammar that con-
tains no erasure productions. Denote by PX the set of productions in P having
X as their left part. If X ∈ VN is a left-recursive symbol, the set PX consists
of two classes of productions.

1) the productions of PX whose right parts begin with X:

X→ Xα1, . . ., X→ Xαk,

where αi �= ε for 1 � i � k.
2) The remaining productions in PX:

X→ β1, . . ., X→ β1,

where no βj begins with X, 1 � j � l.
Let Y be a new nonterminal symbol, and let G′′ = (VN ∪ {Y}, VT, S, P′)

be the context-free grammar whose set of productions is given by

P′ = (P− PX) ∪ {X→ βjY, X→ βj | 1 � j � l} ∪
{Y → αiY, Y → αi | 1 � i � k}. (6.14)

The grammar G′ and G are equivalent.

6.3 Characteristics of Context-Free Grammars 139

Proof Note that we replace the productions that make X a left-recursive
symbol by productions that make the new symbol Y a right recursive symbol.
Also, since αj �= ε for 1 � j � k, Y is not left-recursive.

Let u ∈ L(G) and let

S =⇒
G,left

γ1 =⇒
G,left

. . . =⇒
G,left

γn = u (6.15)

be a leftmost derivation of u. If X does not occur in the derivation, then the
same derivation can occur in G′, and we have x ∈ L(G′). Otherwise, suppose
that X ∗=⇒

G,left
ω is a derivation that allows us to generate an infix ω of x from

X and is part of previous derivation. The last derivation necessarily has the
form

X =⇒
G,left

Xαi1 =⇒
G,left

Xαi2αi1=⇒. . .

=⇒
G,left

Xαil. . .αi2αi1 =⇒
G,left

βjαil...αi2αi1. (6.16)

The word βjαil. . .αi2αi1 can also be derived in G′ from X using the derivation

X =⇒
G,right

βjY =⇒
G,right

βjαilY =⇒
G,right

. . .

=⇒
G,right

βjαil. . .αi2Y =⇒
G,right

βjαil. . .αi2αi1. (6.17)

Thus, every leftmost derivation S ∗=⇒
G,left

x corresponds to a rightmost derivation

S ∗=⇒
G,right

x, so L(G) ⊆ L(G′). (6.18)

The reverse implication can be argued in a completely similar manner,
so we have L(G) = L(G′).

For an ε-free context-free grammar, it can have two normal forms—
Chomsky normal form and Greibach normal form. We may ask how are the
two normal forms related? The following lemma answers the question.

Lemma 6.3 Let G = ({X1, . . ., Xn}, VT, X1, P) be a context-free grammar
in the Chomsky normal form. There exists an equivalent grammar G′ =
(VN, VT, X1, P′) that satisfies the following conditions:

1) {X1, . . ., Xn} ⊆ VN.
2) The productions that have Xi as their left parts have the form Xi → aα

or Xi → Xjα ∈ P′, where a ∈ VT, α ∈ (VN)∗ and i < j.
3) If Y ∈ VN − {X1, . . ., Xn}, then for every production Y → γ ∈ P′,

γ �= ε, all symbols in γ except the first symbol are nonterminals, and the first
symbol of γ belongs to {X1, . . ., Xn} ∪VT.

With a constructive proof, we will start with the productions in the form
Xi → XjXl and Xi → a, then we gradually transform them into the form
X→ aα where a ∈ VT and α ∈ (VN)∗.

In the Chomsky normal form the productions of the context-free grammar
are of the form Xi → XjXk and Xi → a, where a ∈ VT.

140 Chapter 6 Context-Free Grammars

Proof At first we sort the productions Xi → XjXk so that they occur
in such order that the nonterminal in left parts with smaller index comes
first. Meanwhile, the index of the nonterminal in left part should be less
than that of the first nontermianl in right part. Those productions satisfying
the requirement is said having increasing order. Those productions that do
not satisfy the requirement must have the form Xl → XmXn where l > m.
If l = m, it must be left-recursive. For the first step, we transform the later
productions into the increasing order. This is not difficult to do. For example,
if we have X3 → X1X4, but previously we must have productions with left
part being X1 and are in increasing order. Let say that X1 → X2Xi, X2 →
X3Xl, then by replacing the nonterminal X1 in right part, we may get X3 →
X1X4 → X2XiX4 → X3XlXiX4. This is a left recursive production. Using
the method of eliminating left recursive symbol we may get the production
without left recursive symbol.

Suppose that k is a number such that 0 � k � n. Starting with k = 0,
we consider an inductive process such that modifies the productions of the
form Xi → Xjα, where 0 � i < k to produce an equivalent grammar Gk with
the property that for any productions in Gk of the form Xi → Xjα, where
0 � i < k, we have i < j.

For k = 0, we have nothing to do, since there are no productions Xi →
Xjα with i < 0. Suppose that we have built the grammar Gk, that is, for
every production Xi → Xjα (with 0 � i < k we have i < j). Let Xk → Xjα
be a production such that j � k. As we mentioned above that there must be
the productions with Xj being left part and being in increasing order, then
we may replace Xj by the right part of the production and by this way the
indices of the nonterminals in right parts will be increased until the indices
of nonterminals at both parts are the same, that is, Xk becomes left recursive
symbol. We will be able to eliminate the left recursion. On the other hand, if
Xj → γ1, . . ., Xj → γm are the productions that have Xj in their left part, we
can replace Xk → Xjα by Xk → γ1α, . . ., Xk → γmα. In this case, it is only
one step to Greibach normal form.

By the inductive hypothesis, if Xk → Xlβ is one of these new productions
with k > l. By repeating the operation that replacing Xl with the nonterminal
occurring at the first position of right part of production that has Xl as left
part at most k− 1 times, we obtain productions of the form Xk → Xp with
k � p. Once again, if we have k = p, left recursion happens and we will
eliminate it by the method mentioned above. Otherwise, the productions
that have Xk in their left parts are of the form Xk → β such that β does
not begin with Xk. By introducing a new symbol Yk and replacing these
productions by productions of the form Xk → βYk, Xk → β, Yk → αYk, and
Yk → α with α, β �= ε, it is clear that these productions obtained satisfy the
requirements of the lemma.

Theorem 6.5 For every ε-free context-free grammar G, there is an equiv-
alent grammar in the Greibach normal form.

Proof Without losing generality, we can assume that G is in the Chomsky
normal form and has the form G = ({X1, . . ., Xn}, VT, X1, P). By applying
Lemma 6.3 we obtain a context free grammar G′ = (VN, VT, X1, P′) that is
equivalent to G such that

6.3 Characteristics of Context-Free Grammars 141

1) {X1, . . ., Xn} ⊆ VN;
2) the productions that have Xi as their left parts have the form Xi → aα

or Xi → Xjα ∈ P, where a ∈ VT, α ∈ (VN)∗ and i < j;
3) if Y ∈ VN−{X1, . . ., Xn}, then for every production X→ γ ∈ P′, γ �=

ε, all symbols in γ except the first symbol are nonterminals, and the first
symbol of γ belongs to {X1, . . ., Xn} ∪VT.

Note that the productions that rewrite the symbol Xn are necessarily
of the form Xn → aα, where a is a terminal symbol and α contains only
nonterminal symbols. The right part of a production of the form Xn → . . .
begins with a terminal symbol or with Xn.

Then the Xn in all productions Xn−1 → Xn will be replaced by the right
part of the productions Xn →

Thus, all productions Xn−1 → . . . have the form Xn−1 → aγ, where
γ ∈ (VN)∗. This process is repeated for Xn−2, . . ., X1.

Finally, since the first symbol of γ in Y → γ is a terminal or a symbol
Xi, an application of Lemma 6.2 allows us to replace the productions Y →
Xi. . . with the productions whose right part begins with a terminal, thereby
obtaining a grammar in the Greibach normal form equivalent to the initial
grammar.

Based on the theorem we may design an algorithm that transforms a
context-free grammar in the Chomsky normal form into equivalent grammar
in the Greibach normal form.

Algorithm T (transformation of a context-free grammar in Chomsky
normal form into an equivalent grammar in the Greibach normal form)

Input: A context-free grammar in the Chomsky normal form with the
production set P that consists of the productions in the form Xi → XkXl and
Xi → a.

Output: All the productions wil have the form Xi → aα, where a ∈ VT

and α ∈ (Vn)∗, Vn consists of the original {X1, . . ., Xn} plus the additional
norterminals used in the transformation.

T1 (sorting the productions) For all the productions in form of Xi →
XkXl, they will occur in increasing order. On one hand the indices of the
nonterminals in left parts of the productions occur in increasing order; on the
other hand, for each production, we have k > i. If a production Xj → XuXv

has j > u, then by using the productins with Xu, Xu+1, . . . as left parts, we
may transform the production given into the form Xj → Xj. . .. then left
recursion happens with the production.

Meanwhile, starting from X1, if we have X1 → X2 . . . and X2 → a, by
replacing X2 in the right part of the first production, we obtain X1 → aα,
where α is a string of nonterminals. Then the production obtained and X2 → a
are in the Greibach normal form.

T2 (eliminating left recursion) In the step T1, we get the production
of the form Xj → Xjγ where γ ∈ (Vn)∗. Since we have two forms of the
productions Xj → Xjγ and Xj → a, by replacing the Xj at the right part
of the first production with a of the right part of the second production, we
obtain Xj → aγ and this is a production in the Greibach normal form. In

142 Chapter 6 Context-Free Grammars

general, when we encounter a production with left recursive symbol

X→ Xγ,
X→ a. (6.19)

We may transform the first production into

X→ aY,

Y → γY | ε. (6.20)

Then the left recursion of the production is eliminated.
T3 (Transforming the productions into Greibach normal form) For all

the productions with the index of nonterminal at left part being less than
that of the first nonterminal at right part of production, we replace the
nonterminal with the terminal that occurs in the productions with the specific
nonterminal as the left part, and we do this from higher indecies to lower
indices, then we get the productions in the following form

Xi → aγ(a ∈ VT, γ ∈ ({X1, X2, . . ., Xn} ∪ {Y1, Y2, . . ., Ym})∗ (6.21)

and now VN = {X1, X2, . . ., Xn, Y1,. . ., Ym} where Bj(1 � j � m) are newly
introduced nonterminals that occur in the following productions:

Yj → bl(bl ∈ VT),
Yj → blα(α ∈ V∗

N). (6.22)

Now no matter whether the productions with Xi as left parts or with Yj as
left parts, they all are in Greibach normal form.

Example 6.8 Let G = ({X1, X2, X3}, {a, b}, X1, P) be a context-free gram-
mar whose set of productions is

P = {X1 → X2X3, X2 → X1X2, X2 → a, X3 → X1X3, X3 → b}. (6.23)

By inspection we may see that G is in Chomsky normal form. Note that X1

is a left recursive symbol as we have

X1 =⇒
G

X2X3 =⇒
G

X1X2X3. (6.24)

Also, X2 is left-recursive due to

X2 =⇒
G

X1X2 =⇒
G

X2X3X2. (6.25)

We replace the production X2 → X1X2 with X2 → X2X3X2. At this point,
the set of productions that have X2 as their left part is

X2 → X2X3X2, X2 → a. (6.26)

6.3 Characteristics of Context-Free Grammars 143

Then to eliminate the left-recursiveness of X2 we introduce a new nonterminal
symbol Y1 and replace the productions X2 → X2X3X2 and X2 → a with

X2 → aY1, X2 → a, Y1 → X3X2Y1, Y1 → X3X2.

The current set of productions is

X1 → X2X3, X2 → aY1, X2 → a, Y1 → X3X2Y1,

Y1 → X3X2, X3 → X1X3, X3 → b.

Now we use X3 → aY1X3X3 and X3 → aX3X3 to replace the X3 occurring
as the first symbol at the right parts of productions above, as well as using
X2 → aY1 and X2 → a to replace X2 occurring as the first symbol at the
right part of productions above. Finally we obtain the set of productuins

X1 → aY1X3, X1 → aX3, X2 → aY1,

X2 → a, X3 → aY1X3X3, X3 → aX3X3,

X3 → b, Y1 → aY1X3X3X2Y1, Y1 → aX3X3X2Y1,

Y1 → bX2Y1, Y1 → aY1X3X3X2, Y1 → aX3X3X2,

Y1 → bX2

of the grammar G′ = ({X1, X2, X3, Y1}, {a, b}, X1, P′) and P′ consists of the
set we finally got above.

Example 6.9 Let G = ({A, B, C}, {a, b}, A, P) is a context-free grammar
with the following set of productions:

A→ BC, B→ CA | b, C→ AB | a.

Transform the productions into the Greibach normal form.
According to the algorithm given above, we sort the productions according

to the indices of nonterminals. We assign A as X1, B as X2 and C as X3, then
the productions become

X1 → X2X3, X2 → X3X1 | b, X3 → X1X2 | a.

Now the third production is not in increasing order in terms of the indices
of the nonterminals at left part and right part. We need to change it. By
substituting X1 with X1 → X2X3 and X2 with X2 → X3X1, we have

X3 → X1X2 → X2X3X2 → X3X1X3X2.

Obviously it is a left-recursive production. Apart from this one, we also have
two other productions with respect to X3, they are

X3 → bX3X2, X3 → a.

144 Chapter 6 Context-Free Grammars

They are in the Greibach normal form already.
Now the problem is to eliminate the left-recursion. Using the two later

productions and introducing a new nonterminal symbol Y, we obtain

X3 → bX3X2Y, X3 → aY, X3 → bX3X2, X3 → a;

Y → X1X3X2, Y → X1X3X2Y.

The productions with respect to Y are not in the Greibach normal form yet.
But at first we handle X2, we have

X2 → bX3X2YX1, X2 → bX3X2X1, X2 → aYX1,

X2 → aX1, X2 → b.

Using these productions, we may transform the production with respect to
X1 into the Greibach form as follows:

X1 → bX3X2YX1X3, X1 → bX3X2X1X3, X1 → aYX1X3,

X1 → aX1X3, X1 → bX3.

Now we may transform productions with respect to Y, and we obtain

Y → bX3X2YX1X3X3X2, Y → bX3X2X1X3X3X2,

Y → aYX1X3X3X2, Y → aX1X3X3X2,

Y → bX3X3X2, Y → bX3X2YX1X3X3X2Y,

Y → bX3X2X1X3X3X2Y, Y → aYX1X3X3X2Y,

Y → aX1X3X3X2Y, Y → bX3X3X2Y.

Up to now, we have obtained a context-free grammar that is equivalent to
grammar G and its productions are in the Greibach normal form. We de-
note it as G′ = ({A, B, C, D}, {a, b}, A, P′) where P′ is the following set of
productions:

A→ bCBDAC, A→ bCBAC, A→ aDAC, A→ aAC, A→ bC;
B→ bCBDA, B→ bCBA, B→ aDA, B→ aA, B→ b;
C→ bCBD, C→ bCB, C→ aD, C→ a;
D→ bCBDACCBD, D→ bCBACCBD, D→ bCCBD;
D→ aDACCBD, D→ aACCBD, D→ bCBDACCB;
D→ bCBACCB, D→ bCCB, D→ aDACCB, D→ aACCB.

After the discussion of the two normal forms of context-free grammars, we
will discuss several related results whose main applications is to show certain
languages do not belong to context-free languages. This is very important to
syntactical analysis. If we get the conclusion it means that the language is

6.3 Characteristics of Context-Free Grammars 145

not programming language. Our discussion is almost parallel to the discussion
of regular languages. As in the case of regular languages, these results are
traditionally named pumping lemmas. But in the last chapters we have used
theorems to refer them. We feel that it is indeed more suitable to refer them
as theorems. For our discussion, we need to identify subsequence of symbols of
words that occur in certain positions. We identify a subset M of N (integers)
as a marking set. As no further assumptions are made about this set below,
the results hold for all marking sets.

Definition 6.12 [5] Let A be an alphabet, and let ω = ai0, . . ., ai|ω|−1 be a
word in A∗. The set of marked occurrences in ω is the set {0, . . ., | ω | −1}∩M,
and the M-weight of ω is the number | ω |M=| {0, . . ., | ω | −1} ∩M |.

If the marking set is clear from the context, we may denote ‖ω‖M simply
by ‖ω‖.
Theorem 6.6 (Pumping lemma of Ogden) Let G be a context-free
grammar, and let M be a marking set. There exists a number nG ∈ N such
that if ω ∈ L(G) and ‖ω‖M � nG, then we can write ω = xyzut such that
‖y‖M � 1 or ‖u‖N � 1, ‖yzu‖M � nG and xynzunt ∈ L(G) for all n.

Proof Let G = (VN, VT, S, P), and let L(G) = max { | α || S → α ∈ P}.
We can assume that L(G) � 2, since otherwise L(G) ∈ V∗

T∪{ε}. We define the
number nG = L(G)|M|+1, and suppose that ω ∈ L(G) such that ‖ω‖M � nG.

Let T be a derivation tree of a derivation S ∗=⇒
G
ω. Suppose that an

internal node v of T is labeled by the nonterminal symbol X and that word
(T[v]) = s. Then the weight of v is defined as weight(v) = ‖s‖M. Clearly, we
have weight(v) = Σ{weight(v′) | v′ ∈ CHILDREN(v)}.

Let V be the set of vertices of T. Define the function h: V→ N by 0
if v ∈ LEAVES(T)

h(v) = {1 + max{h(v′) | v′ ∈ CHILDREN(v)}
if | {v′ | v′ ∈ CHILDREN(v), weight(v′) > 0} |> 1

max{h(v′) | v′ ∈ CHILDREN(v)}, otherwise for every v ∈ V.
Let v be an internal node of T. If h(v) == h(v1), where v1 ∈

CHILDREN(v), then the third case of above definition applies. In this case,
there is almost one child of v that has positive weight (namely, the node v1),
hence weight(v) = weight(v1).

Conversely, suppose that v has a child v1 such that weight(v) = weight(v1).
Since we have weight(v) = Σ{weight(v′) | v′ ∈ CHILDREN(v)}, it fol-
lows that every other child of v has a zero weight. Therefore, weight(v) =
weight(v′), by the definition of h. This allows us to conclude that, for an
internal node v, there exists a child v′ of v such that h(v) = h(v′) if and only
if a child v′ exists such that weight(v) = weight(v′).

Now we want to prove that for each node v of T we have weight(v) �
L(G)h(v). The proof is carried out by induction on height(v).

If height(v) = 0, v is a leaf, h(v) = 0 and weight(v) � 1, so weight(v) �
L(G)h(v).

146 Chapter 6 Context-Free Grammars

Suppose that the inequality holds, vertices of height less than n, and let
v be a vertex of height n. Then the following two cases may occur:

1) If h(v) = h(v1), where v1 ∈ CHILDREN(v), then weight(v) =
weight(v1) � L(G)h(v1) by the inductive hypothesis. Thus weight(v) �
L(G)h(V).

2) If h(v) > h(v1) for every v1 ∈ CHILDREN(v), then h(v) = 1 +
max{h(v1) | v1 ∈ CHILDREN(v)}, and v has more than one child with
positive weight. Let vi0, . . ., vik−1 be the set of all such children of v, where
k > 1. Note that we have k � L(G) by the definition of derivation trees.
Therefore,

weight(v) = weight(vi0) + . . . + weight(vik−1)
� L(G)h(i0) + . . . + L(G)h(vik−1) (by the inductive hypothesis)
� L(G) · L(G)max{h(vi0),...,h(vik−1)}

= L(G)1++max{h(vi0),...,h(vik−1)}

= L(G)h(v) (6.27)

Since ‖ω‖M equals the weight of the root vroot of the tree T and ‖ω‖M �
nG it follows that L(G)|An|+1 = nG � weight(vroot) � L(G)h(vroot). Thus,
h(vroot) �| An | +1. Consequently, y contains a branch B such that each
node in B with h(v) > 0 has a child v′ such that h(v) = 1+h(v′). Then there
is a sequence of nodes (v0, v1, . . .) along B such that

h(v0) =| AN | +1, h(v1) =| AN |, . . ., h(vi) =| AN | −(i− 1), . . .

since there are more than | AN | nodes in this sequence, there must be two
nodes vi and vj with i < j, that are labeled with the same nonterminal symbol
X (see Fig. 6.3). Let z be the word over VT given by z = word(Tvj). Then
word(Tvj) includes z, and so, it must have the form yzu for some y, u ∈ V∗

T.
Further yzu is an infix of ω, so ω = xyzut for some x, t ∈ V∗

T and there are
the derivations in G:

S ∗=⇒
ω0

xXt, X ∗=⇒
ω1

yXu, X ∗=⇒
ω2

z. (6.28)

By repeated applications of the second derivation, we obtain:

S ∗=⇒
ω0

xXt ∗=⇒
ω1

xyXut ∗=⇒
ω1

xy2Xu2t ∗=⇒
ω1

. . .
∗=⇒
ω1

xynXunt ∗=⇒
ω2

xynzunt, (6.29)

so xynzunt ∈ L(G) for n ∈ N.
Since h(vi) > h(vj), we must have ‖yzu‖M > ‖z‖M, so either ‖y‖M �

1, or ‖u‖M � 1. Also, since h(vi) �| AN | +1, it follows that ‖yzu‖M �
L(G)|An|+1 = nG.

This argument of pumping theorem brings the next statement that tells
us something about certain phrases of words in the language generated by
the grammar.

6.3 Characteristics of Context-Free Grammars 147

Fig. 6.3 Derivation Tree T.

Corollary 6.1 For every context-free grammar G and marking set M, there
exists a number nG such that if ω ∈ L(G) and ‖ω‖M � nG, then ω can be
written as ω = xyzut such that ‖y‖M � 1, ‖u‖M � 1, ‖yzu‖M � nG and
yizu ∈ PHRASE(ωi, G) where ωi = xyizuit ∈ L(G) for every i ∈ N.

Proof The proof can be found from the proof of the theorem above.
There is another version of pumping theorem. It corresponds to the case

when the marking set M coincides with N.

Theorem 6.7 (Pumping lemma of Bar-hillel, Perles, and Shamir) Let
G be a context-free grammar. There exists a number nG ∈ N such that if
ω ∈ L(G) and | ω |� nG, then we can write ω = xyzut such that | y |� 1 or
| u |� 1, | yzu |� nG and xynzunt ∈ L(G) for all n ∈ N.

Proof If M = N then ‖ω‖M =| ω |, then the argument in the proof of
Ogden lemma holds for current situation.

Example 6.10 Let A = {a, b, c}, and let L = {anbncn | n ∈ N}. The
language L is not context-free.

We prove the fact by using pumping theorem of Bar-Hillel, Perles and
Shamir. Suppose that L were a context-free language. Then there is nG ∈
N satisfying the property stated in lemma of Bar-Hillel et al. Let ω =
anGbnGcnG . Clearly | ω |= 3nG > nG, so ω = xyzut for some x, y, z, u, t
such that | y |� 1 or | u |� 1, | yzu |� nG and xynzunt ∈ L(G) for all n ∈ N.

Note that neither y nor u may contain more than one type of symbols. In-
deed, if y contained both a’s and b’s, then we could write y = yia. . .ab. . .byn

since

xy2zu2t = xy′a. . .ab. . .by′′y′a. . .ab. . .by′′zu2t. (6.30)

148 Chapter 6 Context-Free Grammars

Now we obtain a contradiction, since no b symbol may precede a symbol
in any word of L(G). A similar argument holds for u. Thus, each y and
u may contain only one kind of symbols. Consequently pumping y and u
would violate the condition na(ω) = nb(ω) = nc(ω) satisfied by all words of
ω ∈ L(G). This shows that L(G) does not satisfy the condition of Theorem
6.7, hence L(G) is not context-free.

The Ogden lemma can also be used to prove the fact. Suppose that nG

be a number whose existence is guaranteed by this theorem. We also assume
that we mark all positions that contain b in the word anGbnGcnG . Clearly
| ω |= 3nG > nG, so ω = xyzut such that ‖y‖M � 1 or ‖u‖M � 1, ‖yzu‖M �
nG and xynzunt ∈ L(G) for every n ∈ N. Then at least one of y and z must
contain a and b. Moreover, by the same argument as above, they may consist
only of one type of symbols so they must both must be infixes of bnG . Thus
pumping y and u increases the number of b’s that violates the condition
na(ω) = nb(ω) = nc(ω).

The following is another example that shows that Ogden lemma is more
powerful as it can be used to disprove that the language is context-free while
another lemma cannot.

Example 6.11 Consider the language L = {anbncj | 0 � j � n}. We shall
prove that this language is not context-free. Note that here, L satisfies the
condition of Bar-Hillel et al lemma, hence it cannot be used to prove the fact
of this example. Let ω = anbncj for some n � ng, and let j < nG. By choosing
y = ap and u = bpω with p � 1 we can write ω = xyzut such that | y |� 1 or
| u |� 1, | yzu |� nG and xynzunt ∈ L(G) for all n ∈ N, since the pumping
will increase the number of a’s and b’s without violating the definition of the
language.

To prove that L is not context-free, we use the reduction ad absurdum.
Assume that L is a context-free language, and let nG be the number defined in
the Ogden lemma. Let ω = anGbnGcj for some j < nG and mark all positions
that contain c. Since | ω |= 2nG + j > nG, it follows that ω = xyzut such
that ‖y‖M � 1 or ‖u‖M � 1, ‖yzu‖M � nG and xynzunt ∈ L(G) for all n ∈ N.
Note that y and u must be infixes of anG , bnG or Cj. Since only positions
that contain c’s are marked, at least one of these words must contain c’s that
are marked, so at least one of them is in infix of cj. Note that if they were
both infixes of cj, then by pumping, we could obtain a word in L(G) such
that the number of c’s would exceed the numbers of a’s or b’s. If y is an infix
of bnG , the pumping will increase the number of b’s while the number of a’s
will remain constant and thus the definition of L would be violated. A similar
contradiction occurs when y is an infix of anG .

There are more characteristics of context-free grammars and languages.
For example, we know that the class of context-free languages is closed with
respect to union, product, and Kleene closure. Now we explore other closure
(and no closure) characteristics of the class of languages with respect to other
operations.

6.3 Characteristics of Context-Free Grammars 149

Theorem 6.8 The class of context-free languages is not closed with respect
to intersection.

Proof Consider the context-free grammars

G1 = ({S, X, Y}, {a, b, c}, S, {S→ XY, X→ aXb, X→ ε, Y → cY, Y → ε}),
G2 = ({S, X, Y}, {a, b, c}, S, {S→ XY, X→ aX, X→ ε, Y → bYc, Y → ε}).

It is easy to see that

L1 = L(G1) = {anbncm | n, m ∈ N},
L2 = L(G2) = {anbmcm | n, m ∈ N}.

Therefore, both L1 = {anbncm | n, m ∈ N} and L2 = {anbmcm | n, m ∈ N}
are context-free languages. But since L1 ∩ L2 = {anbncn | n ∈ N}, L1 ∩ L2

does not belong to context-free.

Corollary 6.2 The class of context-free languages is not closed with respect
to complement.

Proof We prove it via reduction ad absurdum again. Suppose that the
class is closed with respect to complement. Since the class of context-free
languages is closed with respect to union, and intersection can be expressed
through union and complement (∼ A∩ ∼ B =∼ (A ∪ B)). Therefore this
would imply that the class is closed with respect to intersection.

Theorem 6.9 If L is a context-free language and R is a regular language,
then L ∩ R is a context-free language.

Proof Without losing generality, we may assume that both L and R are
languages over the same alphabet VT. Initially, we also assume that neither
L nor R contain the null word.

Suppose that L = L(G) where G = (VN, VT, S1, P) is a ε-free context-
free grammar, and R = L(M), where M is a deterministic finite automaton
M = (Q, VT, δ, q0, F). Define the context-free grammar G′ = (V′

N, VT, S′, P′)
as follows. The nonterminal alphabet V′

N consists of the new initial symbol
S′ together with (| VN | + | VT |) | Q |2 new symbols of the form sqq′

for
every symbol s ∈ VN ∪ VT and every pair of states (q, q′) of the automaton
M. The set P′ consists of the following productions: S→ Sq0q for every final
state q of M.

Xqq′ → sqq1
0 sq1q2

1 . . .sqn−1q
′

n−1 for every production X→ s0s1. . .sn−1 in P and
every sequence of states (q1, . . ., qn−1).

Aqq′ → a for every terminal symbol a of G such that δ(q, a) = q′ in M.
We claim that if sqq′ n=⇒

G′
x for some x ∈ V∗

T, then δ∗(q, x) = q′ in M and

that, if s ∈ VN ∪ VT, then s ∗=⇒
G

x. The argument is proved by induction on
n � 1.

If n = 1, we have s = x = a for some a ∈ VT and δ(q, a) = q′ and the
claim is clearly satisfied.

150 Chapter 6 Context-Free Grammars

Suppose that the claim holds for derivations of length less than n, and
let Sqq′ n=⇒

G′
x be a derivation of length n. If we write the first step of this

derivation explicitly, we obtain

Sqq′
=⇒
G′

sqq1
0 sq1q2

1 . . .sqn−1q
′

n−1
∗=⇒
G′

x. (6.31)

Therefore, we have the production s→ s0s1. . .sn−1 in P. And we can write x
as x = x0x1. . .xn−1, such that we have the derivations

sqq1
0

∗=⇒
G

x0,

sq1q2
1

∗=⇒
G

x1,

...
sqi−1qi
i−1

∗=⇒
G

xi−1,

...
sqn−1qn
n−1

∗=⇒
G

xn−1. (6.32)

That are all shorter than n. By the inductive hypothesis we have

δ∗(q, x0) = q1, δ
∗(q1, x1) = q2, . . ., δ

∗(qn−1, xn−1) = q′, (6.33)

so δ∗(q, x0, . . ., xn−1) = δ∗(q, x) = q′. Also, if si is a nonterminal, then
si

∗=⇒
G

xi; otherwise, if si ∈ VT, we have si = xi, so si
∗=⇒
G

xi for 0 � i � n− 1.
This allows us to construct the derivation

s =⇒
G

s0, . . ., sn−1
∗=⇒
G

x0. . .xn−1 (6.34)

which justifies our claim.
Now we prove the theorem by showing that L(G′) = L∩R. Suppose that

x ∈ L(G′). We have the derivation S′ =⇒
G′

Sq0q ∗=⇒
G′

x. By the previous claim,

this implies both S ∗=⇒
G

x and δ∗(q0, x) = q. Thus x ∈ L ∩R.
Conversely, suppose that x = a0a1. . .an−1 ∈ L∩R, We have the derivation

S ∗=⇒
G

x, so in G′ we can write

S′ =⇒
G′

Sq0q =⇒
G′

aq0q1
0 aq1q2

1 . . .aqn−1q
n−1 (6.35)

for some final state q and any states q1, . . ., qn−1. We can select these interme-
diate states such that δ(qi, ai) = qi+1 for 0 � i � n−2 and δ(qn−1, an−1) = q.

Therefore, there are the following productions in P′:

aq0q1
0 → a0,a

q1q2
1 → a1, . . ., a

qn−1q
′

n−1 → an−1, (6.36)

6.3 Characteristics of Context-Free Grammars 151

This implies the existence of the derivation S′ ∗=⇒
G

a0a1. . .an−1.

If ε ∈ R or ε ∈ L we consider the regular language R′ = R − {ε} and
the context-free language L′ = L − {ε}. By the previous argument we can
construct an ε-free context-free grammar G′ such that L(G′) = L′ ∩ R′. If
ε /∈ L ∩ R, then L ∩ R = L′ ∩ R′ and this shows that L ∩ R is context-
free. If ε ∈ L ∩ R, we have L ∩ R = (L′ ∩ R′) ∪ {ε}, then starting from
G′ = (V′

n, VT, S′, P′) we construct the context-free grammar:

G′′ = (V′
n ∪ {S′′}, VT, S′′, P ∪ {S′′ → S′, S′′ → ε}) (6.37)

and we have L ∩R = L(G′′).

Theorem 6.10 Let s: A∗ → B∗ be a substitution. If s(a) is a context-free
language for every a ∈ A and L ⊆ A∗ is a context-free language, then s(L) is
a context-free language.

Proof Suppose that L = L(G), where G = (VN, A, S, P) is a context-
free grammar, and let s(a) is generated by the context-free grammar Ga =
(Va

N, B, SaP) for a ∈ A. We may assume that the set of nonterminal symbols
Aa

N is pairwise disjoint. Let P′ be the set of productions from P as follows. In
each production of P replace every letter a ∈ A by the nonterminal Sa. We
claim that the language s(L) is generated by the grammar

G′ = (VN ∪ ∪a∈AVa
N, B, S, P′ ∪ ∪a∈APa). (6.38)

Let y ∈ s(L). There exists a word x = ai0ai1. . .ain−1 ∈ L such that y ∈ s(x).
This means that y = y0y1. . .yn−1, where yk ∈ s(aik) = L(Gaik) for 0 � k �
n− 1. Thus we have the derivation Saik

∗=⇒
Gaik

yk for 0 � k � n–1, and the same

derivation can be done in G′. Consequently we obtain the derivation

S ∗=⇒
G′

Sai0 . . .Sain−1
∗=⇒
G′

y0. . .yn−1 = y (6.39)

that implies y ∈ L(G′), so s(L) ⊆ L(G′).
Conversely, if y ∈ L(G′) then any derivation S ∗=⇒

G′
y is the form of Equa-

tion (6.38).
In the argument above we have Saik

∗=⇒
Gaik

yk for 0 � k � n − 1, we can

write y = y0. . .yn−1, and yk ∈ L(Gaik) = s(aik) for 0 � k � n − 1. This
implies y = y0. . .yn−1 ∈ s(ai0). . .s(ain−1) = s(x) ∈ S(L), so L(G′) ⊆ s(L).

Since s(L) = L(G′′), it follows that s(L) is context-free language.

Corollary 6.3 If h: A∗ → B∗ is a morphism and L ⊆ A∗ is a context-free
language, then h(L) is a context-free language.

Proof The statement follows immediately from Theorem 6.10 since mor-
phism may be regarded as special case of substitutions.

Theorem 6.11 The class of context-free languages is closed with respect
to inverse morphic images. In other words, if h: B∗ → A∗ is a morphism, and
L ⊆ A∗ is a context-free language, then h−1(L) is a context-free language.

152 Chapter 6 Context-Free Grammars

Proof Suppose that B = {b0, b1, . . ., bm−1} and that h(bi) = xi for 0 �
i � m − 1. Let B′ = {b′

0, . . ., b
′
m−1}, and let s be the substitution given by

s(a) = B′∗aB′∗ for a ∈ A. Consider the finite language H = {b′
ixi | 0 � i �

m−1} and the mapping g: P(A∗)→ P((A∪B′)∗) given by g(L) = s(L)∩H∗.
Define the morphisms h1: (A∪B′)∗ → ({c}∪B)∗ and h2: ({c}∪B)∗ → B∗

by h1(a) = c for a ∈ A, h1(b′) = b for all b′ ∈ B, and h2(c) = ε, h2(b) = b
for b ∈ B. We claim that for every language L ∈ P(A) such that ε /∈ L,
h−1(L) = g(h2(h1(L))) and hence, by three applications of Corollary 6.3,
h−1(L) is context-free. This follows from the following equivalent statements:

1) U = bi0bi1. . .bik−1 ∈ h−1(L).
2) h(u) = xi0xi1. . .xik−1 ∈ L.
3) b′

i0xi0. . .b′
ik−1xik−1 ∈ g(L).

4) h1(b′
i0xi0. . .b′

il−1xik−1) = bi0c. . .c. . .bik−1c. . .c ∈ h1(g(L)).
5) h2(bi0c. . .c. . .bik−1c. . .c) = bi0. . .bik−1 = u ∈ h2(h1(g(L))).
If ε ∈ L, the language L − {ε} is context-free, so h−1(L − {ε}) is also

context-free. Note that h−1(L) = h−1(L−{ε})∪h−1({ε}) and that h−1({ε}) =
{a ∈ A | h(a) = ε}∗. Since h−1({ε}) is regular, it follows that h−1(L) is
context-free.

Definition 6.13 A transducer is a 6-tuple J = (A, Q, B, θ, q0, F), where A
is the input alphabet, B is the output alphabet, Q is a finite set called the
set of states, θ is a finite relation, θ ∈ Q×A∗×B∗×Q, called the transition
relation, q0 is the initial state of the transducer, and F is the set of final
states, where F ⊆ Q. The set Q is disjoint from A∪B. A graph of transducer
J is shown in Fig. 6.4.

Fig. 6.4 Graph of the transducer J.

If (q, x, y, q′) ∈ θ, then applying the input word x to the transducer J in
state Q results in the output word y and place J into the state q′, usually
called the next state of J. The activity of J begins in the state q0.

Note that θ may contain several quadruples having q, x as their first two
components, and thus J is a nondeterministic device. Also, θ may contain
a quadruple of the form (q, ε, y, q′), sometimes called a null transition, that
means that J may produce an output word y without consuming an input

6.3 Characteristics of Context-Free Grammars 153

symbol.
In summary, a transducer J = (A, Q, B, θ, q0, F) is
• ε-free if (q, x, y, q′) ∈ θ implies y �= ε;
• k-bounded if (q, x, y, q′) ∈ θ implies | x |� k and | y |� k;
• k-output if (q, x, y, q′) ∈ θ implies | y |= k.
Transducer can be represented by labeled directed multigraphs. Let / be a

symbol such that /∈ A∪B. The graph of a transducer J = (A, Q, B, θ, q0) is the
labeled directed multigraph G(J) = (G, A∗/B∗, m) where G = (Q, E, s, d) is a
directed multigraph whose set of vertices is the set Q of states of J and whose
set of edges E contains an edge e with s(e) = q, d(e) = q′, and m(e) = x/y
for every quadruple (q, x, y, q′) ∈ θ. The following convention introduced for
automata, the initial state q0 is denoted by an incoming arrow, and the final
states are circled.

Example 6.12 Let Q = {q0, q1, q2, q3}, A = {a, b}, and B = {0, 1}. If θ is
the relation

θ = {(q0, ab, 0, q1), (q1, bb, 01, q3), (q0, ba, 00, q2), (q2, aa, 011, q3),
(q3, ε, 100, q0), (q2, aa, 0011, q1)}

F = {q3},
then the graph of the transducer J = (A, Q, B, θ, q0, F) is given in Fig. 6.5.

Fig. 6.5 Graph of the transducer J = (A,Q, B, Θ,q0, F).

Theorem 6.12 Let J = (A, Q, B, θ, q0, F) be a transducer. If L ⊆ A∗ is a
context-free language, then J(L) is a context-free language over B.

Proof We know that If J = (A, Q, B, θ, q0, F) is a transducer, then there
exists an alphabet C, a morphism h: C∗ → A∗, a morphism g: C∗ → B∗
and a regular language R ⊆ C∗ such that for every language L ⊆ A∗ we have
J(L) = g(h−1(L) ∩R). Since the class of context-free language is closed with
respect to inverse morphic images, intersection with regular languages, and
morphic images, it follows that J(L) is a context-free language.

154 Chapter 6 Context-Free Grammars

There are the closure characteristics of context-free languages with respect
to quotients with regular languages as the following theorem states.

Theorem 6.13 [6] If L is a context-free language and R is a regular lan-
guage, then LR−1 and R−1L are both context-free languages.

Proof Let A be an alphabet, and let c be a symbol such that c /∈ A. Define
the morphism h: (A ∪ {c})∗ → A∗ by h(a) = a for a ∈ A and h(c) = ε Then
by Theorems 6.9 and 6.6, the language h−1(L) ∩ A∗cR is context-free. Note
that ω ∈ h−1(L)∩A∗cR if and only if ω = ucv where uv ∈ L and v ∈ R which
is equivalent to u ∈ LR−1. Now consider the transducer J whose graph in
Fig. 6.5. J will process a word ω = ucv with u, v ∈ A∗ as follows: all symbols
in A are sent to the output intact until c is read. From that point on, the
transducer produces only the null word at its output. Under the previous
assumptions, J(ω) = u.

The following statements are equivalent:
1) u ∈ LR−1.
2) uv ∈ L for some v ∈ R.
3) ucv ∈ h−1(L) ∩A∗cR.
4) u = J(h−1(L) ∩A∗cR).
Thus, LR−1 = J(h−1(L) ∩ A∗cR) which means that LR−1 belongs to

context-free language. The second part of the theorem follows from the fol-
lowing relation:

R−1L = (Lr(Rr)−1)r, (6.40)

where r is the operation of reversal.

Problems

Problem 6.1 Assume that G is a context-free language with ε-free. Prove
that for the derivation tree of each sentence of L(G), there are at most
2|ω| − 1 nodes where |ω| is the length of sentence ω.

Problem 6.2 Consider a context-free grammar

G = ({S, X, Y}, {a, b}, S, {S→ XY, X→ aX, X→ ε, Y → bY, Y → ε}).

1) Prove that L(G) is a regular language.
2) Prove that for a sentence α ∈ L(G), though S ∗=⇒

G
α, There is no

the leftmost derivation.
Problem 6.3 A sentence α ∈ A∗ is said to be palindrome if α = αR where R

means reverse, that means that reading α from left to right is the same as
reading it from right to left. Suppose that LA,pal is a language consisting
of all the palindromes over A. Prove that LA,pal and A∗ − La,pal are not
regular context-free languages.

Problem 6.4 For the following context-free grammars, find their equivalent
context-free grammars in Chomsky normal form.

1) G = ({S}, {a, b}, {S→ a, S→ aS, S→ aSbS}).

References 155

2) G = ({S, X, Y}, {a, b}, S, {S → XYb, S → ab, X → SYS, X →
ba, Y → XSX, Y → b}).

3) G = ({S}, {+,×, (,), a}, S, {S → S + S, S → S × S, S → a, S →
(S)}).

Problem 6.5 Find the equivalent grammars in Greibach normal form of
the grammars in last Problem.

Problem 6.6 Prove that for a context-free grammar with ε-free G there
exists an equivalent grammar G′ in which the productions have the form
X→ a or X→ abb where a and b are terminals, and α is a sentence form
that contains nonterninals.

Problem 6.7 Argue whether each context-free language with ε-free L can
be generated by the context-free grammar with productions in the forms
X → YZU and X → a, where X, Y, and U are nonterminals and a is a
terminal.

Problem 6.8 A grammar G is said to be operator grammar if it has the
property (among other essential requirements) that no production of
which the right side is or has two adjacent nonterminals. Show that every
context-free grammar can be converted into an operator grammar. Hint:
First transform the grammar into Gribach normal form.

Problem 6.9 Show that every context-free grammar G can be converted
into an operator grammar in which each production is of one of the fol-
lowing form

A→ aBcC A→ aBb A→ aB A→ a.

If ε is in the language, then S→ ε is also a production.
Problem 6.10 Consider a context-free grammar

G = ({S}, {a}, S, {S→ apS, S→ aqS, S→ ε}).
1) Show that G is an ambiguous grammar, and L(G) = {ap}∗{aq}∗.
2) Construct a non-ambiguous grammar that is equivalent to G.

Problem 6.11 Prove that

L = {ambmcndn|m, n ∈ N} ∪ {ambncndm|m, n ∈ N}
is inherently ambiguous.

References

[1] Chomsky N, Schützenberger MP (1963) The algebraic theory of context-free
languages. In: Braffort P, Hischberg D (eds) Computer programming and
formal systems. North-Holland, Amsterdam.

[2] Hopcroft JE, Ulman JD (1979) Introduction to automata theory, languages
and computation. Addison-Wesley, Reading, Mass.

156 Chapter 6 Context-Free Grammars

[3] Kozen DC (1997) Automata and computability. Automata and computabil-
ity. Springer, New York.

[4] Greibach SA (1965) A note on code set and context-free languages. Mathe-
matical Linguistics and Automatic Translation 15, Harvard University, Com-
putation Lab Rept.

[5] Aho AV, Sethi R, Ullman JD (2003) Compilers: Principles, techniques and
tools. Pearson Education, London.

[6] Simovici, Dan A, Tenny Richard L (1999) Theory of formal languages with
applications. World Scientific, New York.

Chapter 7 Syntax Analysis

The next level in the linguistic hierarchy is that of syn-
tax, or the rules that govern the combination of mor-
phemes in phrases and sentences. In recent years the
principles underlying syntax have been extended to in-
clude how information can be transformed from one to
another.

Robert L. Solso

7.1 Motivation of the Chapter

The syntax analysis is the essential step for the compilation of programs
written in programming languages. In order to produce the object programs
executable on the computer, the source program has to be analyzed with
respect to its correctness, the correctness of the lexicon, syntax and semantics.
And in general, the construction of the compiler puts the first two, i.e., the
analysis of the lexicon and analysis of the syntax into a phase— the analysis
phase. In the two analyses, obviously the syntax analysis is more important
than the lexical analysis though it is the base of the former. In comparison
with the lexical analysis, the syntax analysis has more issues to explore. In
the development history of compilers many researchers and software engineers
had devoted lots of their times to design methods for the syntax analysis. The
syntax analysis had been regarded as the key to the success of compilers, and
it was also regarded as the most arduous task in the construction of compilers.
Now in the field of the syntax analysis there are many successful techniques
that are widely used in the construction of compilers, especially in the design
of the syntax analysis, we should introduce and discuss them in the book that
devotes to the principles of compilers. The aim of this chapter is to explain the
role of the syntax analysis and to introduce the important techniques used
in the syntax analysis, and to compare these techniques in terms of their
efficiency and easiness, etc. We also want to point out that though the main
ideas of the methods introduced here come from the existing references we
have also made our improvements to make them even more understandable
or more efficient. We do not only channel other results. In the following

158 Chapter 7 Syntax Analysis

discussion, we will point out the role of the syntax analysis, and explore
the procedure of the analysis, and discuss a number of issues involving in
the syntax analysis. When we explain the methods we will provide examples
to show the practice. Sometimes we also provide algorithms to make the
methods more operable and more precise.

7.2 Role of Syntax Analysis in Compilers

The syntax analyzer, or parser as many called it, takes the output of the lex-
ical analyzer as input. In order to produce the object code that is executable
on computers, it has to verify the correctness of the source program, or to
point out the errors commonly occurring in the source programs and recover
from these errors if possible. Therefore, the role of the syntax analyzer has
duality. On one hand, it is responsible for reporting any syntax error in an
intelligible fashion. In this aspect, it should also be able to recover from the
errors and continue processing the remainder of its input.On the other hand,
if it verifies that the source program is correct in terms of the syntax struc-
ture, its task is to transform the source program into the intermediate code so
that in further step it can be used to produce the object code. In this aspect,
there are a number of techniques that were invented to handle the problem.
However, after all, both two aspects are based on referring the grammar, or
more specifically, on referring the production of the grammar. If some part
of the source program violates the regulation set by the production, it issues
the error report and tries to recover from the error; otherwise it confirms the
correctness of this part of the source program and continues with generating
the intermediate code or other relevant things. There are three general types
of the syntax analyzers, or parsers for grammars. Universal parsing methods,
such as Cocke-Younger-Kasami algorithm [1] and Earley’s algorithm [2] of
orient their works to any grammar. These methods, however, are too ineffi-
cient to use in producing compilers. The methods commonly used in compilers
are classified as either top-down or bottom-up. As their names indicate, top-
down parsers build parse trees from the top (root) to the bottom (leaves)
while bottom-up parses build parse trees from the leaves and work up to the
root. In both cases, the input to the parser is scanned from left to right, one
symbol at a time.

In the sense of the formal grammars we have discussed above, the lan-
guages which are recognized and most of the programming languages basi-
cally are context-free. Therefore, the source programs written by users can
be considered as sentences of the context-free grammar if they are correctly
written. In other words, they are the strings which the grammar accepts.
When discussing the strings which the grammar accepts, we had mentioned
two approaches—the leftmost derivation and rightmost derivation. The two
approaches just correspond to top-down and bottom-up respectively. At the

7.2 Role of Syntax Analysis in Compilers 159

moment, we just leave the topic and consider the nature of syntactic errors
and general strategies for error recovery.

Syntax Error Handling

If a compiler can only process correct programs, it will not be useful. Since
many programmers cannot make their programs immediately correct in the
first time they wrote them. In this case, the compiler has nothing to do in
facing this kind of programs with errors. Therefore, a good compiler should
assist the programmer in identifying and locating errors. Specially, as we now
discuss the syntax analysis, we are concerned about the errors that occur in
syntax. We require that the compiler should be able to detect the syntac-
tic errors. It turned out that much of the error detection and recovery in a
compiler is centered around the syntax analysis phase. One reason for this is
that many errors are syntactic in nature or are exposed. When the stream of
tokens comes from the lexical analyzer, they may disobey the grammatical
rules for defining the programming language, such as an arithmetic expres-
sion with unbalanced parentheses. Another reason is the precision of modern
parsing method. The compiler can detect the existence of syntactic errors in
programs very efficiently.

Accurately detecting the presence of semantic and logical errors at com-
piling time is more difficult. However, in this chapter we just focus on the
syntactical error handling.

The syntactical error handling has the following goals:
• It reports the existence of errors clearly and precisely.
• It recovers from each error quickly so that it can continue to detect sub-

sequent errors.
• It will not remarkably slow down the processing of correct programs.

Obviously, if the detection of errors and recovery from errors are very diffi-
cult, the realization of these goals is a great challenge. Fortunately, in reality,
it is not the case. Common errors are simple and a relatively straightforward
error-handling is enough. However, in some cases the detection of an error
is long behind the position where the error occurs, and the precise nature
of the error may also be difficult to detect. Therefore, in these cases people
cannot expect highly that the error handler precisely reports the positions
of errors. The reports can only be taken as references. In difficult cases, the
error handler may have to guess what the programmer had in mind when he
wrote the program.

Several parsing methods such as the LL and LR (they will be discussed
soon in this chapter) detect an error as soon as possible. More precisely they
detect an occurring error as soon as they see a prefix of the input that is not
a prefix of any legal string in the language.

A common punctuation error is to use a comma in place of the semicolon
in the argument list of a function declaration, or vice versa. Others are to leave
out a mandatory semicolon at the end of a line and to put in an extraneous
semicolon at the end of a line before the word else. Perhaps the reason why

160 Chapter 7 Syntax Analysis

semicolon errors are so common is that the use of semicolons varies from one
language to another. Hence, in order to avoid such errors, the programmer
should refer to the manual of the programming language for the regulation.

How should an error handler report the presence of an error? A com-
mon strategy which many compilers adopt is to print the offending line with
a pointer to the position where an error is detected. However, if there is a
reasonable likelihood of what the error actually is, an informative understand-
able diagnostic message may be included, for example, “semicolon missing at
this position”.

After the errors are detected, the next step is to recover from these errors.
From the view point of program writers, they want the error handler to
provide the accurate information so that they can easily correct the program
according to the message given. But the error handler does not always have
the strength to do so. There are a number of different strategies that an error
handler may adopt to recover a syntactic error. Here, we list the following
strategies:
• Panic mode.

With the strategy, when an error is discovered, the parser discards the
input symbol at a time until one of a designated set of the synchronizing
token is found. The synchronizing tokens are usually delimiters, such as
semicolon or end, whose role in the source program is clear. The com-
piler designer must select the synchronizing tokens proper for the source
language. One of the disadvantages of this strategy is that it often skips
a considerable amount of input without checking for any possible errors.
However its advantage is clear that it is simple. And, unlike some other
methods to be considered later, it is guaranteed not to go into an infinite
loop.

• Phrase-level recovery.
With the strategy, when an error is discovered, the parser may perform the
local correction on the remaining input. That is, it may replace a prefix of
the remaining input by a string that allows the parser to continue (other-
wise the parser cannot do again). The choice of the local correction is up
to the compiler designer. However commonly the typical local correction
is to replace a comma by a semicolon, or to delete a seemingly extraneous
semicolon, or to insert a missing semicolon. For this strategy, it has the
danger that improper correction may lead the program into infinite loops.
Hence we must be very careful to choose the replacements. This can be
regarded as the drawback of the strategy, and the other drawback is that
the actual error is likely to occur before the point of detection.

• Error productions.
If we have a good idea of the common errors that might be encountered,
we can augment the grammar for the language in hands with productions
that will generate erroneous constructs. This is the idea of the strategy.
We use the grammar augmented by these error productions to construct
our syntactical analyzer. If an error for production is used by the analyzer,

7.3 Methods of Syntax Analysis 161

we can generate appropriate error diagnostics to indicate the erroneous
construct that has been recognized in input.

• Global correction.
This strategy is global-oriented. It will be nice if in processing an in-
correct input string we just make there are as few changes as possible.
There are algorithms for choosing a minimal sequence of changes to ob-
tain a globally correct program. Given an incorrect input string x and
program G, these algorithms will find a parse tree for a related string y,
such that the number of insertions, deletions, and changes of tokens for
transforming x into y is as small as possible. It sounds that, the idea is
very good. However, so far, it is only of theoretical interest as in general
its implementation is costly in terms of time and space.

7.3 Methods of Syntax Analysis

The aim of the syntax analysis is to verify the correctness of programs in terms
of the syntax of the programming language. That means that we want to
know whether we can derive the source program or not from the distinguished
nonterminal symbol using productions. If at the end of these derivations, we
really get the source program, we can say that the source program is really
correct in terms of the syntax of the language. And the process is from the
root of the parsing tree toward the leaves of the tree, hence it is called the
top-down analysis. The other way starts from the source program, i.e., the
leaves of the parsing tree. Some leaves can be combined together to form the
right part of a production, and then to replace them by the parent of these
strings. Gradually, the process is going up to climb up the tree towards the
root. If at the end the process reduces to the root of the parsing tree, it also
means that the root matches the leaves or the source program. Therefore, this
is called the bottom-up analysis. In the analysis process, in order to ensure
the efficiency, we want to avoid the backtracking of the passed path. That
means that we want the process keeping going in one direction, rather than
going back and forth in two directions LL(1) and LR(1) were developed from
the idea. Specifically, LL(1) is originated from the top-down approach while
LR(1) is originated from bottom-up approach. The first “L” in LL(1) stands
for scanning the input from left to right, the second “L” stands for producing
leftmost derivation, and the “1” in parenthesis stands for using one input
symbol of look ahead at each step to make parsing action decision. As for
LR(1), the first “L” has the same meaning as in LL(1), while “R” stands for
constructing a rightmost derivation in reverse, and the “1” in the parenthesis
stands for the number of input symbol of look ahead that is used in making
parsing decisions. Sometimes “1” is omitted, and the default value is still 1.
We discuss the two approaches, separately, as follows.

The top-down syntax analysis can be considered as an attempt to find

162 Chapter 7 Syntax Analysis

a leftmost derivation for an input string or a legitimate source program.
Equivalently, it can be viewed as an attempt to construct a parsing tree
for the input starting from the root (distinguished symbol, for programming
language, it usually is PROGRAM) and creating the leaves of the parsing tree
in preorder. Top-down syntax analysis starts from the distinguished symbol of
the grammar, works down and right towards the right end of a production,
step by step, gradually creates the parsing tree with the input string (the
source program) being the leaves. In the whole process, any backtracking
step is not allowed so that the process of creating the parsing tree completely
deterministic. Meanwhile, it should also be uniquely deterministic.

In order to realize the requirement above, how should we do? Obviously
the requirement should be that in every step, the creation of the parsing
tree has only one way out. For example, suppose that we have the following
production set of a program and the input is baabb.

S→ bA | aB,

A→ bSS | aS | a,

B→ aBB | bS | b.

The top-down analysis for checking the correctness of input string that starts
with distinguished symbol S should only have one way to go, i.e., S→bA
rather than

S→aB, as the input starts with b. So the initial form of the parsing tree
is

S
↙ ↘

b A

Following the subparsing tree, the creation of the parsing tree should go on
with the derivation of A. Now there are three productions that take A as left
part, they are

A→ bAA.

A→ aS,

A→ a.

Referring to the second character b of the input string, it is clear that we
should only use the production A→aS. Though A→a also has a at the right
part, it will end the derivation while the parsing tree does not match the
input string.

From our discussion, we know that starting the creation of the parsing tree
at the beginning, distinguished symbol, and derivation which we use must be
uniquely determined. If the production with the distinguished symbol being
the left part has only one, say

S→ aAb,

7.3 Methods of Syntax Analysis 163

but then there are two productions with A being left part and they are

A→ aB, A→ aC.

In this case in order to continue the creation of the parsing tree, should we use
A→aB or A→aC? Since both have a as the first character, without knowing
the following one we have no idea about which one is the right choice. In
order to solve the problem we need to introduce the concept of FIRST(α)
that will differentiate productions each other according to their FIRST().

Definition 7.1 [2] Let A → α be a production of a context-free grammar
G. We define FIRST(A → α) = {a | a is the first terminal symbol occurring
in α from left to right, or starting from

A→ α,

A +=⇒
G

a}.

Example 7.1 In the following set of productions

E→ EAE | (E) | −E | id | ε,
A→ + | − | × | / |↑ .

The FIRST() of each production is as follows:

FIRST(E → EAE) = {+,−,×, /, ↑ },
FIRST(E → (E)) = {(},
FIRST(E → −E) = { − },
FIRST(E → id) = {id}.

The occurrence of E → ε challenges the concept of FIRST() that makes
FIRST() cannot distinguish totally productions each other. As FIRST(X→
ε) = {ε} cannot help, we need to consider the changes caused by the occur-
rence of the ε production.

For example, in the following set of productions:

P→ XY,

P→ YU,

X→ aX,

X→ ε,

Y → c,
Y → bY,

U→ c.

Now we consider FIRST(P → XY) first. Since we have X → aX, we im-
mediately have a ∈ FIRST(P → XY), but apart from a, there are more

164 Chapter 7 Syntax Analysis

in FIRST(P → XY). Since X → ε, we have P → XY → Y → c or
P→ XY → Y → bY. Therefore, we have

FIRST(P→ XY) = {a, b, c}.

Similarly, we have

FIRST(P→ YU) = {b, c}.

In order to decide which production should be used among two or more pro-
ductions, we need to consider another concept called FOLLOW(). It stands
for follower set.

Definition 7.2 Given a grammar G. For the nonterminal symbol A,
FOLLOW(A) = {x | x ∈ VT and x may occur immediately after A in the
productions of G}.

According to the definition, we point out that:
1) For the distinguished symbol S, we stipulate that FOLLOW(S) = {$ | $

is the end token located at the right end of input string}.
2) If A → αBβ is a production of G, then FOLLOW(B) = {x | x ∈

FIRST(β) but x �= ε} Here, FIRST(β) may have a number of cases. β stands
for a string of terminals and nonterminals. If its first character is terminal
then it is in FIRST(β). If it is a nonterminal then we have to see the FIRST()
of production with the nonterminal being its left part. In this case, if the non-
terminal occurs as left part of more than one production, then the FIRST()
may have more than one element.

3) If there is a production A→ αB or A→ αBβ, where for β, FIRST (β)
contains ε (that is β ∗=⇒ ε), then FOLLOW (β) belongs to FELLOW (A).

Example 7.2 Given the set of productions of the grammar G as follows:

S→ XY,

X→ PQ,

X→ YU,

P→ pP,

P→ ε,

Q→ qQ,

Q→ d,

Y → yY,

Y → e,
U→ uU,

U→ f.

7.3 Methods of Syntax Analysis 165

The FIRST()’s and FOLLOW()’s of these productions are as follows.

FIRST(S→ XY) = {p, ε, y, e},
FIRST(X→ PQ) = {p, ε, q},
FIRST(X→ YU) = {y, e},
FIRST(P→ pP) = {p},
FIRST(P→ ε) = {ε},
FIRST(Q→ qQ) = {q},
FIRST(Q→ d) = {d},
FIRST(Y → yY) = {y},
FIRST(Y → e) = {e},
FIRST(U→ uU) = {u},
FIRST(U→ f) = {f},
FOLLOW(S) = {$},
FOLLOW(Y) = {u, f, $},
FOLLOW(X) = FOLLOW(Q) = {y, e},
FOLLOW(P) = FIRST(Q) = {q, d}.

The thing that really distinguishes one production from other is the combi-
nation of FIRST() and FOLLOW(), so it is in order to combine them. We
have the following definiton.

Definition 7.3 Let G be a grammar and A be one of its nonterminals, and
A→ α be one of its productions, then the derivation symbol set (abbreviated
as of DS) of A→ α is defined as

DS(A→ α) = {a | a ∈ FIRST(A→ α) or if α ∗=⇒ a, then a ∈ FOLLOW(A)}.
Therefore, in the example above, we have

DS(S→ XY) = {p, y, e, q, },
DS(X→ PQ) = {p, q, d},
DS(X→ YU) = {y, e},
DS(P→ pP) = {p},
DS(P→ ε) = {q, d},
DS(Y → yY) = {y},
DS(Y → e) = {e},
DS(Q→ qQ) = {q},
DS(Q→ d) = {d},
DS(U→ uU) = {u},
DS(U→ f) = {f}.

166 Chapter 7 Syntax Analysis

Now we can see that the productions with the same left part all have different
derivation sets, hence it will be deterministic which production should be used
in the derivation process.

However, there is a case that will causes the derivations unable to proceed.
We mean the situation of left recursion, for example, in

A→ Aα,

A→ a,

the first production belongs to the case. From the angle of the derivation it
will form

A→ Aα→ Aαα→ . . .→ Aαα. . .α.

This derivation repeats to have A occurring as the first symbol of right part
so that the derivation cannot have a breakthrough. In addition, from the
angle of the derivation set, we have

DS(A → Aα) = {a},
DS(A → a) = {a}.

The two derivation sets are totally equal. In this case, if the derivation in-
volves the decision of using which production with A as the left part, no
decision can be made, and the derivation cannot be carried out. Therefore,
in order to break the impediment, the left recursion should be eliminated.
The following approach can eliminate the left recursions.

Lemma The left recursion of nonterminal A in production A → Aα can
be eliminated if there is another production that also has A as its left part:
A → β, where α and β are sequences of terminals and nonterminals that
do not start with A. This is done by rewriting the productions for A in the
following manner:

A→ βB,

B→ αB | ε.
The proof of the lemma is not difficult. We do not give the formal proof. We
just mention that every string that is derived from the original productions
can also be derived from the later productions. For example, the form of the
strings that is derived from the former productions is βα∗. By using the later
productions, we have A → βB → βαB → . . . → βα. . .αB → βα∗. In reverse,
every sting that is derived from later productions can also be derived from
the former productions. For example, the form of the strings that is derived
from the later productions is βα∗. Then in the former productions we have
A→ Aα→ Aαα→ Aαα. . .α=⇒Aα∗.

In final step, we replace A with β and get βα∗. That means that the two
sets of sentences which two grammars generate are equal.

7.3 Methods of Syntax Analysis 167

In general, no matter how many left recursive productions there are, we
can eliminate immediate left recursion from them by using the following
technique. First, we group the productions with left recursion of nonterminal
A as

A→ Aα1 | Aα2 | . . . | Aαm | β1 | β2 | . . . | βn,

where no βi begins with an A. Then, we replace the A-productions (the left
recursive ones) by

A→ β1A′ | β2A′ | . . . | βnA′,
A′ → α1A′ | α2A′ | . . . | αmA′.

The nonterminal A generates the same strings as before but is no longer left
recursive. This procedure eliminates all immediate left recursion from the
A and A′ productions (provided that no αi is ε). But it does not eliminate
the left recursion involving derivations of two or more steps. For example,
consider the productions

S→ Ab | a,

A→ Ac | Sd | ε.
In these productions, there are two kinds of left recursions. A → Ac is the
kind we have seen above while the nonterminal S is left recursive because
S→ Ab→ Sdb. It is a left recursion involving derivations of two steps.

The process of the eliminating left recursion can be formally represented
as an algorithm as follows. It will systematically eliminate left recursion from
a grammar. It is guaranteed to work if the grammar has no cycles (derivations
of the form A =⇒ +A) or ε-productions (productions of the form A→ ε)

Algorithm 7.1 Eliminating left recursion.
Input: Grammar G with productions being of left recursion but with no

cycles or ε−productions.
Output: An equivalent grammar with no left recursion.
Algorithm steps:
Step 1 Arrange the nonterminals in some order so that the productions

are divided into two parts, in one part there is no left recursion while in the
other part there are left recursions. We now list these productions with the
increasing order of the indices of the nonterminals, e.g.,

Ai → Aiα1|Aiα2|. . .|Aiαm and Ai → β1|β2|. . .|βn,

Aj → Ajρ1|Ajρ2|. . .|Ajρk and Aj → τ1|τ2|. . .|τl (where j > i).

Step 2 for u := i to v do begin (assume that i is the lowest index
of nonterminal with the left recursion and v is the greatest one) replace
each production of the form Ai → Aiα1|Aiα2|. . . by the productions Ai →
(β1|. . .|βn)B, Ai → β1|. . .|βn and newly established productions

Bi → α1|. . .|αm, Bi → (α1|. . .|αm)Bi,

168 Chapter 7 Syntax Analysis

where Bi is a new nonterminal:
end

But the algorithm is just eliminating the immediate left recursion produc-
tions. If there is also the indirect left recursion, we can transform it into
the immediate left recursion one. The approach is similar to what we did in
transforming productions to the Greibach normal form from the Chomsky
normal form, that is for the production of the form Au → AvAt where u > v,
we replace Av with the right part of the production with Av as a left part
to increase the index, and iteratively doing so if needed (at most we need to
do u− v times) until the right part also has Au as the first element. In this
case, the immediate left recursion is formed.

The reason for the procedure above works is that after a number of iter-
ations, any production of the form Au → Av . . . where v < u, must become
Au → Ax. . .. There are two possibilities here, either u = x and immediate
left recursion takes place, we can eliminate the immediate left recursion by
the algorithm above; or x > u. In this case, nothing happens.

Therefore, in order to eliminate the immediate left recursion for the
Ai-productions actually we performed the same procedure when we trans-
form the Chomsky normal form to the Greibach normal form.

There is another thing that impedes the execution of derivation with pro-
duction uniquely decided. We mean ambiguity. A grammar that produces
more than one parse tree for some sentence is said to be ambiguous. In other
words, an ambiguous grammar is one that produces more than one leftmost
or rightmost derivation for the same sentence. When ambiguity happens for
the derivation we will not be able to decide which derivation we should take
for realizing our aim. For certain types of parsers, like top-down analysis
which we discuss right now, it is desirable that the grammar be made un-
ambiguous, for if it is not, we cannot uniquely determine which derivation
or parse tree to select for a sentence. However there is exception. For some
applications we shall also consider methods whereby we can use certain am-
biguous grammars, together with disambiguating rules that “throw away”
undesirable parse trees, leaving us with only one tree for each sentence. We
will not discuss the case.

In order for us to have uniquely determination of the derivation, we need
to rewrite the originally ambiguous grammar to eliminate the ambiguity. For-
tunately, some ambiguous grammar is related to left recursion. The grammar
is ambiguous while it is also left recursion grammar. In this case when the
left recursion is eliminated, the ambiguity problem is solved. Of course this
is ideal case. Others are not so lucky. But they are also able to rewrite to
eliminate the ambiguity. As an example, we can eliminate the ambiguity from
the following “dangling-else” grammar:

stmt→if expr then stmt
| if expr then stmt else stmt
| other

7.3 Methods of Syntax Analysis 169

Here “other” stands for any other statement. This is an ambiguous grammar
as for some sentences they have two parse trees. But it is not difficult to
rewrite it so that it becomes unambiguous one.

Now we introduce the concept of LL(1) grammar.

Definition 7.4 In a grammar G, if for any nonterminal that occurs as left
part of more than two productions their derivation sets are disjoint, then the
grammar G is called LL(1) grammar.

The determination of LL(1) grammar.
Now that we have known what is LL(1) grammar, and that in order to

deterministically carry out top-down derivation we must adopt LL(1) method
to make sure that all the productions with the same specific nonterminal as
the left parts have disjoint derivation sets. If it is the case, then the derivation
process can be proceeded deterministically from beginning until the end. If
the condition is not satisfied, however, does it mean that the LL(1) method
can not be used? The answer is not yet deterministic. We still have chance if
the grammar can be transformed into LL(1) one. Otherwise, many grammars
are stopped outside the door of LL(1) and LL(1) will not be attractive. But
only some grammars can be transformed into LL(1) one. For others they
really can not be analyzed by LL(1) method.

Now the problem is how to transform the grammar that is known to be
non-LL(1) into LL(1). We see the following example.

Example 7.3 Given a grammar that describes programs as follows:
PROGRAM→begin DECLIST comma STATELIST end,
DECLIST→d semi DECLIST,
DECLIST→d,
STATELIST→s semi STATELIST,
STATELIST→s.

Decide whether it is LL(1) or not? If it is not, is it possible to transform it
into LL(1) one?

Solution We just need to check the derivation sets for DECLIST and
STATEMENT as only these two nonterminals each has two derivation sets.
We look at DECLIST first.

DS(DECLIST→d semi DECLIST)={d}
DS(DECLIST→d)={d}

So the two have completely equal derivation sets. The grammar is not LL(1)
one. Notice the difference of the two productions. For the former one the
terminal d is followed by semi while for the later it is followed by an empty.
It implies that in right part of PROGRAM it will be followed by comma.
Therefore what is needed is only to introduce a nonterminal. We then have

PROGRAM→begin DECLIST comma STATELIST end,
DECLIST→d X,
X→semi DECLIST,
X→ ε.

170 Chapter 7 Syntax Analysis

Now we only need to check the derivation sets of X:
DS(X→semi DECLIST)={semi},
DS(X→ ε)={comma}.

We still have to handle STATELIST. Similarly, we obtain
STATELIST→s Y,
Y→semi STATELIST,
Y→ ε.

The two derivation sets for Y are disjoint. In the end, we transform the
original grammar into LL(1) one. The method we used is called left factoring.
Left factoring is a grammar transformation that is useful for producing a
grammar suitable for predictive parsing. The basic idea is that when it is not
clear which of two alternative productions to use to expand a nonterminal
A, we may be able to rewrite the A-production to defer the decision until we
have seen enough of the input to make the right choice.

For example, suppose that we have the two productions
stmt→if expr then stmt else stmt

| if expr then stmt
On seeing the input token if, we cannot immediately tell which production to
choose to expand stmt, in general, if A → αβ1 | αβ2 are two A-productions,
and the input begins with a nonempty string derived from α, we do not know
whether to expend A to αβ1 or αβ2. However, we may defer the decision by
expending A to αA′. Then, after seeing the input derived from α, we expend
A′ to β1 or β2. That is, left-factored, the original productions become

A→ αA′,
A′ → β1 | β2.

Algorithm 7.2 Left factoring grammar.
Input: A grammar G is given.
Output: An equivalent left-factored grammar.
Algorithm steps: For each nonterminal A find the longest prefix α common

to two or more of its alternatives. If α �= ε, i.e., there is a nontrivial common
prefix, replace all the A productions

A→ αβ1 | αβ2 | . . . | αβn | γ,
where, γ represents all alternatives that do not begin with α by

A→ αA′ | γ,
A′ → β1 | β2 | . . . | βn.

Here A′ is a new nonterminal. Repeatedly apply this transformation until no
two alternatives for a nonterminal have a common prefix. Then the original
grammar G is left factored.

Left factoring really can help us with some grammars. However, it is not
a panacea. For some grammars, it does not work at all. Now consider another

7.3 Methods of Syntax Analysis 171

example�

P→ Qx,

P→ Ry,

Q→ sQm,

Q→ q,

R→ sRn,

R→ r.

In this example, the derivation sets of both alternatives of P contain s, so the
grammar is not LL(1) grammar. We use left factoring method to transform
it. We replace P productions with followings:

P→ sQmx,

P→ qx,

P→ sRny,

P→ Rny.

Now there are derivation sets that are still intersected, so we need to do the
left factoring. We get

P→ qx,

P→ ry,

P→ sP1,

P1 → Qmx,

P1 → Rny.

Now the first three derivation sets are disjoint. But the last two P1 produc-
tions become the situation similar to that of P productions before. We then
handle them as we did for P productions. This time we get

P1 → qmx,

P1 → qmx,

P1 → sRnny,

P1 → rny.

The derivation set of the first P1 and that of the third one are intersected
again. Once again we use left factoring to deal with. We get

P1 → qmx,

P1 → my,

P1 → sP2,

172 Chapter 7 Syntax Analysis

P2 → Qmmx,

P2 → Rnny.

Now the situations of P2 are similar to both of P1 and P, even they have
longer right parts. Obviously the process can not end. Therefore our attempt
to transform any grammars by left factoring is destined to fail.

Previously, we have discussed the indirect left recursion, now we once
again to discuss it and present a concrete example:

S→ RT,

R→ TU,

T→ SW,

U→ VT,

W→ RU.

Notice that the production set is not complete. Here we start from S and make
the derivations S → RT → TUT → SWVSW. Then the left recursion on S
occurs. Therefore we can always try to transform any indirect left recursion
into direct left recursion. The following shows the fact. Consider the following
grammar

S→ Aa | b,

A→ Ac | Sd | ε.
At first we transform it to be

S→ Sda | b,

A→ Ac | Aad | bd | ε.
Then transform again to get

S→ bS′,
S′ → daS′ | ε,
A→ bdA′ | ε,
A′ → cA′ | adA′ | ε.

The example shows that there is the so-called inherited left recursion gram-
mar for which all the productions with the same nonterminal as their left
parts contain common terminals in theirs derivation symbol sets. We are un-
able to eliminate the left recursion for this kind of grammar. There is also
some grammar that looks vey simple, but it is not LL(1) grammar and cannot
be transformed to be LL(1) grammar.

The language which a LL(1) grammar generates is called LL(1) language.
Now we have seen that a non left recursion grammar can or cannot be trans-
formed to LL(1) grammar that is equivalent to itself. It is the same to say

7.4 LL(1) Syntactical Analysis Method 173

that a grammar can or cannot be transformed so that both generate the same
language.

A problem comes up that does the algorithm exist that is able to de-
termine whether a given language is of LL(1) or not? The answer to the
question is no. This kind of problems is called undecidable or unsolvable.
Theoretically, it has been proven that this kind of algorithm does not exist.
At least, there is no such algorithm that is applied to any case.

7.4 LL(1) Syntactical Analysis Method

After we explained the LL(1) grammars and LL(1) languages, we now in-
troduce the LL(1) syntactical analysis method. It belongs to the top-down
syntactical method.

In order to perform the LL(1) syntactical analysis, at first we have to
determine whether the given grammar is of LL(1). The specific process is as
follows:

1) Check if the grammar contains left recursion. If it does, the left recur-
sion should be eliminated. If it cannot be eliminated then the process ends,
the syntactical analysis fails.

2) If the grammar does not contain left recursion or the left recursion
is eliminated then the next step is to check whether the derivation sets of
the productions with the same left part disjoint. If they disjoint, then the
LL(1) syntactical analysis can be immediately carried out. However, if they
do not disjoint, then they need to be transformed through extracting common
factors or other methods. If the transformation fails, the syntactical analysis
also ends with failure.

When the two steps above succeed, the top-down syntactical analysis of
the compiler may really start. Now associating with Example 6.1 we introduce
the syntactical analysis process.

The productions of the grammar after transforming to LL(1) grammar
are as follows:

PROGRAM→ begin DECLIST comma STATELIST end,

DECLIST→ dX,

X→ semi DECLIST,

X→ ε,

STATELIST→ sY,

Y → semi STATELIST,

Y → ε.

Sequentially, the derivation set of each production is evaluated. We have

DS(PROGRAM→begin DECLIST comma STATELIST end)={begin},

174 Chapter 7 Syntax Analysis

DS(DECLIST→dX)={d},
DS(X→semi DECLIST)={semi},
DS(X→ ε)={comma},
DS(Y→semi STATELIST)={semi},
DS(Y→ ε)={end}.

Using these derivation sets, we construct the LL(1) syntactical analysis table
as shown in Table 7.1.

Table 7.1 LL(1) syntactical analysis table

Nonterminal Input symbol(terminal)

PROGRAM begin d semi comma s end

PROGRAM
→begin

DECLIST DECLIST→d

X X→semi X→ ε
STATELIST STATELIST

→s
Y Y→semi Y→ ε

Note: suppose that the input sentence is begin d semi d semi d comma s semi s

end.

We store the table in memory, meanwhile, the input is also stored in
memory. Notice that productions with X and Y as the left part have the
same derivation set and both consist of single element semi. But since the
two occur at different times the whole derivation can be deterministically
carried out without any difficulty (see Fig. 7.1).

begin d semi d semi d comma s semi s end

Fig. 7.1 Syntax analysis process.

At first begin is scanned. As in the analysis table the record is PROGRAM
→begin. . . , we check the productions and found that at the right part of pro-
duction PROGRAM→ really starts with begin. Following begin is DECLIST.
Referring to the input sentence, the second character is d. We look up the

7.4 LL(1) Syntactical Analysis Method 175

analysis table, the record that corresponds to d is DECLIST→d, so we need
to go to check the production with DECLIST as left part. This can be con-
sidered as going to subprogram. We see that the production with DECLIST
as left part has d X as its right part. Therefore we advance to the production
with X as left part. Meanwhile, we contrast it with input semi. The record
under column semi is X→semi. . . . Then we advance to the second term of the
right part that corresponds to input d. So far the derivation is still working
on the position DECLIST. Therefore when input advances to another semi,
its record is X→semi DECLIST. We then go to processing the production
with DECLIST as left part. This time (the second time that we met semi)
d is the first term of the right part. And we are working on the position
X. We go forward in the input string, we meet comma and the record is
X→ ε. That means that we have passed through DECLIST in production
PROGRAM→begin DECLIST comma STATELIST end. Therefore we go to
element comma. It does not correspond to any production but requires that
we go to the production with STATELIST as left part as its right part starts
with s and in the input s just follows comma. We check the production with
STATELIST as left part, it is STATELIST→s Y. So we go to the production
with Y as left part and semi as the first term of the right part. We found that
it is Y→semi STATELIST. Then we go to the production STATELIST→s
Y. But this time semi does not follow s again, rather end follows s as the
production Y→ ε takes place. It also proclaims the success of the analysis.
The success means that the input is the legal program of the language in
terms of the syntax.

Now we use an algorithm to describe the process of LL(1) syntactical
analysis. We call the algorithm LL(1) syntactical analysis algorithm, and is
abbreviated to LA.

Algorithm 7.3 (Algorithm LA).
Input. It takes as input all the productions that have been transformed

to LL(1) productions, and the syntactical analysis table for DS of each pro-
duction (as shown by Table 7.1) and input sentence (program).

Output. If the analysis determines the legality of the input program, it
reports success, otherwise it reports failure.

The steps of the algorithm are follows:
LA1 (begin). Take the first element of the input program and check the

syntactical analysis table to see if the record of the table for this step matches
the input element or not. The first production to be checked should be the
one with the start symbol of the grammar as its left part and the record in
the row corresponding to the start symbol should match the first element of
the input program.

LA2 (advance the derivation). In the production that takes the start
symbol as the left part, we check the right part of it to see if the record in
the analysis table matches the input symbol. If they do, then advance the
analysis to the next symbol at right. However, if on the production the next

176 Chapter 7 Syntax Analysis

symbol is not a terminal, then it means that it needs to derive further from
the nonterminal until a production with a terminal as the first element of its
right part, or if in the process we meet a production with ε as its right part,
then we need to see the followers of the nonterminal that occurs as left part
of the production. The reason for doing so is that the elements of DS consist
of two kinds. One is the first terminal which the nonterminal may derive from
the production with it as the left part, either the first terminal occurs as the
first symbol on the right part of the production, or the first symbol is not a
terminal rather it is a nonterminal, but the derivation from the nontermianal
will yield the first terminal aforementioned as the first symbol. The other is
the follower symbol that comes from when a production in discussion has ε
as the right part, then DS element of this nontermianl is the first symbol of
the nonterminal following the nonterminal, or if it also derives an ε, then it is
the first symbol of the nonterminal following the nonterminal or the follower
symbol of it and so on. When the first item of the right part of the production
is not a terminal, we have to go to LA3.

LA3 (branch and return). On the production with the start symbol as
left part, the process advances on the right part one symbol after another
symbol. For terminal symbol (as a comma in the last example) we just need
to check if the input matches the same symbol on the production. If it is a
nontermianl then we will go to a subprogram that handles the nonterminal as
we will derive its DS that corresponds to the input program. In this process
if once again we meet a nontermianl we will go to another subprogram. In
this way, the subprograms are embedded. Therefore, when returning from a
subprogram, we need to return to where the subprogram was invoked. If it
returns to the main program that for the first time it goes to the subprogram
of the nonterminal, then it advances to the next symbol on the right of the
nonterminal in the production with a start symbol as the left part. Finally we
come to matching the final symbol of the input with a final symbol of right
part of the production with a start symbol as left part. When the process
smoothly proceeds without any inconsistency, then the algorithm reports
success and also means that the input program is legal in terms of syntax.

Actually, the algorithm above can also be used to construct parsing tree
as long as the transformed LL(1) productions are taken as parsing tree with
start symbol as the root of the tree and nonterminals as the inner vertices.
Now we still take the input above as our example to draw the parsing tree
that is shown in Fig. 7.2.

Thus the leaves of the tree are linked to become
begin d semi d semi d comma s semi s end

Here, we invoke X→semi DECLIST twice and invoke X→ ε once, also we
invoke Y→semi STATELIST once and Y→ ε once. We go to DECLIST from
X→semi DECLIST after matching the first semi, and when we handle DE-
CLIST, we get DECLIST→d X. Then we go to subprogram X and from X
we got d and semi DECLIST. So we go to DECLIST twice. We obtain

7.4 LL(1) Syntactical Analysis Method 177

Fig. 7.2 parsing tree.

DECLIST→d X

→d semi DECLIST (we invoke X→semi DECLIST for

the first time)

→d semi d X

→d semi d semi DECLIST (X→semi DECLST is invoked for

the second time)

→d semi d semi d X

→d semi d semi d (X→ ε is invoked once)

Similarly,

STATELIST→s Y

→s semi STATELST (we invoke Y→semi STATELIST for

the first time)

→s semi s Y

→s semi s (Y→ ε is invoked once)

By making use the idea of regarding nonterminal as subprogram, the process
of top-down syntactical analysis can be seen clearly.

We consider another example that is on arithmetic expressions. After
transformation the productions become of LL(1):

E→ TE′,
E′ → +TE′,
E′ → ε,

T→ FT′,
T→ ∗FT′,
T→ ε,

178 Chapter 7 Syntax Analysis

F→ (E),
F→ id.

At first, we need to evaluate the Derivation Set (DS) of each production.
They are

DS(E → TE′) = {(, id},
DS(E′ → +TE′) = {+ },
DS(E′ → ε) = {$}, ($ is the end sign of input string)
DS(T→ FT′) = {(, id},
DS(T′ → ∗FT′) = { ∗ },
DS(T′ → ε) = {+,), $},
DS(F→ (E)) = {(},
DS(F→ id) = {id}.

We now construct the syntactical analysis table (see Table 7.2). This time
we add symbol

√
to indicate that it is also a follower symbol.

Table 7.2 LL(1) syntactical analysis table

Nonterminal Input symbol

id + * () $

E E→TE′ E→TE′ √ √
E′ E′→+TE′ E′→ ε E′→ ε

T T→FT′ √
T→FT′ √ √

T′ T′→ ε T′→*FT T′→ ε T′→ ε

F F→id
√ √

F→(E)
√ √

Now we consider the LL(1) syntactical analysis of the input sentence
(id + id ∗ id) ∗ id. According to the algorithm given above, the analysis starts
with the production with the start symbol as left part. As there is only one
production of this kind, that is E → TE′, referring to input string (id. . . ,
we go to production T → FT′, then we go further to F → (E). Both these
two branch to subprogram. From production F→ (E), since the input is (id
+, we advance to (TE′, from T we turn to the production of T as left part
T → FT′. From F, we get id as we have F → id. The id is consistent with
the input id. From F, we advance to the second item T′. However, in order
to match the input, T′ can only derive ε, so actually we leave subprogram of
T and return to the next item E′. The production with E′ as left part has
+TE′ as right part. This time the T will provide id again via T→ FT′. After
F provides id via F → id, then T′ → ∗FT′. Then E′ → ε. So now we have
(id+ id∗ id). We advance to next symbol in the production. The symbol is T′

as the original production is T→ FT′. T′ → ∗FT. The first symbol ∗ matches
the input, the next one F has F → id, Therefore we have (id + id ∗ id) ∗ id.
The following T′ and E′ are removed via T′ → ε and E′ → ε. If we write

7.4 LL(1) Syntactical Analysis Method 179

down the whole derivation we have the following process:

E → TE′

→ FT′E′

→ (E)T′E′

→ (TE′)T′E′

→ (FT′E′)T′E′

→ (idT′E′)T′E′

→ (idεE′)T′E′

→ (id + TE′)T′E′

→ (id + FT′E′′)T′E′

→ (id + id ∗ FT′E′)T′E′

→ (id + id ∗ idT′E′)T′E′

→ (id + id ∗ idεE′)T′E′

→ (id + id ∗ idε)T′E′

→ (id + id ∗ id) ∗ FT′E′

→ (id + id ∗ id) ∗ idT′E′

→ (id + id ∗ id) ∗ id.

It seems that the process of derivations is very tedious. Actually, it is done
in this way within the computer. Here we follow the principle of the leftmost
derivation. The reader may contrast the derivation with the Fig. 7.3 to more
clearly understand the process of LL(1) syntactical analysis.

Fig. 7.3 The parsing tree of ((id + id ∗ id) ∗ id).

In terms of subprogram invocations, they are shown in Fig. 7.4.

180 Chapter 7 Syntax Analysis

Fig. 7.4 The representation of the invocations of subprograms in LL(1) syntactical
analysis.

Notice that in the figure, the arrows downward represent the invocation
while the upward ones represent return to the caller who invokes the subpro-
gram. From the discussion above, we can see that via the contrasts between
the DS element and the input that occurs at the left of the DS symbol, the
analysis is deterministic. It does not need backtracking. It is very important
for the parsing methods as only by this way it can be efficient. Whether a syn-
tactical analysis method can be accepted to apply or not mainly depends on
the criterion – efficiency. According to this in the following we introduce an-
other method — bottom-up method, or its representation, LR(1) syntactical
analysis method.

7.5 Bottom-Up Syntactical Analysis Method

In the last section, we discussed top-down syntactical analysis method, es-
pecially LL(1) syntactical analysis method. The main idea of the method is
that starting from the start symbol of the grammar, the analysis carries out
the derivations from top to down without backtracking. This process con-
tinues until it derivates the input program. If the result of the derivations
is consistent with the input, then the analysis reports success, and it means
that the input is legal in terms of the syntax. Otherwise it reports failure and
the input is illegal.

The solution to the problem usually is not unique [5]. Now that it can
be top-down we naturally think of bottom-up instead. At least it can be
tentative. In this section, we will discuss the bottom-up syntactical analysis
method.

In contrast to the top-down method, bottom-up method starts from the
input program, that is that it starts from terminal symbol, rather than from

7.5 Bottom-Up Syntactical Analysis Method 181

nonterminal. We regard the input elements as the leaves of the parsing tree.
Then we climb the tree through shift-reduction operations. The aim of shift
operations is to combine the leaves that belong to the same parents while
the reduction operations are for reducing the leaves to their parents. By this
way, the analysis “climbs” the parsing tree until the input reduces to the root
of the tree, i.e., the start symbol of the grammar. Similar to LL(1) method,
if the analysis successfully finishes, it reports success, and it means that the
input program is legal in terms of syntax; otherwise it reports failure and the
input is illegal.

In order to reduce a number of terminal symbols to their parents and
then to reduce nonterminal symbols to the start symbol, or more generally
to reduce the string of nonterminals and terminals to the start symbol, the
reduction operations are essential. Before we discuss the details of reduction
operation, we introduce the concept of handle first.

We introduce the concept of handle both informally and formally. At first,
informally, a “handle” of a string is a substring that matches the right side
of a production, and whose reduction to the nonterminal on the left part of
production represents one step along the reverse of the rightmost derivation.
In many cases the leftmost substring β that matches the right part of some
production A → β is not a handle, because a reduction by the production
A→ β yields a string that cannot be reduced to the start symbol.

Then formally, we have

Definition 7.5 If S is the start symbol of a context-free grammar G, and
we have a rightmost derivation

S ∗=⇒αAω =⇒ αβω,

then A → β in the position following α is a handle of αβω. Note that the
string ω to the right of handle contains only terminal symbols.

We say a handle rather than the handle because the grammar could be
ambiguous with more than one rightmost derivation of αβω.

Example 7.4 Suppose that G is a context-free grammar with the following
productions:

S′ → aS,

S→ As | A,

A→ bSc | bc.

There are rightmost derivations for it as follows:

S′ → aS→ aAs→ abScs→ abbSccs.

Here abbSccs is a right-sentential form, and bSc is a handle as by production
A→ bSc it can be reduced to A.

From the definition, we can see that handle is very important to a re-
duction because only through handle the reduction may be carried out [5].

182 Chapter 7 Syntax Analysis

Therefore, in order to perform the bottom-up syntactical analysis, and make
sure that no backtracks is needed, then it must be assured that in any sen-
tential forms all the handles are uniquely determined.

Therefore, reductions are key operations for the bottom-up syntactical
analysis. While branching from a handle to another handle, however, it needs
to depend on another operation – shift operation.

Definition 7.6 Given a context-free grammar that is defined by a set of
productions P. Suppose that γ is any right sentential form, then after the
process that performs the rightmost reduction to γ, the moving a handle
position to another nearest handle position that is obtained by relying on
that handle to do the reduction operation is called shift operation.

It can be said that the shift operation is the preparation for the reduction
operation. Only when the shift operations are done, the reduction operations
can be carried out continuously until finally the process finishes with a start
symbol as the result. In order to proceed in our discussion, we need the
concepts of equivalence and equivalent classes.

Definition 7.7 Given a set S and a relation R defined between elements of
S. R is said:

1) Reflexive. It means that for ∀a ∈ S, aRa.
2) Symmetric. It means that for ∀a, b, aRb =⇒ bRa.
3) Transitive. It means that for ∀a, b, c ∈ S, aRb, bRc=⇒aRc.

Definition 7.8 Given a set S and a relation R defined between elements
of S, R is said to be equivalent relation, if it is reflexive, symmetric and
transitive.

Definition 7.7 given a set S and a relation R defined between elements of
S, the relation R causes partitioning S into groups such that

1) All the elements in the same group are equivalent.
2) The elements that belong to different groups are not equivalent.
3) Any element of S must be in and only in one group.
The group of this kind is called equivalent class. As the elements in each

group are equivalent, we can choose anyone to be the representative of the
group. Then the number of equivalent groups is equal to the number of the
representatives of the groups.

Now we return to the productions of the grammar and consider its con-
figuration set (this concept will be discussed soon). Given the productions of
context- free grammar G as follows:

S′ → Sc,
S→ SA | A,

A→ aSb | ab.

In order for our discussion below we number the productions from 1 to 5
(there are five productions now), and for every position of the right part

7.5 Bottom-Up Syntactical Analysis Method 183

of the production, that is the positions between two symbols and position
before the first symbol and after the last symbol in right part we add tokens
to them. These are called configurations. Our token contains two numbers.
The first one denotes the number of the production, and the second denotes
the order of the position from left to right in the right part of the production.
The positions are numbered from 0. So now we have the productions with
numbered configurations:

1) S′ →(1, 0) S(1, 1)c(1, 2);
2) S→(2, 0) S(2, 1)A(2, 2);
3) S→(3, 0) A(3, 1);
4) A→(4, 0) a(4, 1)S(4, 2)b(4, 3);
5) A→(5, 0) a(5, 1)b(5, 2).

Therefore, for grammar G its configuration set consists of {(1, 0), (1, 1),
(1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (4, 0), (4, 1), (4, 2), (5, 0), (5, 1), (5, 2)}.

In the set, we define relation R as follows: (1, 0) faces S, we define it
to be equivalent to configurations where are on the leftmost of right part of
productions with S as the left part. Sequentially if the configuration faces
another nonterminal, then it will be equivalent to the configurations where
are on the leftmost of the right part of the production with this nonterminal as
left part. The equivalence will be transitive in this way until no configuration
faces a nonterminal again or all the configurations that should be taken into
account in this way have been exhausted. So we have the following equivalent
relations. We use ∼ to denote R, and have

(1, 0) ∼ (2, 0) ∼ (3, 0) ∼ (4, 0) ∼ (5, 0).

Meanwhile, we use numbers to denote these equivalent classes with starting
from the least positive integer 1.

Notice that the equivalent classes here are not exactly same as the tra-
ditional equivalent classes in that a configuration may belong to more than
one equivalent class. This is also the subtle point of the configuration equiv-
alence. However, in order to proceed the bottom-up syntactical analysis, this
is necessary. For example, according to the principle above, for (2, 1), as it
faces nonterminal A, we have

(2, 1) ∼ (4, 0), (2, 1) ∼ (5, 0).

On the other hand, since (1, 0) ∼ (2, 0), both face S, so their next configura-
tions are equivalent too, so (2, 1) ∼ (1, 1), hence we have

(1, 1) ∼ (2, 1) ∼ (4, 0) ∼ (5, 0).

Now we see that both (4, 0) and (5, 0) belong to two equivalent classes. We
define shift function f to represent the numbering of classes. The f takes the
configuration and the character as arguments, and the next configuration or
its equivalent class as the value. We start with the configuration (1, 0), as

184 Chapter 7 Syntax Analysis

there is no input character yet, we take— to represent the empty character,
so

f((1, 0), −) = {(1, 0), (2, 0), (3, 0), (4, 0), (5, 0)} = 1,

f(1, S) = {(1, 1), (2, 1)} = 2f((2, 1), −) = {(4, 0), (5, 0)},

so
{(1, 1), (2, 2), (4, 0), (5, 0)} = 2.

Subsequently, we define

f(2, c) = {(1, 2)} = 3,

f(2, A) = {(2, 3)} = 4,

f(1, A) = {(3, 1)} = 5,

f(1, a) = {(4, 1), (5, 1)} = 6,

but (4, 1) faces S. According to the equivalent relation, we have

(4, 1) ∼ (2, 0) ∼ (3, 0) ∼ (4, 0) ∼ (5, 0) ∼ (5, 1),

so

{(4, 1), (2, 0), (3, 0), (4, 0), (5, 0), (5, 1)} = 6,

f(6, s) = {(4, 2), (2, 1)} = 7,

f(7, b) = {(4, 3)} = 8,

f(6, b) = {(5, 2)} = 9.

These class numbers are considered as state numbers. By this way, configura-
tions and states establish the correspondence. We find that different configu-
rations may have the same state number as they belong to the same equivalent
class, while a configuration may have more than one state number. We then
have the following productions with states in corresponding configurations:

S′ →1 S2c3,

S→1, 6 S2, 7A4,

S→1, 6 A5,

A→1, 2, 6 a6S7b8,

A→1, 2, 6 a6b9.

By the way, there is a need to supplement that for

A→ ε.

Since the right part has no symbol, there is only a position on it, it corre-
sponds to a state.

7.6 LR(1) Syntactical Analysis Method 185

Having the states, we can have more understanding on the reduce-shift
operations of the bottom-up syntactical analysis method. On the right sen-
tential form if a position corresponds to the internal position of the right
part of some production, then it will need moving right to the terminal or
nonterminal symbol adjacent to it. The current state will change to the state
that corresponds to the next position. This is why in this circumstance a
shift operation is needed. When it is on the last position of a production it
needs to reduce the right part string into the nonterminal on the left part of
the production. And by this way the whole process likes climbing up the tree
until it comes to the top of the tree, the start symbol of the grammar.

In this process one needs to know that in terms of the current production
in use, there is no symbol beside the symbol on the right side. However,
when the reduction operation is done, then the position corresponds to the
right side of the nonterminal that is a left part of some production. And
the nonterminal must occur in the right part of other production. And in
the production it must have an adjacent symbol on its right. Or if it is the
left part of ε production, it must have the follower symbol. And the follower
symbol must be obtained from a production that the nonterminal occurs as
an element of the right part of the production. The terminal following it is
the follower of it, or the element of FS of its adjacent nonterminal is the
follower of it. Otherwise the sentence must be wrong. Therefore, handle is
nothing but a right part of a production that can be used for reduction. If the
productions are given according to the order given above, then the bottom-
up syntactical analysis can be carried out from the bottom up to the top. If
this process finishes with the start symbol of the grammar, it reports success
and the input sentence is confirmed to be a correct sentence of the grammar.

7.6 LR(1) Syntactical Analysis Method

After we have explained the idea of the bottom-up syntactical method, we
start introducing a specific method and widely use it. We mean the LR(1)
method.

As we have mentioned previously that LR(1) means a method that scans
the input left to right and producing rightmost derivation through looking
ahead one symbol on the input while LR(0) means that it need not using
look ahead symbol.

7.6.1 LR(0) Syntactical Analysis

The LR(0) syntactical analysis precisely determines the prefix property of
the deterministic context-free language. A language L is said to have prefix

186 Chapter 7 Syntax Analysis

property if at any time prefix of the sentence w of L must not be in L. This
property of LR(0) assures that a sentence of the language can be reduced to
the start symbol as any prefix of it cannot be reduced to the start symbol.
Actually, the prefix property is not a strict limitation as so long an end token
is introduced into any deterministic context-free language, then the language
is transformed into one with the prefix property, because any sentence is a
legal sentence of the language L only when it contains the end token. As
any prefix of the sentence cannot contain the end token, it cannot be a legal
sentence of L.

Directly perceiving through the sense, if there is a rightmost derivation

S ∗=⇒δAw =⇒ δαβw

and δα = γ, and in each case, δAw really is the right sentential form for
γw. In this case, we may perform bottom-up syntactical analysis of a symbol
string x of L(G), and it has a right sentential form of G. When we carry out a
series of reduce-shift operations, we may reach the start symbol of G without
backtracking. In this way, we have the rightmost derivation of x.

More explicitly speaking, as we saw in the grammar given above, it has 9
states. Apart from states 3, 4, 5, 8, and 9 that are respectively the final state
of productions 1, 2, 3, 4, and 5, the remaining states are only used for shift
operations, while 3, 4, 5, 8, and 9 are used for reductions. They are responsible
for the reduction of each production separately and each reduction operation
will reduce input string that matches the right part of the production to the
nonterminal in left part of the production. For example, both 4 and 5 reduce
the right part sequence to the nonterminal in left part. State 4 and state 5
reduce the right parts of strings of productions 2 and 3 to nonterminal S,
while states 8 and 9 reduce the right part strings of production 4 and 5 to
nonterminal A.

Just because of the property that the grammar has, there is no need to
look ahead any symbol, the analysis can be deterministically carried out,
hence this is a LR(0) grammar.

In the description above, the states that are responsible for shift opera-
tions do not involve in reduce operations and vice versa. This case is called
shift-reduce conflict-free. However, generally speaking, shift-reduce conflict is
likely to happen in common grammars. For example, suppose that we have

N) T→(N, 0) i(N, 1),

N + 1) T→(N+1, 0) i(N+1, 1)E(N+1, 2).

Suppose that (N, 0) and (N + 1, 0) are numbered m, then

f(m, i) = m + 1 = (N, 1) = (N + 1, 1) = {(N, 1), (N + 1, 1)}.

Now there is shift-reduce conflict with the state m+1. This can be seen from
the production N) and N+1). In the production N), the state m+1 requires

7.6 LR(1) Syntactical Analysis Method 187

to reduce the input string to nonterminal T according to production N), that
is to say, to reduce the input string that is coincident with the right part of
the production N) to the left part of the production N). On the other hand,
according to the production N + 1), the state m+1 is an internal state that
should do shift operation. It should shift to the state that corresponds to the
configuration (N+1, 2). The state number of (N+1, 2) will be assigned from
the equivalent configurations. This is an obvious shift-reduce conflict.

We consider another example of LR(0) grammar. Let grammar G be a
context-free grammar with the following productions:

1) S′ → S$;
2) S→ T;
3) S→ S + T;
4) T→ (S);
5) T→ i.

We establish the configurations with these productions:

1) S′ →(1, 0) S(1, 1)$(1, 2);
2) S→(2, 0) T(2, 1);
3) S→(3, 0) S(3, 1) +(3, 2) T(3, 3);
4) T→(4, 0) ((4, 1)S(4, 2))(4, 3);
5) T→(5, 0) i(5, 1).

At first we have equivalent configuration group {(1, 0), (2, 0), (3, 0), (4, 0),
(5, 0)}, and we denote it 1. Then

f(1, S) = 2 = {(1, 1), (3, 1)},
f(2, $) = 3 = {(1, 2)},
f(1, T) = 4 = {(2, 1)} = f(7, T),
f(2, +) = 5 = {(3, 2), (4, 0), (5, 0)},
f(5, T) = 6 = {(3, 3)},
f(1, () = f(5, () = 7 = {(4, 1), (2, 0), (3, 0), (4, 0), (5, 0)},
f(7, S) = 8 = {(3, 1), (4, 2)},
f(8,)) = 9 = {(4, 3)},
f(7, i) = f(1, i) = 10 = {(5, 1)}.

So we have the productions with states attaching to configurations as
follows:

S′ →1 S 2 $ 3,

S→1, 7 T 4,

188 Chapter 7 Syntax Analysis

S→1, 7 S2, 8 +5 T 6,

T→1, 5, 7 (7 S 8) 9,

T→1, 5, 7 i 10.

By the productions with states attaching to configurations, we can estab-
lish a shift-reduce table that corresponds to the grammar. Table 7.3 is an
essential tool for the LR syntactical method.

Table 7.3 LR(0) syntactical analysis table

Symbol
State

i + () $ S′ S T ⊥
1 S10 S7 halt S2 S4

2 S5 S3

3 R1 R1 R1 R1 R1 R1 R1 R1 R1

4 R2

5 S10 S7 S6

6 R3

7 S10 S7 S8

8 S5 S9

9 R4

10 R5

Note: ⊥ on the table denotes the end mark of the input.

On the table, the items starting with S denote shift action while the
items starting with R denote reduce action, so Si means shifting to the state
i. But i after R, Ri means reduction according to the production number i.
For example, R1 means the reduction according to production number one,
i.e. the first production. Reduction means that the current string on input
will be replaced by the nonterminal of left part of the production. Actually,
the state 1 cannot encounter symbol S′. However, we put item halt on the
place to indicate that it is the successful finish situation. The empty place on
the table represents the impossible situation. If the state in the input string
meets the symbol with the empty item on the table that means that an error
case occurs and the analyzer should report failure.

For LR(0) syntactical analysis as we have mentioned that the states in
charge of doing shift operation and that in charge of doing reduction are
separated, the items on the rows of states have different characteristics. That
means that they each contains only one operation, either shift or reduction.
In this circumstance, of course, the analysis is simple.

We must point out, however, only very few grammars are of LR(0). For
example, the grammar that contains production like A → ε cannot be of
LR(0) as if the production is contained in the production set, the state A→n

must be in conflict with the same state in P→ αAβ. By the former production
no matter what symbol is coming, including β, a reduction operation should

7.6 LR(1) Syntactical Analysis Method 189

be carried out. However, by the later production, if a β comes, the state
should shift to a new state that corresponds to the configuration after β,
hence a shift-reduce conflict occurs.

Apart from shift-reduce conflict, it is also likely to have reduce-reduce
conflict. This is such a case that there are two productions like

T→ i,
V → i,

and it happens that they both have the same state corresponding to two
configurations

T→n i,
V→n i.

That means that the initial configurations of two productions have the same
state. Consequently, the two configurations after i have the same state too,
as f(n, i) has only one value. But how to do the reduction? Should we reduce
to T or to V? We are in conflict now. And this is reduce-reduce conflict.

Shift-reduce conflict and reduce-reduce conflict are commonly seen cases.

7.6.2 SLR(1) Syntactical Analysis

In the last section, we point out that LR(0) method is too weak to be practi-
cal. It is because it does not need to look ahead any input symbol, it can make
a decision by checking the state only. However, in practice, it is very rare to
have such a case. As the improvement of LR(0), the first step is to generate
SLR(1) grammar. The S in SLR(1) means simple. So it is a simple LR(1)
syntactical analysis. In this analysis, relatively simple shift-reduce conflict
is allowed. When the case occurs, it can be resolved by looking ahead one
symbol. Concretely speaking, for a production with a nonterminal A as the
left part, for some state in it, if the lookahead symbol of it does not belong
to the follower symbol of A, then reduce operation on the symbol (or symbol
string) in front of the state cannot use the production. Instead, a shift in
operation should be carried out with the lookahead symbol as the input.

We show an example of SLR(1) grammar:

S→ real IDLIST,

IDLIST→ IDLIST, ID,

IDLIST→ ID,

ID→ A | B | C | D.

We omit the details of establishing states and directly assign the states to the
configurations. We get the productions with states attaching to corresponding

190 Chapter 7 Syntax Analysis

configurations:

S→1 real2IDLIST3,

IDLIST→2 IDLIST3,4ID5,

IDLIST→2 ID6,

ID→2,4 A | B | C | D7.

With these productions with states attached, we may obtain the correspond-
ing syntactical analysis table (see Table 7.4).

In this table, we may see that on line of the state 3, there are two different
items. One is S4 that corresponds to input “,”, that means that on the state
3, if the input is a comma the state will shift to the state 4. The another
item corresponds to input end mark ⊥, this time it will do reduce operation
to reduce the previous string to the left part of the production 1, that is the
start symbol S. This is the first time that we see that there are two different
actions-shift and reduce-on the same line. This is a shift-reduce conflict. The
conflict can be resolved easily by looking ahead one symbol.

Table 7.4 SLR(1) syntactical analysis table

Symbol
State

S IDLIST ID real , A, B, C, D ⊥
1 halt S2

2 S3 S6 S7

3 S4 R1

4 S5 S7

5 R2 R2 R2 R2

6 R3 R3 R3 R3

7 R4 R4 R4 R4

We have an easy explanation about the insertion of “halt”. Imagine that
we have another production

S′ → S

and we add the state to its configurations, so we have

S′ →1 Shalt⊥.

This is why we put a halt on the intersect column S and row state 1.
SLR(1) goes forward a step in comparison with LR(0), and it may resolve

the shift-reduce conflict by distinguishing whether the looking ahead symbol
belongs to the follower of some nonterminal or not. However, the power of
SLR(1) is limited. Therefore, we need to seek for more powerful method.
Our solution is LALR(1) syntactical analysis method. “LA” here means look
ahead. That means that it resolves the conflicts by more carefully looking
ahead input symbols.

7.6 LR(1) Syntactical Analysis Method 191

7.6.3 LALR(1) Syntactical Analysis

Since the limitation of SLR(1), it has lower practicality. Therefore, people
considered how to improve it in order to have a better analytical method.
LALR(1) is a step toward the aim.

At first we analyze what made SLR(1) less practicality. We have seen that
while looking ahead one input symbol, SLR(1) did not care much its context,
especially the past context. In more general cases, only considering the past
context then can one symbol be determined whether it is legal follower or
not.

We now consider and analyze the following example.

Example 7.5 Suppose that the grammar G is given with the following
productions:

1) S→ T else F;
2) T→ E;
3) T→ i;
4) F→ E;
5) E→ E + i;
6) E→ i.

In order to explain the problem more explicitly, we analyze the grammar
step by step again. We start from the configuration (1, 0). By equivalence
relation of configurations, and the transitivity of the relation, we have

(1, 0) ∼ (2, 0) ∼ (3, 0) ∼ (5, 0) ∼ (6, 0).

We assign the equivalent configuration group the initial state 1. We have

f((1, 0), −) = 1 = {(2, 0), (3, 0), (5, 0), (6, 0)},
f(1, T) = {(1, 1)} = 2,

f(2, else) = 3 = {(4, 0), (5, 0), (6, 0)},
f(3, F) = 4 = {(1, 3)},
f(1, E) = 5 = {(2, 1), (5, 1)},
f(1, i) = 6 = {(6, 1), (3, 1)},
f(3, E) = 7 = {(4, 1), (5, 1)},
f(6, ;) = 8 = {(3, 2)},
f(5, +) = f(7, +) = 9 = {(5, 2)},
f(9, i) = 10 = {(5, 3)},
f(4, ;) = 11 = {(1, 4)},
f(5, ;) = 12 = {(2, 2)}.

192 Chapter 7 Syntax Analysis

From here, we get the following productions with states attached:

1) S→1 T2 else3 F4; 11;
2) T→1 E5; 12;
3) T→1 i6; 8;
4) F→3 E7;
5) E→1, 3 E5,7 +9 i10;
6) E→1, 3 i6.

Consequently, we may establish the analysis table as shown in Table 7.5:

Table 7.5 LALR(1) syntactical analysis table

Symbol
State

S T F E else ; + i ⊥
1 Halt S2 S5 S6

2 S3

3 S4 S7 S6

4 S11

5 R2 S9

6 R6 S8/R6 R6

7 R4

8 R3

9 S10

10 R5 R5 R5

11 R1

12 R2

Notice that on the table above, a shift-reduce conflict occurs on the line
state 6. The conflict is caused by i on the right part of the production 3
and the i on the right part of the production 6. According to the production
6, the state before i (1 and 3) comes from different ways. If it comes from
the nonterminal T in production 1, when the i is followed by ;, it should be
reduced to E and reduce action should be taken. However, the state is 3, it
comes from the state after else on the production 1. In this case, the follower
of i on the production 6 is the follower of E. Then from the production 4,
the follower of E is the follower of F. Hence it is ;. Therefore according to
the production 6, when the look ahead symbol that follows i is ;, the action
that should be done is shift. It should shift to the state 8. This is where the
conflict comes from.

Now in order to solve the conflict, the past context should be taken into
account. On the productions 5 and 6, the state 1 comes from state 1 before
T on the first production while state 3 comes from configuration after “else”.
Therefore, if we assign single state to the configuration that following i then
conflict must occurs. And this is where the problem is. After we found the

7.6 LR(1) Syntactical Analysis Method 193

problem, we know how to overcome it. The problem will be immediately
resolved as long as we add one more state to differentiate the two sources of
the state 6. The resulting result is as follows:

1) S→1 T2 else 3F4; 11;
2) T→1 E5; 12;
3) T→1 i6; 8;
4) F→3 E7;
5) E→1, 3 E5,7 +9 i10;
6) E→1, 3 i6, 13.

Now we will have a new syntactical analysis table (see Table 7.6) in place
of the above one and this one solves the shift-reduce conflict.

This table can be used to analyze the LALR(1) grammar. With the
method, if shift-reduce conflict takes place, we try to distinguish the past
context of a configuration. The conflict of this kind usually can be resolved.

Table 7.6 LALR(1) syntactical analytical table that solves the conflict

Symbol
State

S T F E else ; + i ⊥
1 Halt S2 S5 S6

2 S3

3 S4 S7 S12

4 S11

5 R2 S9

6 R6 S8 R6

7 R4 S9

8 R3

9 S10

10 R5 R5 R5

11 R1

12 R2

13 R6 R6

7.6.4 LR(1) Syntactical Analysis

We have mentioned that the LR(0) syntactical analysis method can only
be suitable to such a grammar that each state on its productions either
is for shift action or is for reduce action. It did not need to consider the
lookahead symbol. Once the look ahead symbol needs to be considered, it
is no longer suitable. Then we need a stronger method. And SLR(1) lends

194 Chapter 7 Syntax Analysis

itself to the situation. In SLR(1), we allow such a case that a state either
carries out a shift action or a reduce action according to different lookahead
symbols. The fact reflects on the table that on the same line (corresponding
to a state) with different columns, it may have shift and reduce items on
them. The practicability of this one, however, is also limited as in most cases,
the situation is more complicated that even for the same row and the same
column, depending on the past context it has different tackling methods,
either doing shift action or doing reduce action. Therefore, it needs to split a
state to two states, one for the shift action and another one for reduce action.
In some cases, even one state is split to more states. In the example of last
section, we just did so. And it is the LALR(1) syntactical analysis method.

Now we want to say again that the power of LALR(1) is still limited. For
more complicated grammars, it fails to work. If it is the case, we have to try
a stronger method, it is the common LR(1) syntactical analysis method.

The LR(1) syntactical analysis method is different from LR(0), SLR(1),
and LALR(1) in that it has much more number of states while the last three
ones have basically the same state numbers. Their sizes of the syntactical
analysis tables are also almost the same. For LALR(1), the size of states is
slightly more than SLR(1) as some states in SLR(1) will be split into two
states. The number of states of LR(1), however, will increase remarkably as
for one configuration it will become a state depending on one input, hence
the number of states will be much more than the number of configurations.

In the following, we will introduce another version of the analytical
method while we introduce the general LR(1) syntactical analysis method.
The method makes our state transitions like an automaton. Consider the
grammar with following productions (see Example 7.6).

Example 7.6 A grammar is given via the following productions:

1) S→ A;
2) S→ xb;
3) A→ aAb;
4) A→ B;
5) B→ x.

At first we add a production S′ → S so that the determination of state is
consistent with our original practice. This is called the incremental grammar
of the original grammar. Now we have:

1) S′ → S{⊥};
2) S→ A{⊥};
3) S→ xb{⊥};
4) A→ aAb{⊥};
5) A→ B{⊥};
6) B→ x{⊥}.

7.6 LR(1) Syntactical Analysis Method 195

Where inside { } is the following symbol. It is the end mark following the
input string. indicates configuration. It is similar to what we used (m, n)
before. From the point, as different inputs come, we will have different states.
Then what we get is similar to the previous automaton.

We establish all the states first and it is shown as follows:

S′ →0 S1,

S→0 A2,

S→0 x3b4,

A→0, 5 a13, 5A7, 8b9, 10,

A→0, 5 B611,

B→0, 5 x3, 12.

By this we can draw an LR(1) automaton as shown in Fig. 7.5:

Fig. 7.5 LR(1) automaton of grammar of example 7.6.

We can see that all the cores of LR(1) states correspond to the states of
SLR(1). The reason for the situation is that the cores are determined by the
symbols which other states allow to shift in. Therefore, if we do not consider
the lookahead symbols, the core is a LR(0) state. If the state is transformed
then new LR(1) state is generated while its core is still the LR(0) state.
Therefore, LR(1) states are the result of the split of LR(0) states.

The source of power of LR(1) comes from the split of states. Just de-
pending on the split, the problems which SLR(1) or LALR(1) cannot solve
can be solved satisfactorily by LR(1) method. Of course not all problems are
solvable by LR(1).

It is not that every such split is necessary. Contrasting with Fig. 7.5
we can see that states 6 and state 2 can be combined together to form a
new single state S2,6 as they each consists of a configuration only. Through

196 Chapter 7 Syntax Analysis

further analysis, we can find that more states can be combined. After such a
combination we get the LALR(1) automaton as shown in Fig. 7.6.

Fig. 7.6 LALR (1) automaton obtained from combination of states of LR (1)
automaton of Fig. 7.5.

In Figs. 7.5 and 7.6, those states that that locates at the rightmost
position of the production is for reduce action while other states are for shift
actions. The symbols beside the arrows outsides productions are the input
symbols.

From the introduction above we know that the number of states for LR (1)
is much more than that of LALR (1) though it is not obvious in the example
above. In the practical programming languages, the amount of states used
by LR (1) syntactical analysis will be several levels higher than that used by
corresponding LALR(1) syntactical analysis. Here is the statistics given by
reference: A SLR (1) syntactical analysis table of a programming language
after compression spent a number of KB of the memory on the average, while
LR(1) table needed a number of MB of the memory. When we construct
such table the memory we need probably is several tens times of the amount.
Fortes Galvez implemented a different realization of LR (1) in 1992. It slightly
reduced the size of LR (1) syntactical analysis table. On the other hand, most
of the programming languages just need the LALR (1) syntactical analysis
table, so we do not need to worry about the size of LR (1) table as we rarely
use it.

After considering LR (1) we naturally want to know what about LR (k)
syntactical analysis for k � 2, is it more powerful than LR(1)? [7] The studies
affirm that LR(k) (k � 2) syntactical analysis is slightly more powerful than
LR(1) indeed, but it is at the expense of bigger size of the analysis table.
People originally thought that when a grammar was not of LR (1), can it
be analyzed via LR (2)? However, it turned out that the probability for it
being of LR(2) is very low. The conclusion no doubt is depressing as it is not
like that when LR(0) cannot solve the problem, we use SLR(1) to solve it

7.6 LR(1) Syntactical Analysis Method 197

instead, or further use LALR(1) before we use LR(1). When LR (1) fails to
work, probably LR(2) does not work either. Therefore, theoretically LR(2)
has some significance, but it is never used so far.

We now illustrate the practical procedure of syntactical analysis via LALR
(1). We consider the grammar above:

S′ → S,

S→ A,

S→ xb,

A→ aAb,

A→ B,

B→ x,

and suppose that the input string is aaaaxbbbb. At first, we construct the
productions with states attached. They are as follows:

S′ →0 S1,

S→0 A2,

S→0 x3b4.

A→0, 5 a13, 5A8, 7b10, 9,

A→0, 5 B6, 11,

B→0, 5 x3, 12.

With these productions and states, we may construct the syntactical analysis
table as shown in Table 7.7.

Table 7.7 LR(1) syntactical analysis table

Symbol
State

S′ S A B x a b ⊥
0 Halt S1 S2 S6 S3

1 R1

2 R2

3 S4 R6

4 R3

5 S7 S11 S12

6 R5

7 S9

8 S10

9 R4

10 R4

11 R5

12 R6

13 S8

198 Chapter 7 Syntax Analysis

Before we really start the practical analysis with input string, we should
notice that the analysis needs two stacks, one for symbols and another one
for states. Besides, the handles of terminals and nonterminals are different
in that for terminals, we simply put them to the input stack, change or do
not change the state. But for nonterminals, while we put it into the symbol
stack, sometimes we will change the symbol as well as the state. Therefore,
in some books, they differentiate the handles as “goto” and “action”.

Initially, two stacks are empty, but in the state stack, we put 0 to indicate
the empty situation while in the input symbol stack, we keep it empty.

Input Symbol Stack State Stack

0

Then a comes, we have

Input Symbol Stack State Stack

5

a 0

The second a comes

Input Symbol Stack State Stack

a 5

a 0

Until four a′s all were put in the stack, the state stack does not change.

Input Symbol Stack State Stack

a 5

a 0

a

a

Then x enters the input stack, according to the analysis table, the state 5
changes to the state 10.

7.6 LR(1) Syntactical Analysis Method 199

Input Symbol Stack State Stack

x 12

a 0

a

a

a

The state 12 is for reduce, it makes x to reduce to B, and the state returns
to 5.

Now in input stack, from top to down, we have Baaaa, and in the state
stack, also from top to down, we have 5 0. The state 5 meets symbol B it
shifts to the state 11. Therefore, we have the following situation.

Input Symbol Stack State Stack

B 11

a 0

a

a

a

Under the state 11, B is reduced to A and the state 11 is removed and we
have 5 and 0 in the state stack.

Input Symbol Stack State Stack

A 5

a 0

a

a

a

The state 5 meets A, it shifts to the state 7, so the situation changes again
as follows.

200 Chapter 7 Syntax Analysis

Input Symbol Stack State Stack

A 7

a 0

a

a

a

Under the state 7, b comes and enters the input stack, the state 7 shifts to
the state 9 and the situation becomes as follows.

Input Symbol Stack State Stack

b 9

A 0

a

a

a

a

Now in the input stack, from top to down what we see is bAa, it is not
anything but the right part of the production with A as the left part. Since
the state is 9, it will reduce the three symbols to A. The situation becomes
as follows.

Input Symbol Stack State Stack

A 5

a 0

a

a

The state 5 meets A and shifts to 7. Hence we have the following situation.

7.6 LR(1) Syntactical Analysis Method 201

Input Symbol Stack State Stack

A 7

a 0

a

a

As the second b enters the input stack, once again we have bAa from top
to down and the state changes to 9. It reduces the three symbols to A. The
situation will repeat again twice more until at the end.

Input Symbol Stack State Stack

b 9

A 0

a

This time the three symbols bAa will be reduced to A and in the state stack
only the state 0 remains.

Input Symbol Stack State Stack

5

A 0

However, according to the analysis table, when the input stack is empty, the
state 5 is actually state 0, and when the state 0 meets the symbol A it shifts
to the state 2. The state 2 is for reduce. It reduces A to S and the state
becomes the state 0 again.

Input Symbol Stack State Stack

S 0

Then we have a shift action to change the situation to as follows.

Input Symbol Stack State Stack

S 1

0

202 Chapter 7 Syntax Analysis

Now the state 1 reduces S to S′ and the state becomes 0. So finally we have
the following situation.

Input Symbol Stack State Stack

S′ 0

It declares the success of the analysis. It also means that the input string is
the sentence of the grammar.

7.6.5 Comparison Between LL(1) Syntactical Analysis Method
and LR(1) Syntactical Analysis Method

It is not an easy thing to compare two completely different methods, es-
pecially compiler developers each has different favor. In Chinese, there is a
proverb that says that the benevolent sees benevolence and the wise sees
wisdom. That means that different people have different views. Either they
prefer one of these methods, or they select other methods (they select from
top-down analysis or bottom-up analysis). There are many debates indeed
between these two methods. Therefore, here we can only have a brief com-
parison.

At first, from the start of the syntactical analysis, we should say that
LR(1) is superior in the aspect as it need not to do any check before it
starts an analysis. The LL(1) analysis is different from LR(1). It has to check
whether the grammar is qualified to use the LL(1) analysis method or not. It
checks whether the grammar contains the left recursion or not and whether
the DS’s of productions with the same left part intersect or not. If there exist
such problems, then the LL(1) method cannot be used immediately until they
are resolved. Since LR(1) has no these troubles, it can be used immediately to
rather wider category of grammars and languages. Furthermore, usually there
is no need for the transformation of the grammar. Therefore, theoretically
LR(1) method is more superior than LL(1).

The following example[8] shows, however, that in some cases, the LR (1)
method also requires the transformation of the grammar. Suppose that the
grammar G1 is given with the following productions:

S→COC|CLC,

COC→orb EC stick SC stick SC crb,

EC→u semi EC|u,

CLC→ PLU semi SC|PLU,

PLU→lab PLU|u,

where COC stands for a conditional clause, CLC stands for a closed clause,

7.6 LR(1) Syntactical Analysis Method 203

orb stands for an open round bracket, EC stands for an enquiry clause, SC
stands for a sequential clause, crb stands for a closed round bracket, semi
stands for a semicolon, u stands for an unit, PLU stands for a possibly labeled
unit.

The problem comes from the fact that the unit in the conditional clause
cannot have label while the unit in the sequential clause of the closed clause
may have label. This language is LL(1) if the rules of the closed clause and
conditional clause are combined together (two productions of SC must be
transformed, otherwise their DS’s must intersect). The grammar obtained
after transformation is denoted with different notation, and we have grammar
G2 as follows:

S→orb T,

T→lab V|u W,

V→lab V|u X,

W→crb|semi T|stick SC stick SC crb,

X→ semi V|crb,

SC→PLU Y,

Y→semi PLU Y|z,
PLU→lab PLU|u.

However, it can be proven that the original grammar G1 is not of LR(1).
This is because when the string

(u

is read and the look ahead symbol is semi, there is no way to determine
whether one should use the production of PLU to reduce it to PLU or use
the first production of EC to shift to a new state. Thus we will have a shift-
reduce conflict that cannot be solved.

This example and the examples from ALGOL 68 and other languages
show that if a grammar can be of LL(1) only through manual transformation,
then that it can be of LR(1) must also be processed beforehand. That means
that what we said before that LR(1) does not require the transformation of
grammar is not completely true. It also means that the theoretical superiority
of LR(1) (i.e., its generality) over LL(1) is not significant in practice.

Furthermore, the comparison between these two in terms of the sizes of
syntactical analysis tables and the time taken results in totally different con-
clusion: The experience showed that the elements of LL syntactical analysis
that can be stored in single word may reduce the size of the typical LL (1)
syntactical analysis table down to about 4K words. But if we use the LR (1)
syntactical analysis table which we described in the text the size is about
50K words. However, such a comparison is not fair as in most of the cases,
we did not use the general LR (1) syntactical analysis, we use LALR(1) syn-
tactical analysis instead that is more forthright. In addition, the amount can

204 Chapter 7 Syntax Analysis

be decreased up to 90% via optimization. Nevertheless, in terms of the size
of syntactical analysis, LL(1) is better than LR(1) indeed[9].

Now we analyze the two from recovery from errors. We have mentioned
that LL(1) method is deterministic. Through the DS, we know whether every
step of derivation is correct or not. Suppose that on some step, a lookahead
symbol of a nonterminal does not belong to the DS of the production with
the nontermianl as left part, then we immediately detect that there is some-
thing wrong in the input string. In LL(1) syntactical analysis the method for
recovery from errors is rather simple. It only needs to plan the shortest way
out, from the remaining input deleting the symbols until discovering that
some symbol s may be accepted by the path. Then following the path to find
out the symbol that can be accepted. That is the method for recovery from
errors. This method is called allowable set of recovery from errors. On the
other hand, however, in LR(1) syntactical analysis method, the procedure for
recovery from errors is rather difficult. This is because most of the message
which one collects in the method possess the nature of postulation. There is
a method that proceeds as follows: when an error takes place, then the states
must be moved out from the stack, the operation will continue until a state
that allows the nonterminal to shift into another state. The next step is to
shift in the dummy element. Finally, it jumps over the input symbols until a
new symbol which the new state can accept. From the procedure that is just
described, one may see that the procedure for recovery from errors of LR (1)
is more difficult indeed.

Cohen and Roth (1978) analyzed the longest, shortest and average times
which LL(1) and SLR(1) spent on the sentence analysis, the statistics showed
that LL(1) was 50% faster than SLR (1) did.

After we compared the two methods in terms of transformation process-
ing, the size of the syntactical analysis table and recovery from errors, we
like the reader to be aware that the two methods each has its strong points.
Therefore, whether one adopts LL(1) method or LR(1) method will totally
depends on one’s preference. If some one insists that comparison should have
a result, then the result of one being superior over other is only relative one,
rather than an absolute one.

We also like to point out their commonalities after we discuss their differ-
ences. The two methods both are suitable for embedding actions into syntax
in order to do some works of the compilation process. Later we will introduce
how to implement this point in LL(1) syntactical analysis. As for how to im-
plement this LR(1) syntactical analysis, as these actions usually are related
to reduce actions, hence they will be related to the final states of productions.
Therefore, if one needs to have actions but not being in the end of produc-
tions, then one needs to introduce pseudo rules. In summary, in practice,
which method one should select usually depends on which one will result in
the generator of the better syntactical analysis program. Sometimes rather
than to let the two methods compete with each other it would be better to
let them cooperate together. That means to combine them to carry out the

Problems 205

analysis process. For example, the C compiler on PDP-11 adopts recursively
descending method, i.e., the top-down syntactical analysis method to handle
most of the expressions, while for some other expressions, it uses the simple
bottom-up method (the operator precedence method.)

Problems

Problem 7.1 Show that every LL(1) grammar is an LR(1) grammar.
Problem 7.2 Show that the family of grammar Gn defined by

S→ Aibi, 1 � i � n,

Ai → ajAi|aj, 1 � i, j � n but j �= i.

1) Show that Gn has 2n2 − n productions and 2n + n2 + n sets of
LR(0) items. What does this result say about how big an LR parser can
get in comparison to the size of the grammar.

2) Is Gn SLR(1)?
3) Is Gn LALR(1)?

Problem 7.3 Give an algorithm for detecting unreachable entries in the
LR parsing table.

Problem 7.4 Given a Chomsky normal form grammar G, show how to
add productions for single insertion, deletion, and mutation errors to
the grammar so that the enlarged grammar generates all possible token
strings.

Problem 7.5 A context-free grammar is said to be q grammar if and only
if it has the following properties:

1) The right part of every production either begins with a terminal
or it is empty.

2) For every nonterminal that occurs in more than one production,
the derivation sets of these productions are disjoint.

Show that:
1) Any q grammar is of LL(1).
2) Any s grammar is also q grammar. The so-called s grammar is

that: (1) Every right part of the production begin with a terminal. (2) If a
nonterminal occurs in the left part of productions for one than once, then
the right parts of these productions all begin with different terminals.

3) Any LL(1) grammar can be converted to a q grammar.
Problem 7.6 Show that no LR(1) grammar can be ambiguous.

206 Chapter 7 Syntax Analysis

References

[1] Grune D, Jacobs CJH (1990) Parsing Technique: A Practical Guide, Ellis
Horwood, New York.

[2] Sippu S, Soisalon-Soinenan E (1989/1990) Parsing Theory, vol. II LL(k)
Parsing and LR(k) Parsing. Springer, Berlin.

[3] Robin Hunter (1988) Compilers: their design and construction using Pascal.
Cambridge University Press, Cambridge.

[4] Aho A V, Ullman J D (1973) the theory of parsing, translation, and compil-
ing, vol. II: Compiling. Prentice-Hall, Englewood Cliffs, New Jersey.

[5] Chen Huowang, Qian Jiahua, Sun Yongqiang (1980) Compiler principles.
Defense Industry Press, Beijing.

[6] Jin Chengzhi (1981) Compilers: The principles and implementation. Higher
Education Press, Beijing.

[7] Aho A V, Ullman J D (1972) The theory of parsing, translation and compil-
ing, vol. I: Parsing,. Prentice-Hall, Englewood Cliffs, New Jersey.

[8] Grune D, Bal H E, Jacobs C J (2007) Modern compiler design. Addison-
Wiley, Reading, MA.

[9] Chapman NP (1987) LR Parsing: Theory and Practice. Cambridge Univer-
sity Press, Cambridge.

Chapter 8 Attribute Grammars and Analysis

What attributes should a good manager possess?

Longman Dictionary of Contemporary English

8.1 Motivation of the Chapter

In the Chapter 7, we concentrated on the discussion of parsing methods,
i.e. the top-down and bottom-up syntactical methods, especially LL(1) and
LR(1) syntactical analysis methods. From the discussion, we can see that in
order to carry out LL(1) or LR(1) syntactical analysis there is a need for the
premise that the grammar to be analyzed is a context-free one, otherwise
both methods do not work. In other words, in order to analyze a program-
ming language through the top-down or bottom-up method, the language
must be guaranteed to be context-free. Therefore, we need to explore the de-
scription or definition of the programming language. Before any programming
language is designed, the designers must take into account the requirements
from two sides. One is the requirements of the programmers who would use
the language to develop programs. Because they want the language explicit,
distinct, authoritative, and unambiguous; meanwhile, it should be easy to
read and easy to use. Another one is the requirements of the developers of
the language compiler, they want the structure of programs in the language
easy to implement, or the development of the compiler also easy.

Besides the two aspects mentioned above, there is another consideration
that should also be taken into account— the requirement from the proof of
the correctness of programs. Therefore the designers of the programming lan-
guage select the method of formalization definition to fully describe syntax
and semantics of the language. The first attempt of the formalization defi-
nition language was ALGOL 60 report [1]. The most part of the grammar
was described via the context-free grammar. They could not do the syntax
and semantics of the rest of the language by using the context-free grammar.
Hence the only way was to use English to describe them. Moreover, there
were lots of problems of ambiguities, even it was unavoidable for the revised
report (Naur, 1963; [2]).

208 Chapter 8 Attribute Grammars and Analysis

The formalization definition technique for programming languages de-
veloped continuingly in the following years, the ALGOL W report (Bauer,
Becker, Graham, and Satterthwaitek, 1968) attempted to put some type in-
formation into formalization part of the syntax. The revised report of ALGOL
68 (van Wijngaarden et al., 1975) defined the whole syntax of the language
by using two level grammar (it is called W grammar after the name of the
inventor). Their works once again authenticated that any programming lan-
guage cannot be completely generated by context-free grammars because ac-
cording to the definition context-free grammar can only contain finite num-
ber of productions. By these productions there is no way to describe the
non-context-free features of the language. Hence the attribute grammars lend
themselves to overcome the problem.

8.2 Attribute Grammar

The attribute grammar has been used in the definition of syntaxes of many
languages. To translate programs written in any programming language, a
compiler may need to keep track of many quantities besides the code gen-
erated for the program. For example, the compiler may need to know the
type of identifier, the location of the first instruction in the target code, or
the number of the instructions generated. Therefore we talk abstractly about
attributes associated with the constitute of the program. By attribute, we
mean any quantity, e.g., a type, a string, a memory location, or whatso-
ever. However, in the context of the chapter, we mainly mean the attributes
that the context-free grammar cannot describe. Since attribute grammar is
constructed based on the context-free grammar, it can handle the computa-
tion that is required by the context processing, and then explain the syntax
analysis of the context-free grammar. As the illustration, we use the context-
free grammar to define part of Pascal language. Then we extend the gram-
mar, defining the non-context-free aspects of the language using the attribute
grammar (The definition of this part of Pascal is given here according to the
work of Watt (1977) and McGettrick (1980)) [3].

At first we point out which attributes are not of context-free. For example,
we construct the parsing tree of the input sentence via the top-down method.
In the parsing tree, the leaves represent the terminals. But they are just the
terminals only, they do not contain other characteristics of the terminals, i.e.,
the attributes. As the leaf of the abstract syntax tree (AST), the terminal
may have its initial attribute, e.g., an identifier that represents an integer
has the type attribute “integer”, but it has no the value yet. Its value will be
provided by the input of the program and this is not defined in the grammar
that belongs to the context-free. A token that represents an identifier has its
initial attribute value “identifier”, but has no the address value and numerical
value stored in the location yet. They are also provided by later input and

8.2 Attribute Grammar 209

not defined by the context-free grammar, all of which will be done by the
attribute grammar.

The lexical analysis and parsing analysis work together to complete the
analytical process of the context-free part of source programs. Analytic fea-
tures may be local ones or in the embedded form. As for other cases, for
example, to check the number of the formal parameters in the entry of rou-
tine, to see if it is consistent with the number which the declaration stipulates,
is not of context-free.

In order to check the imperative context-free conditions and collect infor-
mation of a specific language to handle the semantics, we need to handle the
context. In some sense, the attribute grammar is a supplement of the context-
free grammar that directs its intention at semantic analysis. In a compiler
that purely deals with the compilation of programs, the context-free process
is divided into two phases. At first, it checks all the relations of the context in
the language. Only when the check is passed, then can the input be regarded
as correct. Second, it collects other informations called the attributes. These
informations are stored in the nodes of the abstract syntax tree. The context
handling is done via checking all the context relations and evaluating all the
attributes of the nodes.

Therefore, in simple words, the computation required by the context pro-
cessing may be described in the syntactical analysis of the context-free gram-
mar, and generates the attribute grammar. In order to meet the need, the
context-free grammar is extended along two directions: one is the data, and
another is the evaluation.

For each grammar symbol, no matter whether it is terminal or nontermi-
nal, it is stipulated to have null or more attributes. Each attribute has its
name and type called formal attribute. The formal attribute will be realized
as a real attribute consistent with the formal type of specific value. The at-
tributes are used for keeping the semantic information of the specific nodes.
Therefore, all the nodes that correspond to the same grammar symbol S have
the same formal attribute, but their real values — the real attributes are not
the same.

For every production rule like A → M1M2. . .Mn, there is a series of rel-
ative computation rules— the attribute computation. They stipulate how to
compute the attribute of A according to the attributes of the attributes Mi

(1 � i � n) at the right part. These computation rules check the context
conditions and issue warning and error message in case some sort of errors
occurs. They are related to production rules, rather than associated with non-
terminals. This is because the computation rule is related to the attributes
of the member Mi, while the member Mi is determined by production rules.

The attributes of every grammar symbol are categorized as a synthetic
attribute and an inherited attribute. If a variable occurs twice or more times
in a production, then each occurrence has the same attribute values. Then
information may be transmitted from the start symbol to the sentence or
program generated. The attribute used in this way is called inherited at-

210 Chapter 8 Attribute Grammars and Analysis

tribute. Of course, it may be worked in the reverse way, i.e., the attribute
value is transmitted from where it is obtained in the sentence to the start
symbol, and the attributes of this kind are called synthetic. At the beginning,
only terminal symbol have the synthetic attribute. The values of synthetic
attribute are directly obtained from the program text. Synthetic attribute of
a child node may be accessed by the computation rules of the parent node,
and further computation is allowed to take place on the parent node. No-
tice that the computation can only be carried out when all values which the
computation depends on are determined. The computation on parent node
not only becomes the synthetic attribute on the node but also the inherited
attributes of its children.

Now we add the attributes to the productions of the context-free gram-
mar [4], where the upwards arrow denotes the synthetic attribute while the
downwards arrow denotes the inherited attribute.

<PROGRAM>::=program <name>↑NAME
(<PROGRAM PARAMETERS>)

<BLOCK>↓STANDARDENV↓{ }↓{ }
The uppercase letters following the arrows represent the attribute vari-

ables. From the representation, we see that NAME has the synthetic attribute
as its value and is obtained from the lexical analysis. STANDARDENV has
inherited attribute as its value and is obtained from the set of standard iden-
tifiers and their implications.

There are two more inherited attributes that belong to block. They are
empty at the moment. They are any formal parameters and any global labels.
We now supplement it as follows:

<BLOCK>↓GLOB↓FORM↓GLOBLAB ::=<LABEL DECLARATION>↑LOCLAB
<CONSTANT DEFINITION>↓GLOB↓FORM↑NEWLOC1
<TYPE DEFINITION> ↓GLOB↓NEWLOC1↑NEWLOC2
<VARIABLE DECLARATION>↓GLOB↓NEWLOC2↑NEWLOC3
<PROCEDURE and FUNCTION DECLARARION>↓GLOB↓NEWLOC3↑LABELS↑

NEWLOC

<STATEMENT PART>↓ENV↓LABELS↑STMLAB
Now we expatiate these attributes. GLOB, FORM, and GLOBLAB repre-

sent respectively global variables, formal parameters, and global labels. These
global attributes belong to inherited attributes. The local labels that belong
to <LABEL DECLARATION> obtain their values from the program and
they are synthetic attributes. The global properties and formal parameters
of <CONSTANT DEFINITION> belong to inherited attributes while its
NEWLOC1 represents new local constants. Their values are obtained from
the program and they are also synthetic attributes. As we mentioned above
that synthetic attributes not only can be the synthetic attributes of the par-
ent node, but also become the inherited attributes of its children nodes. This
is shown in our explanation above. NEWLOC1 originally was a synthetic

8.2 Attribute Grammar 211

attribute in <CONSTANT DEFINITION>, but it becomes the inherited
attribute in <TYPE DEFINITION>.

NEWLOC2 and NEWLOC3 have the same transformation.
Besides, they have to obey the following rules:
1) In order to form ENV, all the identifiers that are in GLOB but not in

NEWLOC should be added to NEWLOC.
2) In order to form LABELS, all the labels that are in GLOBLAB but

not in LOCLAB should be added to LOCLAB.
3) STMLAB (i.e., the labels of statements) is the subset of LABELS.
The attributes of productions defined in this way may make sure that

the definition occurrences of the local identifiers always precede their applied
occurrences, and local constants (rather than local variables) may occur in
type definition, etc., Furthermore we have

<STATEMENT PART>↓ENV↓LABELS↑STMLAB
::=<COMPOUND STATEMENT>↓ENV↓LABELS↑STMLAB
<COMPOUND STATEMENT> ↓ENV↓LABELS↑STMLAB
::=begin

<STATEMENT>↓ENV↓LABELS↑STMLAB
{ ;<STATEMENT>↓ENV↓LABELS↑STMLABi}

end

where the part inside { } may have null or multiple occurrences. And
STMLABi are disjoint. STMLAB is the union of STMLABi.

<STATEMENT PART>↓ENV↓LABELS↑STMLAB
::=<COMPOUND STATEMENT>↓ENV↓LABELS↑STMLAB

<COMPOUND STATEMENT>↓ENV↓LABELS↑STMLAB
::= begin

<STATEMENT>↓ENV↓LABELS↑STMLAB
{ ;<STATEMENT>↓ENV↓LABELS↑STMLABi}
end

where the items inside { } may occur null or multiple times. And STMLABi
all are disjoint. STAMLAB is their union.

<STATEMENT>↓ENV↓LABELS↑STMLAB
::=<NOLABEL STATEMENT>↓ENV↓LABELS↑STMLAB

|<LABEL>↑LABEL:<NOLABEL STATEMENT>↓ENV↓ LABELS↑STMLAB
where STMLAB=LABELS∪STMLAB.

<NOLABEL STATEMENT>↓ENV↓LABELS↑STMLAB
::=<SIMPLE STATEMENT>↓ENV↓LABELS↑STMLAB

|<STRUCTURED STATEMENT>↓ENV↓LABELS↑STMLAB
<SIMPLE STATEMENT>↓ENV↓LABELS↑STMLAB
::=<ASSIGNMENT STATEMENT>↓ENV

|<PROCEDURE STATEMENT>↓ENV

212 Chapter 8 Attribute Grammars and Analysis

|<GOTO STATEMENT> ↓LABELS
|<NULL STATEMENT>

Notice that the simple statement (unless goto statement) cannot contain
any label. As for goto statement, label is a part of the statement.

<STRUCTURED STATEMENT>↓ENV↓LABELS↑STMLAB
::=<COMPOUND STATEMENT> ↓ENV↓LABELS↑STMLAB

|<CONDITIONAL SATATEMENT>↓ENV↓LABELS↑STMLAB
|<REPEAT STATEMENT> ↓ENV↓LABELS↑STMLAB
|<WITH STATEMENT>↓ENV↓LABELS↑STMLAB

<ASSIGNMENT STATEMENT>↓ENV::= <VARIABLE>↓ENV↑TYPE1
:=<EXPRESSION>↓ENV↑TYPE2

where TYPE1 is the type of the variable in ENV. TYPE1 and TYPE2 are
assignment compatible.

It is needed to point out that the categorizing attribute as synthetic and
inherited is not logically necessary, but it is very helpful. And this catego-
rization is essential part of the theory of attribute grammars.

In summary, the attribute grammar is based on the context-free grammar
for defining the attributes of terminals and nonterminals. Then in turn it de-
scribes the non-context-free features of the language. In fact, any 0 type lan-
guage may be described by the attribute grammar. Therefore, the attribute
grammar is functionally powerful. Programming language may be seen as
the context-free language with additional a number of non-context-free con-
straints. This implies that the attribute grammar can handle them well, and
the technique that generates efficient analytical program from proper at-
tribute grammar has been developed. Moreover the technique has very good
readability, hence the attribute grammar can deal with the programming lan-
guage well. Therefore, as the supplement of the context-free grammar, the
attribute grammar meets both the requirements of programmers for the def-
inition of syntax and semantics of the language [5], and the requirements of
compiler writers for the implementation of the language.

8.3 Dependence Graph and Evaluation of Attributes

In the last section, we mentioned that for every production rule like A →
M1M2. . .Mn there is a series evaluation rules (i.e., attribute evaluation rules)
for evaluating every attribute. And this is intimately related to dependency
graph. The dependency graph is used for the description of evaluation rules.
Therefore, it is needed to define the dependency graph first.

Definition 8.1 Dependency graph. In the parsing tree that corresponds to
production rule A→ M1M2. . .Mn, if the attribute b of a node depends on at-
tribute c, then on the node the semantic rule evaluation for b must be carried

8.3 Dependence Graph and Evaluation of Attributes 213

out after the evaluation for c. In a parsing tree, the inter dependency relation
between the synthetic attribute and inherited attribute may be described via
the directed graph. This directed graph is called dependency graph.

Fig. 8.1 shows a simple and yet practical attribute grammar rule. It
presents the constant definition declaration via nonterminals Defined-identifier
and Expression.

Fig. 8.1 A simple attribute rule in the constant definition [6].

In the declaration of the constant definition, there are two nontermi-
nals Defined-identifier and Expression. The attribute grammar creates two
nodes with two attributes for the grammar rule. The two attributes are an
old symbol table and a new symbol table. The first one is an inherited at-
tribute that represents the symbol table before the constant table was ap-
plied; the second one is a synthetic attribute that represents the symbol
table after the identifier is inserted. The values of these two attributes are
obtained through attribute evaluation rules. The first evaluation rule assigns
the inherited attribute symbol table of Expression to the inherited attribute
Constant-definition.old symbol table, hence the evaluation rule of Expression
may refer it to determine the synthetic values of Expression type and Value.
The symbol names in the grammar can be used as the identifiers in the eval-
uation rules. Identifier Expression represents arbitrary node created for the
rule Expression. The attributes of that node may be accessed just as that
they are the segments of a record. The second evaluation rule creates a new
symbol table and identifies it as the Constant-definition.new symbol table. It
is done via the calling function Update symbol table(). This function occurs
in somewhere else with the following declaration:

FUNCTION Update symbol table (

Symbol table, Name, Type, Value)

214 Chapter 8 Attribute Grammars and Analysis

Returning a symbol table;

The number of actual parameters of the Update symbol table in Fig. 8.1
should be the same as that of formal parameters here. The symbol table
is replaced by the old symbol table. The name is replaced by the Defined-
identifier name. The type is replaced by the Expression type. Value is replaced
by Expression value.

The rule dependency [7] of Constant-definition in Fig. 8.1 is shown in Fig.
8.2.

Fig. 8.2 Rule dependency of constant definition in Fig. 8.1.

There are two more points that need to explain about Fig. 8.1. At first,
in the function Update symbol table, the nonterminal Defined-identifier, not
only the identifier, is used. This is because the two are significantly different.
The occurrence of an identifier definition, i.e., the identifier only presents one
piece of information, that is its name, while another occurrence of identi-
fier application, i.e., the Defined-identifier presents many other information
besides its name, such as range information, type, categories (they are con-
stants, variables, parameters, segments, selectors, etc), values, distributed
information, etc. Secondly, in the function Update symbol table, Checked
type of constant, definition (Expression.type), not only the Expression.type
is used. This is because the execution of context check of constant type re-
quires calling functions, rather than directly using values. And the check is
necessary. If the check succeeds, it will return the initial Expression type
that is also what we need. Otherwise it will issue error information, and the
routine will return a special value Erroneous-type.

Besides, it is also needed to distinguish the difference between the data
stream and dependency relation. In Fig. 8.2, the arrows represent the data
stream, rather than the dependency relation. If the data stream flows from
variable a to variable b, then b depends on a. The data dependency sometimes
is denoted in pairs. For example, (a, b) implies that b depends on a. It also
implies that “data flow from a to b”, or “a is the precondition of b”. Simply
speaking, the attribute dependency graph actually contains arrow heads of
the data stream.

Now we add the secondary attributes of Expression to constant definition
of Fig. 8.1, as shown in Fig. 8.3. In this way, we create the complete data
flow for the constant definition.

8.3 Dependence Graph and Evaluation of Attributes 215

Fig. 8.3 Secondary attribute grammar of Expression.

If CONST Pi = 3.141 592 65 is added, then the result is shown in Fig. 8.4.
Usually, the semantics of expression depends on the contents of the symbol
table while the symbol table is provided in advance. Therefore, we say that
the symbol table is an inherited attribute of Expression. The semantics of a
number, however, is independent to symbol table, hence this is the reason
why there is no arrow from the number to the symbol table.

Fig. 8.4 Attribute syntax tree with data stream.

We have mentioned previously that the attribute grammar involves eval-
uation of the attributes, it provides a series of relative evaluation rules—
attribute evaluation rules. For example, the evaluation of the production rule
A→BCD requires that at the end of output the attribute value is assigned.
Before the general method of the attribute evaluation is given, we discuss
the procedure of the attribute evaluation of the production. In Fig. 8.5, four
nodes A, B, C, and D are given. Each node has the inherited attribute (INH)
and the synthetic attribute (SYN) respectively locating on both sides of the
node. The arrow of output has two directions, the upwards points to the
synthetic attribute of A, the downwards points to the inherited attributes of
B, C, and D. Consequently the evaluation rule depends on the parent node
of A, then via passing the attribute value of A it provides information down-
wards. It also depends on the children nodes of A, i.e., B, C, and D. Then via
assigning the value to their synthetic attribute it provides the value upwards.

216 Chapter 8 Attribute Grammars and Analysis

Fig. 8.5 A data stream in nodes with attributes.

From Fig. 8.5 it may be seen that the direction of the data stream is flow-
ing from the inherited attribute of A to the synthetic attribute of A, the same
rules apply to nodes B, C, and D. Hence under their respective evaluation
rules, the data stream flows from each inherited attribute to the synthetic
attribute. Meanwhile, the evaluation rules of A cause the data stream also
flowing from the synthetic attribute to the inherited attribute of B, the same
as for C and D. The same rule also works for node A. Therefore, the data
stream also flows from the synthetic attribute of A to its inherited attribute.
The data stream is not shown on the Figure. Generally speaking, the inher-
ited attribute may be regarded as an input parameter while the synthetic
attribute may be regarded as the output parameter. There is time order on
input and output. In general, input should precede output. But there is also
some exception, some synthetic attributes may acquire values before inherited
attributes [8].

The following is the general method for the attribute evaluation:
1) Create corresponding abstract syntax tree.
2) Construct attribute dependency graph.
3) Allocate space for attributes of each node of the tree.
4) Fill the attributes of terminals of the tree with the values acquired

from representation of terminals.
5) Topologically sorts out the nodes of the dependency graph. Then ac-

cording to the order execute the evaluation rules to assign values to attributes,
until no more new value may be assigned. And make sure that only where
there is one attribute value may be used then can it be used, and each at-
tribute can only get one value each time.

For the attribute syntax tree of Fig. 8.4, we may perform the evaluation
according to the evaluation method specified above. The order of the attribute
evaluation may be determined according to the direction of the data stream.
The attribute syntax tree obtained after the attribute evaluation is shown in
Fig. 8.6.

8.3 Dependence Graph and Evaluation of Attributes 217

Fig. 8.6 Attribute syntax tree of Fig. 8.4 obtained after the attribute evaluation.

The simple attribute evaluation method only allows the value assignments
in the following form:

attribute1=func1(attribute1,1, attribute1,2,...)

attribute2=func2(attribute2,1, attribute2,2,...)

......

More complex attribute evaluation allows that in the rule part some features
of the practical programming language are used. For example, the statements
if, while, case, etc., and local variables are called local attributes.

A simple and the most general method that realizes the attribute evalu-
ation is only to realize the data stream machine. The method that realizes
the data stream machine is: access all the nodes of the data stream graph,
finish all possible assignment in each node. Repeat the procedure until all
the synthetic attributes of the root have obtained values. Only when all the
attributes which an assignment needs have had values then can the assign-
ment be carried out. This method is called dynamic attribute evaluation as
the order which the evaluation depends on is determined on run time of the
compiler.

8.3.1 Dynamic Attribute Evaluation

The role of the attribute grammar is that it can transmit from any place
of the parsing tree to places with a controllable mode. In order to show the
attribute evaluation method, we illustrate it via a simple attribute gram-
mar. It actually is a dynamic attribute evaluation. For example, it may be
used to compute the code of letters in ASCII (American Standard Code for
Information Interchange) or in EBCDIC (Extended Binary-Coded Decimal

218 Chapter 8 Attribute Grammars and Analysis

Interchange Code) [9].
In order for readers to understand the two codes, we briefly introduce

them here. Table 8.1 is the list of ASCII.

Table 8.1 ASCII

Decimal code Character Decimal code Character Decimal code Character

0 NUL 37 % 74 J

1 SOH 38 & 75 K

2 STX 39 ‘ 76 L

3 ETX 40 (77 M

4 EOT 41) 78 N

5 ENQ 42 * 79 O

6 ACK 43 + 80 P

7 BEL 44 , 81 Q

8 BS 45 – 82 R

9 HT 46 . 83 S

10 LF 47 / 84 T

11 VT 48 0 85 U

12 FF 49 1 86 V

13 CR 50 2 87 W

14 SO 51 3 88 X

15 SI 52 4 89 Y

16 DLE 53 5 90 Z

17 DC1 54 6 91 [

18 DC2 55 5 92 \
19 DC3 56 8 93]

20 DC4 57 9 94 ↑
21 NAK 58 : 95 ←
22 SYN 59 ; 96 �
23 ETB 60 < 97 a

24 CAN 61 = 98 b

25 EM 62 > 99 c

26 SUB 63 ? 100 d

27 ESC 64 @ 101 e

28 FS 65 A 102 f

29 GS 66 B 103 g

30 RS 67 C 104 h

31 US 68 D 105 i

32 SP 69 E 106 j

33 ! 70 F 107 k

34 ′′ 71 G 108 l

35 # 72 H 109 m

36 $ 73 I 110 n

8.3 Dependence Graph and Evaluation of Attributes 219

Continued

Decimal code Character Decimal code Character Decimal code Character

111 o 117 u 123 {
112 p 118 v 124 |
113 q 119 w 125 }
114 r 120 x 126 ∼
115 s 121 y 127 DEL

116 t 122 z

For EBCDIC, we do not list the specific codes in details, but we show
its format. EBCDIC consists of eight bits too, and the eight bits are divided
into two zones. The first four bits constitute the zone, and the last four bits
constitute the digit. Both zone and digit constitute the code of characters in
EBCDIC.

8 4 2 1 8 4 2 1

0 0 1 1 0 1 0 1

zone digit

The digits shown on the top represent the weight of each bit. Fig. 8.7 below
presents the grammar of ASCII and EBCDIC.

Fig. 8.7 A context-free grammar of ASCII and EBCDIC.

The grammar defines the grammar of ASCII and EBCDIC as well as the
attributes of the elements. In the last production, A stands for ASCII while
E stands for EBCDIC. If the Base-Tag A following the series of digits, then
this is a code of character in ASCII. If E following the series of digits, then it
is a code of character in EBCDIC. The key point here is that the evaluation
of the code of character depends on the Base-Tag (A and E). But for the
sake of simplicity, we omit the details, instead we just use the real Digit-Seq
value.

Fig. 8.8 shows more concrete attribute grammar of ASCII and EBCDIC.
From Fig. 8.8 it is easy to draw the dependency graph of Code, Digit-

Seq, Digit and Base-Tag. But we omit it as it mainly involves the issues of
implementations rather than the principles.

In order to implement the data stream by the method specified above, we
must visit all the nodes on the dependency graph. Usually when visiting these
nodes one should avoid the infinite loop. There is a simple way to avoid loop,

220 Chapter 8 Attribute Grammars and Analysis

Fig. 8.8 The Attribute grammar of ASCII and EBCDIC
Note: Digit-Seq[1] above may be regarded as the parent node of Digit-Seq, to distinguish

it from Digit-Seq.

that is, to link these nodes to the parsing tree to visit them, since parsing
tree has no loop. Then recursively traveling all nodes in the parsing tree may
automatically visit all the nodes on the dependency graph. On every node,
we complete all the assignments according to the evaluation rules as much as
possible, then travel children nodes, and attempt to do the assignments again
according to the rules when returning from them. The assignments before
traversing are to transmit inherited attributes downwards while assignments
after traveling are to acquire synthetic attributes and transmit them upwards.

8.3 Dependence Graph and Evaluation of Attributes 221

8.3.2 Loop Handling

Since in the attribute evaluation, starting from some node, then the evalua-
tion will traverse children of the node, sequentially it maybe returns to the
node. In this case the loop will occur. If the loop continues infinitely, our work
will be affected by the undesirable thing. Therefore, we must prevent the loop
from happening. In order to do so it is necessary to detect the existence of
the loop. The work may be done through both a dynamic loop detection and
a static loop detection.

In the dynamic loop detection the loop is detected during the attribute
evaluation of a practical parsing tree when the loop exists in the parsing tree.
The static loop detection deduces whether the parsing tree can generate a
loop or not from attribute grammar itself. What it detects is all the parsing
trees the grammar generates. Therefore, if the dynamic loop detection does
not find any loop in the specific parsing tree, then we consider that the
specific parsing tree has no loops. If the static loop detection has not found
any loop in the detection of an attribute grammar, then we consider that all
the parsing trees which the grammar generates have no loops. Therefore, the
static loop detection is more valuable than the dynamic loop detection but
also more difficult.

Now we further analyze these two detection methods.
For the dynamic loop detection, there is a slightly rough method that

checks the number of rings. If the parsing tree has m attributes, but we found
that it contains more than m rings, then we can confirm that the parsing tree
contains loops, because if the parsing tree has no loops, then each ring may
evaluate at most one attribute. Therefore, if the evaluation proceeded after
m runs, all the evaluation should finish. If it did not stop, it means that it
must contain loop.

For the static loop detection, we need to seek for the reasons that the loop
exists from the production rules. Obviously, a loop cannot be generated from
the dependency graph of a production rule R, because the attribute evalu-
ation rule may assign values to an attribution set (including the inherited
attributes of R’s children nodes and synthetic attributes of R) and what it
used is another attribute set (including the synthetic attributes of R’s chil-
dren nodes and inherited attributes of R). If the two sets disjoint, then they
have no common elements, so they cannot form a loop. In a parsing tree if
there exists an attribute dependency loop, then the data stream must leave
the original node, traverse around some part of the tree, and then back to
the node. Perhaps the process may move in a roundabout way until it returns
to the original attribute node. For example, it departs from an inherited at-
tribute of the node N, goes down to the tree below N, at the bottom it travels
to a subtree twice, and travels to another subtree once, then it goes up to a
synthetic attribute of N, then continues to go to the rest of the tree, where it
passes through the left brother node of N, and then passes through the right

222 Chapter 8 Attribute Grammars and Analysis

brother node of N, finally returns to node N, reaches an inherited attribute of
N. If the inherited attribute is the same as that it left from, the dependency
loop forms.

In an attribute dependency graph, for a node, there may be two depen-
dencies, that are dependency from the inherited attribute to the synthetic
attribute and from the synthetic attribute to the inherited attribute. The
former one is called the IS (Inherited-synthetic) dependency and the later is
called the SI (Synthetic-Inherited) dependency. The IS-SI graph may be used
to detect the existence of loops as the loops satisfy the transitive relation,
hence they may be used for the detection of the existence of loops. Through
ring, the detection of loops is possible.

8.4 L Attribute Grammas and S Attribute Grammars

The research on attribute grammars is mainly caused by the need for spec-
ifying the non-context-free features of programming languages. It involves
evaluation rules. On the implementation of these evaluation rules is also the
objects of our research because some special features of the evaluation rules
are likely to bring some conveniences or advantages. On the section, we will
discuss L attributes and S attributes, and they are just what we talk about.

Definition 8.2 A class of syntax-directed definitions is called L attributed
definitions, if their attributes can always be evaluated in the depth-first search
order. L here stands for left, because attribute information appears to flow
from left to right. Therefore, on the way of traversing the parsing tree from
left to right, the attribute evaluation may be done [10].

A syntax-directed definition is L attributed if each inherited attribute of
Xj, 1 � j � n, on the right side of A→ X1X2. . .Xn, depends only on:

1) the attributes of the symbols X1, X2, . . . , Xj−1 to the left of Xj in the
production;

2) the inherited attribute of A.
Hence the feature of L attributes is that the inherited attribute of a subnode
of a nonterminal N depends only the synthetic attributes of left subnodes of
the production and the inherited attributes of A itself. That means that the
data dependency graph of any production has no the data stream arrow from
a subnode to itself or to its left subnode.

Many programming languages are of L attributed as their intrinsic data
flow from left to right is helpful for programmers to read and to understand
programs. For example, the dependency graph of Constant-definition, where
there is no data stream from Expression to Defined-identifier (from right to
left). But the example of ASCII and EBCDIC is not L attribute grammar as
there is a data stream from right to left in it.

Fig. 8.9 shows part of analytical tree of L attribute grammar.

8.4 L Attribute Grammas and S Attribute Grammars 223

Fig. 8.9 The data stream in part of analytical tree of an L attribute grammar.

In the figure above, every node has two boxes, one in each side. The left
one represents the inherited attribute while right one represents the synthetic
attribute. The name of the node is in between. The node A has five subnodes
B1, B2, B3, B4, and B5, while C1, C2, C3, and C4 are subnodes of B3. The
upwards arrow represents the synthetic attribute data stream of the subnode,
they all point to right or the synthetic attributes of the parent node. When the
attribute evaluation starts functioning on a node, all the inherited attributes
of the node have been acquired, and these attributes may be transferred to
any its subnodes that need them. On the figure, they are shown via dotted
lines with arrows.

Suppose that the attribute evaluation is functioning on the node C3, there
are only two attribute sets that participate in the function:
• All the attributes of nodes that are on the path from the top to the node

that is processed. That are C3, B3, and A.
• The synthetic attributes of left sibling nodes of those nodes. That are C1,

C2, B1, and B2.

The right sibling of C3, B3 and A did not participate in as their synthetic
attributes do not function.

On the figure one thing is hided. That is that the inherited attributes
remain in node where they belong to. Their values are transferred along
the path from top to the node that is processed (for example, the constant
definition that was described before). This structure is just provided by a
top-down analysis.

The attribute evaluation in L attribute grammar may be conveniently
contained in the top-down analysis. And applying top-down analysis also
entails some tricks to complete the evaluation. The key problem is that the
inherited attributes must be transferred from a parent node to subnodes. On
the other hand, in the bottom-up analysis, only when all the subnodes have
been processed, then may thing on the parent node be defined and created.
Therefore, when any inherited attribute is needed, there is no place yet to
transfer it down.

The bottom-up analysis program, however, has a stack to shift in termi-
nals and to reduce nonterminals. We establish the correspondence between
the stack and the attribute stack. The attribute stack may keep attributes of
the stack element on the same order of elements. In this way, it will be alright

224 Chapter 8 Attribute Grammars and Analysis

as long as inherited attributes can be put on the stack in advance. But in
order to put the inherited tributes into the tack, some code for doing so must
be executed. In the bottom-up analysis, the code may only be executed in
the end of the production to be selected, i.e., when all corresponding entries
have been recognized and the reduction is to be done. But now we want to
do it in the midst of the production, we require that

A→B{C; inh-attr:=f(B.syn.attr);C}
where the part in the brackets is the actions we need to execute, the assign-
ment of inherited attribute to C. In order to do so, we introduce ε-production:

A→B A-actional C
A-actional → ε{C.inh-attr:=f(B.syn-attr);}

Now the code in A-actional is at the end of a production to be selected, and
it will be executed when the right part of A.actional→ ε is reduced. This is
feasible. But the grammar is no longer of LALR(1) as the introduction of
ε into the grammar is harmful to the bottom-up syntactical analysis. Only
when the entry A→B. C is the only entry in the state set that can the analysis
program function and determine this entry, and execute the segment of codes.
Moreover, it also ensures that the parent node is A, and the analysis program
knew that it would need to create the parent node.

There are other approaches that attribute grammars carry out the bottom-
up analysis. One of them is to use such an attribute stack: It takes the posi-
tion of only synthetic attribute as that of only inherited attribute of the next
node. In this case, there is no need to execute any code.

Definition 8.3 An attribute grammar is called S-attribute grammar, if all
the attributes in it are synthesized and there is no inherited attribute.

Since synthetic attributes are transferred from the bottom to the top, it
is easy to carry out the bottom-up analysis. The synthetic attributes of every
subnode are put into the stack, and then the code at the end of production to
be selected functions. Its parent node pops it out from the stack, processes it
and replaces the attributes with the synthetic attributes of the parent node.

An L attribute grammar can be easily transformed to the S attribute
grammar, but the transformation does not enhance the readability of the
method. The basic method of the transformation is to suspend the evaluation
that cannot be carried out now until when they can be done. In addition, the
more particular thing is any evaluation that needs inherited attribute will
be replaced by data structure that defines the evaluation and creates all the
synthetic attributes. The data structure will act as a synthetic attribute, and
will be transferred upwards to the level where the missing inherited attribute
may be used. It will be used as the synthetic attribute of a constant or a node
to carry out the evaluation required. By this way, any L attribute grammar
can be transformed to the S attribute grammar.

Problems 225

Fig. 8.10 shows the attribute value stream of the abstract syntax tree to
summary the L attribute grammars and S attribute grammars.

Fig. 8.10 L attribute and S attribute.

From the figure, we can see that in L attribute grammars the attribute
values flow down along a branch then flow up again along the next branch.
But in S attribute grammars the attribute values only flow along one direc-
tion, down to up.

We now finish the discussion of attribute grammars. They are the useful
supplement of context-free grammars. Especially when we handle the non-
terminals, obviously we need them to help the compilation process.

Problems

Problem 8.1 Let synthesized attribute val give the value of the binary
number generated by S in the following grammar. For example, on input
110.011, S.val = 6.375

S→L.L|L,

L→LB|B,

B→0|1.
1) Use synthesized attributes to determine S.val.
2) Determine S.val with a syntax-directed definition in which the

only synthesized attribute of B is c, giving the contribution of the bit
generated by B to the final value. For example, the contribution of the
first and last bits in 110.011 to the value 6.375 is 4 and 0.125, respectively.

Problem 8.2 Suppose that we have an L-attributed definition whose un-
derlying grammar is either LL(1), or one for which we can resolve ambigu-
ities and construct a predictive parser. Show that we may keep inherited
and synthesized attributes on the parser stack of a top-down parser driven
by the predictive parsing table.

Problem 8.3 For each following item, point out whether it belongs to a
nonterminal or a production rule of a nonterminal.

226 Chapter 8 Attribute Grammars and Analysis

1) Inherited attribute.
2) Synthesized attribute.
3) Attribute evaluation rule.
4) Dependence graph.
5) IS-SI graph.
6) The nodes of abstract parser tree.
7) The subnode pointers of the abstract parser tree.

Problem 8.4 Consider the following attribute grammar, construct the IS-
SI graph of A, and point out the loop contained in the grammar.

S(SYN S)→
A(i1,s1)

ATTRIBUTE RULES:

SET i1 TO s1 ;

SET s TO s1;

A(INH i1, SYN s1)→
A(i2,s2) ‘a’

ATTRIBUTE RULES:

SET i2 TO s1;

SET s1 TO s2 ;

|
B(i2,s2)

ATTRIBUTE RULES:

SET i2 TO s1;

SET s1 TO s2 ;

B(INH I, SYN s)→
‘b’

ATTRIBUTE RULES; SET s TO c;

Problem 8.5 Given the following attributes of the nonterminals

S(INH i1,i2, SYN s1,s2)→
T U

ATTRIBUTE RULES:

SET T.i TO f1(S.i1,U.s);

SET U.i TO f2(S.i2);

SET S.s1 TO f3(T.s);

SET S.s) TO f4(U.s);

Draw its complete dependence graph.

References 227

References

[1] Irons ET (1961) A syntax directed compiler for Algol 60. Comm ACM, 4(1):
51 – 55.

[2] Knuth DE (1968) Semantics of context-free languages. Mathmatical Systems
Theory 2(2): 127 – 145. Etrata 5(1): 95 – 96.

[3] Reps TW (1984) Generating Language-Based Environments. MIT Press,
Cambridge.

[4] Lewis PM, Rosenktrantz DJ, Stearns RE (1974) Attributed translations. J
Computer and System Sciences, 9(3): 279 – 307.

[5] Mayoh BH (1981) Attribute grammars and mathematical semantics. SiAM
J Computing 10(3): 503 – 518.

[6] Kennedy K, Ramanathan J (1979) A deterministic attribute grammar eval-
uator based on dynamic sequencing. TOPLAS 1(1): 142 – 160.

[7] Engelfrief J (1984) Attribute evaluation methods. Lorho pp 103 – 138.

[8] Cohen R, Harry E (1979) Automatic generation of near-optimal linear-time
translators for non-circular attribute grammars. Sixth ACM Symposium on
Principles of Programming Languages, pp 121 – 134.

[9] Kastens U (1980) Ordered attribute grammars. Acta Informatica, 13(3):
229 – 256.

[10] Bochmann GV (1976) Semantics evaluation from left to right. Comm ACM,
19(2): 55 – 62.

Chapter 9 Algebraic Method of Compiler
Design

We must not lose sight of the ultimate goal, that of
the construction of programming language implementa-
tions which are known to be correct by virtue of quality
of the logical reasoning which has been devoted to them.
Of course, such an implementation will still need to be
comprehensively tested before delivery; but it will im-
mediately pass all the tests, and then continue to work
correctly for the benefit of programmers forever after.

C.A.R. Hoare

Setting up equations is like translating from one lan-
guage into another.

G. Polya

9.1 Motivation of the Chapter

This chapter will be independent of the last several chapters. It will introduce
a grand new method for the design of compilers of the procedure oriented
programming languages. The method is based on that these languages sat-
isfy the algebraic laws. The new practical strategy is to reduce any source
program to a canonical form through a series algebraic transformations. And
the canonical form precisely specifies the features of the object machine. The
outstanding character of the method is that the correctness of the compiler
is ensured by that of each algebra transformation, while the correctness of
these transformations is proven by more basic laws.

The aims of introduceing new methods in compiler design are as follows.
At first, we want to widen the thinking train of readers. When they study the
methods of compiler design, especially when they are engaged in the design
of a compiler, they know that apart from the methods we introduce before,
there are many different ones. Furthermore, we want to show the frontier of
the field, especially the effort of associating correctness with the translation

230 Chapter 9 Algebraic Method of Compiler Design

process. No doubt, the correctness is essential for any software [1]. Without
it, software has no any value. The assertion is absolute right for compilers.
This is why since 1960s a large number of approaches have been suggested
to tackle the problem of compiler correctness. But we cannot include all the
approaches in this book. We choose the current method because it has some
advantages over other existing methods. It also benefits from the view de-
scribed by others: the compilation process is completely characterized within
a uniform framework of a procedural language whose semantics is given by
algebraic laws. We will refer to this language as a reasoning language. The
source language is a subset of this language. But we also supplement addi-
tional specification operators such as constructions to model assumptions and
assertions. By doing so the approach develops the compiler while it provides
the proof of correctness of the compiler. As long as the algebraic transforma-
tions are correct, then the compiler derived from these transformations in the
canonical form is also correct. Finally, we want to emphasize the importance
of the formal method to the reader. Denotational, algebraic and axiomatic
methods all belong to category of formal methods. Many researchers are
working on the methods and accomplish high achievements. Therefore, the
reader is encouraged to make an effort on this aspect. One thing should be
pointed out that the chapter emphasizes the algebraic approach to compi-
lation [2], rather than the translation between particular pairs of languages.
It only involves the code generation phase of the compiler, instead of the
entire development process of the compiler. Therefore though this chapter is
independent of the last chapters, it has intimate relation with the following
chapters, intermediate code generation and object code generation.

9.2 Source Language

We first introduce the source language that is a subset of the reasoning lan-
guage. We need to describe it because our goal is to translate the programs
written in the source language to the object language. The language can be
considered as an extension of the guarded command language proposed by
E.W. Dijkstra with procedures and general recursions.

The operators of the source programming language are listed in Fig. 9.1,
in which we use x to stand for an arbitrary program variable, e for an expres-
sion, b for a Boolean expression, p and q for program and X for a program
identifier.

We make explanation about these operators.
• skip When the operator is executed, it produces no change for the

program and terminates successfully.
• x := e The assignment starts with the evaluation of the expression e. Its

value is then assigned to x. For the sake of simplicity, we assume that the
evaluation of e always works without failure. So the assignment always

9.2 Source Language 231

Fig. 9.1 The Operators of source language.

terminates.
• p; q The program p; q runs as usual sequential composition does, that

is, if the execution of p successfully terminates, then the execution of q
follows that of p.

• p " q The program p " q runs either like p or like q. This nondeterminism
is called demonic. Because if p or q fails ∗, p " q fails. At least in principle,
this is not better than the situation where p " q always fails because it
cannot be relied at all.

• p � b � q This is a conditional statement. Its execution starts with
the evaluation of the boolean expression b. If b holds, then p is executed,
otherwise q is executed.

• b ∗p This is an iteration statement that stands for a loop. It starts with
the evaluation of boolean expression b. If it holds p is executed and this
is followed by the same iteration until b does not hold again. If b does not
hold from the beginning, the statement just behaves like skip. Although
iteration is a special case of the recursion, it is convenient to name it as
an independent operation.

Note: We consider that a program fails if it diverges (or aborts), the
operator ⊥ has the same meaning.

• dec x · p This is a declaration that declares the variable x for use in the
program p (the scope of the declaration). Here there is a difference from
common practice that we do not enforce that a variable be declared before
it is used. Undeclared (or global) variable can be considered as playing the
role of input and output commands: the initial values of these variables
are taken as the input to the program and their final values as the output
yielded by the program. Our intention is to simplify the dealing of type
information.

• proc X ∼= p · q It introduces a non-recursive procedure with name X
and body p. The program q following the symbol × is the scope of the
procedure. Occurrences of X in q are interpreted as the calling of proce-
dure X. We separate procedures from the recursion with the intention of
reducing complexity.

• μ X · p This is a recursive program. It has the name X and the body p.
Similar to proc X ∼= p · q above, occurrences of X in p are interpreted as

232 Chapter 9 Algebraic Method of Compiler Design

recursive calls of X.

It needs to point out that the source language allows arbitrary nesting of
variable and procedure declarations, as well as recursive definitions. For the
purpose of generality, we avoid defining the syntax of expressions. We use
uop and bop as operators of source language to stand for arbitrary unary
and binary operators, respectively. According to the practical situation, we
assume that the target machine has instructions that directly implement
these operators.

The source language is embedded in a specification space that includes the
constructions presented in Fig. 9.2. As in Fig. 9.1, x stands for an arbitrary
program variable, b for boolean expression, and p and q for programs (or
specification).

Fig. 9.2 Specification space.

The following is the explanation of these operators.
• Abort (⊥) It has the most possible undefined behaviors: it may fail

to terminate, or it may terminate with any result out of expectation.
Following Hoare[1, 2], we identify abort with all programs that might
diverge before doing action visible to its environment. The motivation for
the decision is that, in principle, any program allowing continuously to
diverge may be considered as the programming error, as one can never
rely on it. Later we will point out that most of the operators of the
reasoning language are strict: they abort when any of their arguments
abort. For example, true*skip is a divergent program as it is equivalent
to the recursive program μ X · X. We can regard abort as a construction
of source language. But we believe that no any programmer will use ⊥
intentionally. Rather it usually arises as a consequence of undesirable
computation such as non-terminating recursion.

• Miracle (#) It is the other extreme: It has the most possible defined
behavior and can serve any purpose. But it is only a theoretical concept to
be useful for reasoning. Obviously, it cannot be implemented; otherwise
we would not need to write programs—we just let # do for us.

9.2 Source Language 233

• Program p u q It behaves either as p or as q. But unlike ", this choice
is so-called angle in that the most suitable program for a given situation
is the one that is chosen. Therefore, p u q fails only when both p and q
fail, and it acts as miracle then.

• Assertion b⊥ The intentional use of b⊥ is to model an assertion. It acts
as skip if b holds at the place where the assertion is placed; otherwise it
fails and it behaves like abort.

• Assumption b� This is to model an assumption. It can be regarded
as a miraculous test: it leaves the state unchanged, behaving like skip;
otherwise it behaves like miracle.

• Guarded command b → p Under the notation if b holds it impels the
execution of p; Otherwise it behaves like miracle. It implies that a guard
has not much difference from an assumption of the given condition.

• Program X: ∈ b It is a generalized or nondeterministic assignment.
Its effect is to assign to x an arbitrary value that makes the condition
b hold. It is also suggested that when such a value does not exist the
assignment acts like miracle. Therefore, the nondeterminism in this case
may be regarded as angel. The main reason for such design is that we use
nondeterminism to abstract the way by which control state is encoded in
the target machine. Under the situation, the condition b describes the set
of the next possible states and x represents the machine components, e.g.
registers. If there is no such value of x that makes b true, the machine
behaves like # that can serve any purpose, as we mentioned above. Our
main aim is to save the compiler designers from dealing with states not
satisfying b. Of course, there is alternative choice that considers the as-
signment failing when there is no value of x that makes b hold. The choice
in this case would be demonic. There are applications where both inter-
pretations are useful. Hence the two must be considered as reasonable.

• var x and end x These two notations seem to be unnecessary redundancy.
The operator dec is the usual construct available in most programming
languages for introducing local variables with a lexical (or static) scope
semantics.
Nevertheless, for reasoning purpose it is useful to have independent con-

structs to introduce a variable and to end its scope. From the point of view
of operation, one can think of var x as pushing the current value of x into
an implicit stack and end x as popping out the value from the stack, and the
popped value is assigned to x. If the stack was empty, this value is arbitrary.
So var x introduces x with a dynamic scope semantics, this scope extends
up to the next end x is executed or up to the end of the static scope of x,
whichever happens first.

Furthermore, while the source language allows only single assignment, the
specification language allows multiple assignments of the form

x1, . . ., xn := e1, . . ., en

Of course, multiple assignment is implementable and could also be considered

234 Chapter 9 Algebraic Method of Compiler Design

as a source operator. But in this chapter we just use it for reasoning. Although
some of the above constructs are not strictly necessary, as some of them can
be defined in terms of others, each one represents a helpful concept both for
specification and for reasoning.

We will use the algebraic laws to present the semantics of the specification
(reasoning) language. Most of the laws are expressed as equations of the form
p = q. Informally the equation means that p and q have the same behavior:
for an arbitrary initial state s, p terminates if and only if q does, and the
final state produced by p starting in s is the same as the one produced by
q. The programs p and q may consume different amount of resources (for
example, memory) and run at different speeds; But what the equation really
means is that an external observer (who is unable to see the internal states)
cannot distinguish between them. Therefore, we can replace p with q or vice
versa in any context.

It is also possible to attach a boolean condition to a law, meaning that
the law is guaranteed to hold only if the condition yields a true value. Fur-
thermore, the laws can be inequations (rather than equations). These use
the refinement relation informally. For the purpose of illustration, a few alge-
braic laws are given below. They describe the fact that ⊆ is a lattice ordering
(If the reader is interested in knowing more about lattice theory, he/she is
encouraged to refer to modern algebraic books). For all programs p, q and r
we have

p ⊆ #, (miracle is the top of the lattice)

⊥ ⊆ p, (abort is the bottom)

(r ⊆ p ∧ r ⊆ q) ≡ r ⊆ (p " q), (" is the greatest lower bound)

(p ⊆ r) ∧ (q ⊆ r) ≡ (puq) ⊆ r. (u is the least upper bound)
An additional and extremely important fact about the refinement relation is
that all the operators of the reasoning language are monotonic with respect
to it. This means that if q refines p, then the replacement of p with q in
any context leads to a refinement of the entire context. More formally, for an
arbitrary context F:

p ⊆ q⇒ F(p) ⊆ F(q).
After introducing the operators of source language and specification language,
we may sequentially present an overview of the approach to compilation. But
first we need to define the machine used as the target of our compiler. The
target machine is very simple. It consists of four components:

P a sequential register (program counter)

A a general purpose register (accumulator)

M a store for variables (RAM)

m a store for instructions (ROM)
We need to emphasize that the essential feature of our approach to compila-
tion is the embedding of the target language within the reasoning language.
We represent the machine components as program variables and design the

9.2 Source Language 235

instructions as assignment that update the machine state. We define the in-
structions of our simple machine as follows:

load(n)⇔ (def as) A, P := M[n], P + 1.
(As we mentioned above, we use multiple assignment here, A is assigned to
M[n], meanwhile, in doing so, the program counter is increased by one.)

store(n)⇔ (def as) M, P := (M% {n→ A}), P + 1.
We use value A to update the memory at position n, the program counter is
increased by one.

bop−A(n)⇔ (def as) A, P := (A bop M[n]), P + 1.
The value in A and value in memory at position n execute a binary operation
and the result is kept in A, the program counter is increased by one.

uop−A⇔ (def as) A, P := (uop A), P + 1.
The value in A executes an unary operation and the result is still kept in A,
the program counter is increased by one.

jump(k)⇔ (def as) P := k.
The content of the program counter is assigned to k, so the next instruction
to be executed will be at position k,

cjump(k)⇔ (def as) P := (P + 1 � A � k).
If the value in A holds, the next instruction to be executed is at position
P+1, that means that the machine will execute consecutively, otherwise it
will jump to execute instruction at position k.

Where we use map overriding (%) to update M at position n with the
value of A. Of course we may use a more conventional notation M[n]:= A
as well. But we do not use it because it is not suitable for reasoning since
M[n] is not really a variable. Especially we will need to define operators like
non-freeness and substitution that regard two variables as different if they are
syntactically different; but M[e] and M[f] will be the same if e and f evaluate
to the same value even if they are syntactically different.

Recall that we mentioned that we do not deal with type information.
But in this context we assume that P is an integer variable, and that M is
an array variable. The conditional assignment that defines cjump is just an
abbreviation of the conditional

(P := P + 1) � A � (P := k).
A similar strategy can be adopted to model the components and instructions
of other target machines.

The normal form for describing the behavior of our simple machine that
executes a stored program is an iterated execution of instructions taken from
the memory m at location P:

dec P, A · P := s; (s � P < f) ∗m[P]; (P = f)⊥,
where s is the intended start address and f is the finish address of the code to
be executed. The requirement to start at the right instruction is expressed by
the initial assignment P := s, and the requirement to terminate at the right
place is expressed by the final assertion (P = f)⊥. The iteration program (s
� P < f) ∗m[P] means that while the value of P is in between s and f, then
the execution of m[P] is realized.

236 Chapter 9 Algebraic Method of Compiler Design

The design of a compiler in this approach is a constructive proof that
every one, however deeply structured, can be improved by some programs in
this normal form. The process is split into three main phases: elimination of
control; simplification (or decomposition) of expressions and data refinement
(or the change of data representation).

In order to illustrate these phases, and the compilation process in general,
we present some examples. The main theorem that states the correctness of
the compiler for this simple machine will be given in the end of this chapter.

Example 9.1 (A simple assignment) At first we consider the compilation
of an assignment of the form

x := y,
where both x and y are variables. That we consider so simple example is
because we want to explain the entire process following all the steps. One
of the tasks involved in the translation process is the elimination of nested
expressions. The expected outcome of this phase is a program in which each
assignment will eventually give rise to one of the patterns used to define the
machine instructions. Then, by definition, the actual instruction names can
be introduced in place of these patterns. Note that the above assignment
does not correspond to any of the machine instructions defined above: all the
instructions are defined in terms of the machine registers.

The assignment above is translated to
dec A ·A := y; x := A,

where A, as illustrated above, is the general purpose register of our simple
machine. And the assignment will be translated to two instructions: a load
instruction and a store instruction. It can be easily observed that the two
sequential assignments behave exactly the same as x := y. That A is a local
variable means that its scope ends after the two assignments are executed,
hence its final value cannot be observed after that point.

But the transformed program still operates on abstract global variables
with symbolic names, whereas the target program operates only on the con-
crete memory M. From the compiler’s symbol table, say Ψ, an injection maps
each variable onto distinct memory address, and we define a data refinement
Ψ+ that maps each program variable x onto the corresponding machine loca-
tion, so the value of x is held as M[Ψx]∗. The purpose of the data refinement
is to substitute M[Ψx] for x throughout the program. When this data refine-
ment is performed on our simple program it becomes

dec A · A := M[Ψy],
M := M% {Ψx→ A}.

Among three phases which we mentioned above, that are, expression sim-
plification, data refinement and control elimination, we have introduced the
first two, only control elimination remains. The task is to reduce the nested
control structure of the source program to a single flat iteration, like that of
the target program. This may be done by introducing a control state variable
to schedule the selection and sequencing of actions. In the case of our simple

9.2 Source Language 237

target machine, a single pointer P indicates the location in memory of the
next instruction. Then our program becomes

dec P, A · P := s;
(s � P < s + 2) ∗ [(P = s)→ load(Ψy), �(P = s + 1)→
store(Ψx)];
(P = s + 2)⊥.

Now the whole expression is the program, we get that indicates that these
instructions must be loaded into the memory m at positions s and s+1,
completing the overall process. Note that the product of the compilation
process is just a program in the same language (the normal form) from which
we can easily obtain the sequence of generated instructions of the target
language.

Note: Ψx is the address of x in the memory M, whereas M[Ψx] represents
the memory cell (location) that holds this value.

Example 9.2 (A simple conditional statement) Consider the following
conditional statement that assigns x or y to z depending on whether the bop
relation holds or not between x and y:

(z := x) � x bop y � (z := y).

The conditional statement may express a maximum (or minimum) finding
program in which case bop would stand for � (or �). But we would prefer
sticking to the notation of the source language where bop stands for arbitrary
binary operators. We might derive the normal form of the statement as we
did for the assignment statement step by step. But it is very similar to the
first one, we just omit the details and directly present the normal form of it:

dec P, A · P := s; (s � P < s + 8),
(P = s)→ load(Ψx),
�(P = s + 1)→ A bop M[Ψy],
�(P = s + 2)→ cjump(s + 6),
�(P = s + 3)→ load(Ψx),
�(P = s + 4)→ store(Ψz),
�(P = s + 5)→ jump(s + 8),
�(P = s + 6)→ load(Ψy),
�(P = s + 7)→ store(Ψz),
(P = s + 8)⊥.

After the first instruction ((P = s) → load(Ψx)) is executed, the value of x
is kept in general purpose register A, so the second instruction performs bop
operation between x and y and A holds the result (x bop y). If this value is
false, then a jump occurs and the final two instructions are executed, then

238 Chapter 9 Algebraic Method of Compiler Design

the value of y is assigned to z, otherwise the instruction below the cjump
instruction until instruction P = s+5 are executed and in this case the value
of x is assigned to z. The main feature of this approach to the compilation
is that while the compiler is designed the correctness of the compiler is also
proven. We now want to know how is it realized. From the basic algebraic
laws of the language there several theorems will be needed to carry out the
expounding and proving of the correctness of the compilation process. Now we
first study one of the main theorems, the so-called theorem of the compilation
process that expounds the correctness of that process.

Theorem 9.1 (compilation process) Let p be an arbitrary source program.
Given a constant s and a symbol table Ψ that maps each global variable of p
to the address of the memory M allocated to hold its value, there is a constant
f and a sequence of machine instructions held in m between locations s and
f such that

Ψ∗
ω(p) ⊆ dec P, A · P := s; (s � P < f) ∗m[P]; (P = f)⊥,

where Ψ∗ is a function (built from the symbol table Ψ) that performs the
necessary change of the data representation: from the abstract data space of
the source program to the concrete state of the machine represented by the
memory M.

Note that Ψ∗ plays an essential role in the correctness statement above:
it would not make any sense to compare the program p with its normal form
directly, since they operate on different data spaces. While p operates on the
program variables x, y, . . ., z its normal form operates on the concrete store
M. At the current moment we do not give the proof of the theorem, it will
be given in the end of the chapter.

9.3 Algebraic Foundation and Reasoning Language

In this section at first we will briefly describe a theoretical basis for the
kind of the refinement algebra we will be using. Then we will introduce the
reasoning language based on the refinement algebra. The source language we
use is a subset of the reasoning language. Meanwhile, in this section we will
give examples of the refinement calculi based on these ideas and address the
problem of the data refinement. We will also link our approach to compilation
to the more general task of deriving programs from specifications. Therefore,
the contents of this section are crucial to the approach to compilation which
we study.

9.3 Algebraic Foundation and Reasoning Language 239

9.3.1 Algebra Fundamentals

At first we introduce the concept of the partial order.

Definition 9.1 A pair (S, &) is called a partial order where S is a set and
& is a binary relation (the partial ordering) on S satisfying the following
axioms, for all x, y, z ∈ S:

x & x, (reflexivity)

(x & y) ∧ (y & z)⇒ (x & z), (transitivity)

(x & y) ∧ (y & x)⇒ (x = y). (antisymmetry)

Definition 9.2 A pair (S, &) is called a total order, if (s, &) is a partial
order and for each pair of elements in S, they all are comparable: (x & y) ∨(y
& x). For the sake of simplicity, we will abbreviate (S, &) to S. Wherever the
misunderstanding may happen whether it stands for partial order or total
order, we will make it clear.

Definition 9.3 Given a subset T of S (partial or total order), we say that
x ∈ S is an upper bound for T if y & x for ∀ y ∈ T. x is the least upper
bound of T if it is both an upper bound for T and whenever y is another
upper bound for T then x & y.

Definition 9.4 Given a subset T of S (partial or total order), we say that
x ∈ S is a lower bound for T if x & y for ∀ y ∈ T. x is greatest lower bound
of T if x is a lower bound and whenever y is another lower bound for T then
y & x.

An element ⊥ is a least element or bottom of S if ⊥ & x for ∀ x ∈ S. #
is a greatest element or top of S if x & # for ∀ x ∈ S.

Definition 9.5 Given set S and T with T partially ordered by &T, the set
S → T of functions from S to T is said to be partially ordered by &T defined
by

f & g ⇔ (def as) f(x) &T g(x) for ∀x ∈ S.
In addition, if S is partially ordered by &S, then f: S → T is said to be
monotonic if

x &S y⇒ f(x) &T f(y) for ∀x, y ∈ S.
We denote by {S → T} the set of monotonic functions from S to T. If S is
discrete (that is, x &S y holds if and only if x = y), then S → T and {S →
T} are identical.

Definition 9.6 Given a partially ordered set S, it is said to be a complete
lattice if it contains greatest lower bounds and least upper bounds for ∀ T,
U & S, where T, U are the subsets of S. Geometrically the greatest lower
bound is the meet of two sets while the lower upper bound is the join of two
sets. A consequence is that every complete lattice has a bottom and a top
element. There are two additional well-known properties of complete lattices.
They are:

240 Chapter 9 Algebraic Method of Compiler Design

1) Any finite totally ordered set is a complete lattice.
2) If S is a partially ordered set and T is a complete lattice, then {S→T}

is a complete lattice.
The boolean set {true, false} is a simple example of a complete lattice

when it is ordered by the implication relation. The least upper bound ∨ and
the greatest lower bound ∧ have their usual interpretations as disjunction and
conjunction, respectively. The bottom element is false and the top element
is true. This is actually a complete distributive lattice, since for ∀ a, b, c ∈
{false, true}:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

In lattice theory, the above two properties are actually equivalent. The lattice
under consideration has yet another property that it is a boolean lattice, since
it has a complement (negation) element for every element. In the following
discussion we will refer to this kind of lattices as Bool.

Now we divert to the lattice of predicates. We consider programs first. As
all knows that programs usually operate on a state space formed from a set
of variables. We use State to stand for the set of all possible states partially
ordered by the equality relation. Therefore it is a discrete partial order. In
practice we need a way to describe particular sets of states, for example,
to specify the set of initial states of programs, as well as the set of final
states. This can be described by boolean-valued functions (or predicates) on
the state space. As State is a partial order, and Bool is a complete lattice,
{State → Bool} is also a complete lattice. Furthermore, as State is discrete,
{State → Bool} and State → Bool are identical. Then we will refer to it as
the Predicate lattice. The Least upper bound a ∨ b is the disjunction of the
predicates a or b, and the greatest lower bound a ∧ b is their conjunction
predicate a and b. The bottom element false describes the empty set of states
and the top element true describes the set of all possible states. The concrete
definitions are as follows:

(a ∨ b)⇔ (def as) λx · a(x) ∨ b(x),
(a ∧ b)⇔ (def as) λx · a(x) ∧ b(x),
true⇔ (def as) λx · true,
false⇔ (def as) λx · false,

Where we introduce the notation λ x · t that stands for a lambda abstraction
(anonymous function) with the parameter x and body t. In the above defini-
tion, x ranges over State. The lattice ordering is the implication on predicates
that is defined by pointwise extension in the usual way:

a⇒ b⇔ (def as)∀x · a(x)⇒ b(x).
We use the notation ∀ x p → q (read as for all x, if p then q) to stand for
the universal qualification in the predicate calculus. In particular, p can be
omitted when it is equivalent to true, as in the above definition.

9.3 Algebraic Foundation and Reasoning Language 241

In this notation, it is hard to express the operations which we defined
before, but with some restrictions, we still can express them as follows:

p & q⇔ (def as)λx · p(x)⇒ q(x),
p " q⇔ (def as)λx · (p(x) ∨ q(x)∨ ⊥).

The order of execution of the right hand side is that p(x) is executed first
if it can be executed, if it fails then q(x) is executed, otherwise the result is
demon.

puq⇔ (def as)λx · (p(x) ∨ q(x) ∨ #)
Similarly, the order of execution of the right hand side is also from the leftmost
to rightmost.

We now introduce another lattice that provides a theoretical basis for Di-
jkstra’s view of programs as predicate transformers (functions from predicates
to predicates)[3].

Definition 9.7 The notation
wp(p, a) = c

means that if the program p is executed in an initial state satisfying its
weakest precondition c, it will eventually terminate in a state satisfying the
postcondition a.

In the definition, as the name suggests, the weakest precondition c
describes the largest possible set of initial states that ensures that execu-
tion of p will terminate in a state satisfying a. It should be clear that the
focus is on total rather than on partial correctness in the style of Hoare Logic
[4]. This means that the aim is not only to satisfy a on the even termination
of p, but also to ensure that p will always terminate when it is executed in
any state determined by c.

Definition 9.8 The predicate transformer lattice (PredTran) is the set of
all monotonic functions from one predicate lattice to another {Predicate→
Predicate}. The result of the applying program (predicate transformer) p to
predicate a, denoted p(a), is equivalent to Dijkstra’s wp(p, a).

Clearly, PredTran is a complete lattice and therefore it contains arbitrary
least upper bounds (u) and greatest lower bounds ("): ' is interpreted as
anglic nondeterminism and " as demonic nondeterminism. The top element is
miracle (#); it establishes every postcondition. The bottom element is abort
(⊥), the predicate transformer does not establish any postcondition. We now
define # and ⊥ as follows:

⇔ (def as)λa · true,
⊥ ⇔ (def as)λa · false.

According to Dijkstra’s view any program constructs can be defined as
predicate transformers. As example we define skip (the identity predicate
transformer), assignment and sequential composition:

skip⇔ (def as)λa · a,

x := e⇔ (def as)λa · a[x← e],

242 Chapter 9 Algebraic Method of Compiler Design

p; q⇔ (def as)λa · p(q(a)),
where a[x ← e] denotes the result of the substituting e for every occurrence
of x in a. Furthermore Dijkstra [5] has suggested five healthiness conditions
which every construct of a programming language must satisfy. They are
defined below (we assume that implicit qualification over a and b stands for
predicate and over p stands for program).

1) p(false) = false, law of excluded miracle

2) If a⇒ b then p(a)⇒ p(b), monotonicity

3) p(a) ∧ p(b) = p(a ∧ b), conjunctivity

4) p(a) ∨ p(b) = p(a ∨ b), disjunctivity

5) p(∃i| i � 0 · ai) = ∃i : i �: p(ai), continuity
for all sequence of predicates

a0, a1, . . ., such that ai ⇒ ai+1 for ∀i � 0.

The last property is equivalent to requiring that nondeterminism be bounded.
The notation ∃ x p; q stands for an existential quantification and is read as:
there exists an x such that p and q hold. The healthiness conditions have been
pointed out that they do not always hold. For example, the fourth property
is satisfied only by deterministic programs. It is easy to exemplify a failure
of disjunctivity by taking suitable values for p, a, and b:

p = (x := 2 " p := 3),
a = (x = 2),
b = (x = 3).

Let us now calculate the value of p(a):

p(a) = x := 2(x = 2) ∧ x := 3(x = 2) {predicate transformer definition of ∧}
= true ∧ false {predicate transformer definition of Assignment}
= false {true ∧ ∧false = false}.

Similarly, one can show that p(b) = false, and consequently, that p(a)
∨p(b) = false. It is also trivial to show that p(a ∨ b) = true. Therefore,
we conclude that the fourth property does not hold in general for nondeter-
ministic programs. Instead, the implication

p(a) ∨ p(b)⇒ p(a ∨ b)
does hold. The complete lattice PredTran includes predicate transformers
useful for the specification purpose; they are not implementable in general.
Among above properties, only monotonicity is satisfied by all the predicate
transformers in PredTran: # trivially breaks the law of the excluded miracle.
The fact that greatest lower bounds over arbitrary sets are allowed implies
that the assumption of bounded nondeterminism (and therefore continuity)

9.3 Algebraic Foundation and Reasoning Language 243

is not satisfied; and angelic nondeterminism violates the property of conjunc-
tivity. Failure of conjunctivity can also be illustrated by a similar example to
that used to show failure of disjunctivity. Let p, a, and b be as follows:

p = (x := 2 ' x := 3),

a = (x := 2),

b = (x := 3).
It is easy to show that, in this particular case, p(a)∧ p(b) = true whereas
p(a ∧ b) = false.

Nevertheless, the healthiness conditions are still fundamentally important.
They are the criteria for distinguishing the implementable from the non-
implementable in a general space of specifications.

Based on the weakest preconditions, people proposed and developed re-
finement calculi. This calculi aim at formalizing the well established stepwise
refinement method for the systematic construction of programs from high-
level specifications. In essence, all the refinement calculi extend a given pro-
cedural language (in particular, Dijkstra’s guarded command language) with
additional features for specifications. For example, let [a, c] be a specification
construct used to describe a program that will terminate in a state satisfying
c if it executes in a state satisfying a. This can be viewed as a predicate
transformer in just the same way as other operators of the language. It can
be defined as

[a, c]⇔ (def as)λb · a ∧ (c⇒ b).
Thus the extended language is a specification language, and programs appear
as a subclass of specifications. Programming is then viewed as construct-
ing a sequence of specifications; the initial specification is in a high-level of
abstraction (usually not implementable) and the final specification is in the
executable program. The derivation process is to gradually transform specifi-
cations into programs. The intermediate steps of the derivation will normally
contain a mixture of specification and program constructs; but these are for-
mal objects too, since specifications and programs are embedded in the same
semantic framework.

Derivation requires the notion of the refinement relation between specifi-
cations. The precise definition of the refinement relation is the ordering on the
lattice of predicate transformers described above. Two mathematical prop-
erties of this ordering are of the fundamental importance to model stepwise
refinement. The first one is that in order to allow a given specification to be
replaced by a refinement of it in an arbitrary context, the monotonicity of the
language operators with respect to this ordering is necessary; this property
is also known as compositionality.

The second one is transitivity. As the derivation process normally entails
a large number of steps, it is necessary to ensure that the final product of
the derivation (that is, the program) satisfies the original specification.

The additional tools required in the process are rules for introducing pro-
gramming constructs from given specifications. For example, the following

244 Chapter 9 Algebraic Method of Compiler Design

rules illustrate the introduction of skip and sequential composition:
[a, c] & skip if a⇒ c,
[a, c] & [a, b]; [b, c].

There are also rules for manipulating specifications [6]; for example, weak-
ening the precondition of a given specification or strengthening its postcon-
dition (or both) lead to a specification that refines the original one:

[a1, c1] & [a2, c2] if a1 ⇒ a2 ∧ c2 ⇒ c1.
The discussion above describes how to transform an abstract specification

into a program by progressively introducing control structures; this is known
as algorithmic or control refinement. But this is only part of the process
to obtain an implementation. Specifications are usually stated in terms of
mathematical data types like sets and relations, and these are not normally
available in procedural programming languages. Therefore, the complemen-
tary step to control refinement is the transformation of the abstract data
types into concrete types such as arrays, and records which can be efficiently
implemented. This task is called data refinement.

The basic idea of data refinement is the use of an abstraction function to
determine the abstract state which a given concrete state represents; in addi-
tion, the set of concrete states may be constrained by an invariant relation. It
was first introduced by Hoare[7]. Then many approaches have been suggested
that build on these ideas. The more recent approaches use a single relation
to capture both the abstraction function and the invariant, thus relaxing the
assumption that the abstract state is functionally dependent on the concrete
state.

In connection with the refinement calculi, data refinement is characterized
as a special case of algorithmic refinement between blocks. A block of the form

dec x : Tx · p
is used to represent the abstract program p operating on the variables x with
type 1© Tx.

Similarly
dec x′ : Tx′ · p′

represents the concrete program p′ that operates on the variables x′ with the
type Tx’. The data refinement is captured by the inequation

(dec x : Tx · p) & (dec x′ : Tx′ · p′).
The general aim is to construct the concrete block by replacing the abstract
local variables with the concrete ones, in such a way that the overall effect
of the abstract block is preserved. In particular, p′ is constructed with the
same structure as p in the sense that each command in p′ is the translation
of a corresponding command in p, according to a uniform rule.

An essential ingredient to this strategy is an abstract invariant I that
links the abstract variables x to the concrete variables x′. This is called the
coupling invariant. The need for this invariant is that a direct comparison of
the programs operating on data space is not possible. For example, in the

1©Our language is untyped, and types are considered here only for the present discussion.

9.3 Algebraic Foundation and Reasoning Language 245

design of the compiler this invariant would establish the relationship between
the data space of the source program and that of the target program. As
exemplified in the previous section, the concrete representation of a variable
y in the memory M of our simple target machine is denoted by M[Ψ y], where
Ψ is a symbol table that maps identifiers to their respective addresses in M.
For a list of global variables y1, . . . , yn representing the states of the source
program, the relevant coupling invariant would be

y1 = M[Ψy1] ∧ . . . ∧ yn = M[Ψyn].
In this approach to the data refinement, a new relation between programs is
defined to express that program p′(operating on variables x′) is a data refine-
ment of the program p (operating on variables x) under coupling invariant I.
This is written p �I,x,x′ p ′ and is formally defined by

p �I,x,x′ p′ ⇔ (def as) (∃ x ·I ∧ p(a))⇒ p′(∃ x·I ∧ a)
for ∀ a not containing x′ (considering programs as predicate transformers).

Broadly, the antecedent requires that the initial values of the concrete
variables couple to some set of abstract values for which the abstract program
will succeed in establishing postcondition a; the consequent requires that the
concrete program yields new concrete values that also couple to an acceptable
abstract state.

To illustrate a simple example of the data refinement, consider the cou-
pling invariant, given the relation above that relates the data space of the
source program to that of the target program. We can show that the program

x := y
is data refined by the program

M := M% {ψx → M[ψy]}.
Note that this captures the desired intention: the effect of the latter program
is to update the memory at position ψx (the address of x) with M[ψy], the
value stored in the memory cell with address ψy (the address of y). More
generally, we can prove that an arbitrary source program operating on the
source variables is data refined by the corresponding target program which
operates on M.

This definition is chosen for two main reasons. The first is that it guar-
antees the characteristics of the data refinement given above, that is

if (p �I,x,x′ p′) then (dec x : Tx · p) ⊆ (dec x′ : Tx′ · p′).
The second reason is that it distributes through the program constructors,

thus allowing data refinement to be carried out piecewise. For example, the
distribution through sequential composition is given by

if (p �I,x,x′ p′) and (q �I,x,x′ q′) then (p; q) �I,x,x′ (p′; q′).
But we can also adopt another approach to avoid the need of the defining

data refinement relation. The use of the algorithmic refinement relation can
not only characterize the data refinement, but also carry out the calculations.
The basic idea is to introduce an encoding program, say ψ that computes
abstract states from concrete states and a decoding program, say Φ that
computes concrete states from abstract states. Then, for a given abstract
program p, the task is to find a concrete program p’ such that

246 Chapter 9 Algebraic Method of Compiler Design

ψ; p; Φ ⊆ p′.
With the aid of specification features, it is possible to give a very high-level
definition for ψ and Φ. Using the same convention adopted above that x
stands for the abstract variable, x′ for the concrete variable and I for the
coupling invariant, ψ is defined by

ψ⇔ (def as) var x; x :∈⊥ I; endx′.
The meaning of the expression is that it introduces the abstract variable x
and assigns its value such that the invariant is satisfied, and then removes
the concrete variable from the data space. The use of ⊥ as an annotation in
the above generalized assignment command means that it aborts if I cannot
be established. Similarly we have the definition of Φ:

Φ⇔ (def as) var x′; x′ :∈⊥ I; end x.
This one introduces the concrete variable x′ and assigns its value such that
the invariant is satisfied, and removes the abstract variable from the data
space. But the generalized assignment command result in a miracle in this
case if I cannot be established.

It needs to point out that these two kinds of generalized assignment com-
mands are introduced only for the purpose of the present discussion, hence-
forth we will still use the previous notation x: ∈ b, instead of x: ∈� b, as
they are the same by definition.

Note that having separate commands to introduce and end the scope of
variables is an essential feature to define the encoding and decoding programs:
the first introduces x and ends the scope of x′; the second introduces x′ and
ends the scope of x.

In this approach, the data refinement can also be performed piecewise, as
we can prove the distributivity properties such as

ψ; (p; q); Φ ⊆ (ψ; p; Φ) : (ψ; q; Φ)
that illustrates that both algorithmic and data refinement can be carried out
within the framework of one common relation.

We have mentioned previously that the task of compilation is the program
refinement. In the sense, we can establish some connection between our point
of view of compiler design and the more general task of deriving programs
from specifications [8]. Henceforth we will refer to deriving programs sim-
ply as derivation. In both cases, a programming language is extended with
specification features, so that a uniform framework is built and the interface
between programs and specifications (when expressed in terms of distinct
formalisms) is avoided.

In a derivation, the idea is to start with an arbitrary specification and
end with a program formed solely from constructs that can be executed by
computer. In our case, the initial object is an arbitrary source program and
the final product is its normal form. But the tools used for achieving the goals
in both cases are identical in nature: transformations leading to refinement
in the sense already discussed.

Derivation entails two main tasks: the control and data refinement. We
also split the design of the compiler into these two main phases. However,

9.3 Algebraic Foundation and Reasoning Language 247

while in a derivation control refinement is concerned with progressively intro-
ducing control structure in the specification, we do the reverse process. We
reduce the nested control structure of a source program to the single flat iter-
ation of the normal form program. Regarding the data refinement, the general
idea is the same both in a derivation process and in a designing compiler: to
replace abstract data types with concrete representations. In particular, we
use the idea of encoding and decoding programs. As discussed before, this
avoids the need to defining a separate relation to carry out data refinement.
An encoding program retrieves the abstract space of the source program from
the concrete state representing the memory of the machine. Conversely, a de-
coding program maps the abstract space to the concrete machine state. In
the following section, we will formally define the pair formed by an encoding
and the respective decoding program as a simulation. It satisfies the distribu-
tivity properties illustrated above, allowing the data refinement to be carried
out piecewise. But it should be pointed out too, that there are some differ-
ences between designing a compiler in this way and the more general task
of deriving programs from specifications. For example, we are not interested
in capturing requirements in general, and therefore, our language does not
include the construct to serve this purpose. In our language, the closest to
a specification statement which we have is the generalized assignment com-
mand. We abstract it from the way where the control state is encoded in a
particular target machine. Another difference is that we are mostly concerned
with the program transformation. We need a wide range of laws relating the
operators of the language. The set of these laws must be complete in that it
should allow us to reduce an arbitrary program to normal form. Therefore,
the frame we use is better characterized as a refinement algebra, rather than
as a calculus.

9.3.2 Reasoning Language

In this section, we give meaning to our specification (reasoning) language in
terms of equations and inequations (laws) relating operators of the language.
Usually we present the laws as self-evident axioms, normally preceded by an
informal (operational) justification. Moreover, it is not our aim to describe
a complete set of laws in the logical sense. Nevertheless, they are complete
in that they will allow us to reduce an arbitrary source program to a normal
form.

Most of the algebraic laws are expressed as equations of the form p = q.
It means that p and q have the same behavior: the program p and q may
possibly consume a different amount of resources (for example, memory) and
run at different speeds, but regarding the task they perform is impossible
to distinguish between them. Therefore, we can replace p with q (and vice
versa) in any context. It is also possible to attach a boolean condition to a law,

248 Chapter 9 Algebraic Method of Compiler Design

meaning that the law is guaranteed to hold only if the condition evaluates
to be true. Furthermore, the laws can be inequation (rather than equation)
expressing refinement.

It is possible to select a small subset of our language and define the
additional operators in terms of the more basic ones. But this is not our
concern here. What we emphasize is the algebraic laws that will be used in
the process of designing a compiler. However, we do illustrate how a few
operators can be defined from others. In particular, iteration is defined as a
special case of the recursion and all the laws about the iteration are proven.
They deserve such special attention because of their role in the proof of the
normal form reduction theorems.

Another concern is the correctness of the laws of the basic operators. To
achieve this we need to link the algebraic semantics of the language with
a suitable mathematical model in which the basic operators can be defined
and their laws verified. In the end of this section, we will further discuss this
issue and argue that the existence of nontrivial models for reasoning language
shows that in some sense the reasoning language and its algebraic laws are
consistent.

As we have explained before both the programming and specification
operators of the reasoning language have the same status in that they can be
viewed as predicate transformers. In this uniform framework, there is no need
to distinguish between programs and specifications. We will refer to both of
them as “programs”. Another remark is that programs have both a syntactic
and a semantic existence. On one hand, we perform syntactic operations on
them, such as substitution. On the other hand, the algebraic laws relating
language operators express semantic properties. Strictly speaking, we should
distinguish between these two natures of programs. But it is not convenient
to do so and it will be clear from the context which view we are taking.

1. Concepts and Notation

1) Name conventions
For the purpose of the convenience of the following discussion, we define

some conventions as regards the names used to denote program terms:
X, Y, Z variables denoting programs

p, q, r arbitrary but given programs

x, y, z list of variables

a, b, c boolean expressions

e, f, g list of expressions
We also use subscripts in addition to the above conventions. For example,
b0, b1, . . . stand for boolean expressions (also referred to as conditions). We
use comma for list concatenation: x, y stands for the concatenation of lists
x and y. Further conventions are explained when necessary.

2) Precedence rules
In order to clarify the priority order and to reduce the number of brackets

9.3 Algebraic Foundation and Reasoning Language 249

around program terms, we define the following precedence rules. Operators
with the same precedence appear on the same line. As usual, we will assume
that brackets bind tighter than any operator. Procedures will be discussed
separately later.

3) Free and bound identifiers
An occurrence of a variable x in a program p is bound (or local) if it is

in the scope of a static declaration of x in p, and free (or global) otherwise.
For example, x is bound in dec x·x := y, but free in x := y. Notice that
the command for the dynamic declaration is not binders for variables. For
example, x is free in var x as well as in end x. A list of variables is free in p
if each variable in the list is not bound in p.

In the case of program identifiers, we say that an occurrence of x is free
in a program p if it is not in the scope of any program (with name x) defined
in p, and bound otherwise.

4) Substitution
For variables x and y,

P[x← y]

denotes the result of the substituting y for every occurrence of x in P. It is
possible for x to be in the scope of (static) declarations of variables with the
same name as y. In this case, a systematic renaming of local variables of P
occurs in order to avoid variable capture. This is usually referred to as safe
substitution. If x and y are (equal-length) lists of variables, the substitution
is positional. In this case, no variable may appear more than once in the list.

Similarly,
f[x← e]

denotes the substitution of the list of expressions e for the (equal-length) list
of variables x in the list of expressions f.

We also allow the substitution of programs for program identifiers:
p[X← q].

250 Chapter 9 Algebraic Method of Compiler Design

This avoids capture of any free identifiers of q by renaming local declarations
in p, as discussed above. For conciseness, we will sometimes avoid writing
substitutions of the latter kind by making (free) occurrences of X explicit, as
in F(X). Then the substitution of q for X in this case is written F(q). In any
case, we assume that no capture of free identifiers occur.

5) Laws, declarations, lemmas, theorems and proofs
Each of the laws described in the following sections is given a number and

a name suggestive of its use. For example,
(;−skip unit)

is the name associated with the law that says that skip is the unit of
sequential composition. Every reference to a law comprises both its name
and its number. Each of the definition, lemmas and theorems are also given
a number and a name for further references.

Some of the laws could be alternatively described as lemmas or theorems,
as they are provable to more basic ones. Most of the derived laws are presented
with their proofs, but in any case we always make it clear whether a given
law can be derived. Our proofs are confined to reasoning with conditional
(in) equations. The proof strategy is to start with one of the sides and try
to reach the other side by a series of algebraic transformations. Each step
is annotated with one or more references to laws, definitions, lemmas, or
theorems.

Each proof is essentially a program transformation activity. We assume
that the program being transformed is (syntactically) valid to start with.
Then the application of most of the laws will always produce valid programs.
Nevertheless, some of the laws (e.g., Laws 9.2, 9.42, and 9.47) contain free
variables on their left hand sides (LHS) that do not appear on their right
hand sides (RHS). Therefore, the reverse (right to left) application of these
equations requires the user to provide an explicit instantiation (binding) of
these free variables; in these circumstances, one must take care to avoid
transforming a valid program into one that is not even syntactically well-
formed. One advantage of mechanizing the transformation is that one can
ensure that this problem will not arise. In our case, this is actually simplified
by the fact that we do not deal with context information like types. Even
undeclared variables can be introduced during the transformations; these
variables are considered to be global.

2. Skip, Abort and Miracle

The skip command has no effect and always terminates successfully.
The abort command, denoted by ⊥, is the most unpredictable of all pro-

grams. It may fail to terminate, or it may terminate with any result whatso-
ever. Thus ⊥ represents the behavior, of a broken machine, or a program that
has run wild. We identify abort with all programs that might diverge before
doing any action visible to its environment. The motivation for this choice is
that, in principle, a program that is continuously allowed to diverge can be
considered a programming error, since one cannot rely on it at all. This is

9.3 Algebraic Foundation and Reasoning Language 251

formalized in part 6 of this section where we state that every program is a
refinement of ⊥. For example, the replacement ⊥ with an assignment such as
x := 1 is an improvement in the sense we have already discussed: while the
behavior of the former is totally arbitrary, the later always terminate with
an expected result.

The miracle command, denoted by #, is the other extreme: it can be used
to serve any purpose and more formally, it refines every program. But it is
infeasible in that it cannot be implemented, otherwise we would not need to
write programs—# would do anything for us. We use # just for reasoning
needed to imagine an ideal result.

3. Sequential composition

From this part, we start introducing the laws and others which we men-
tioned at the beginning of the section. The program p; q denotes the usual
sequential composition of programs p and q. If the execution of p terminates
successfully then the execution of q follows that of p.

Since the execution of skip always terminates and leaves everything
unchanged, to precede or follow a program p by skip does not change the
effect of p. In other words, skip is both the left and right units of the sequen-
tial composition.

Law 9.1 (skip; p)= p= (p; skip) (; -skip unit)

We state that the execution of a program p after the termination of ⊥
cannot redeem the situation, because ⊥ cannot be relied on to terminate.
More precisely, ⊥ is a left zero of the sequential composition.

Law 9.2 ⊥; p = ⊥ (; -⊥ left zero)

To precede a program p by # results in a miracle; # is a left zero of the
sequential composition.

Law 9.3 #; p = # (; -# left zero)

The sequential composition is associative.

Law 9.4 (p; q); r = p; (q; r) (; assoc)

4. Demonic nondeterminism

The program p " q denotes the demonic choice of programs p and q; either
p or q is selected, the choice being totally arbitrary. The abort command
already allows completely arbitrary behavior, so an offer of further choice
makes no difference to it.

Law 9.5 p " ⊥ = ⊥ ("-⊥ zero)

On the other hand, the miracle command offers no choice at all.

Law 9.6 p " # = p ("-# unit)

252 Chapter 9 Algebraic Method of Compiler Design

When the two alternatives are the same program, the choice becomes
vacuous - -" is idempotent.

Law 9.7 p " p = p (" idemp)

The order in which a choice is offered is immaterial " is commutative.

Law 9.8 p " q = q " p (" comm)

Demonic choice is associative.

Law 9.9 (p " q) " r = p " (q " r) (" assoc)

5. Angelic nondeterminism

The angelic choice of two programs p and q is denoted by p ' q. Infor-
mally, it is a program that may act like p or q, whichever is more suitable in
a given context.

As we have mentioned above, ⊥ is totally unpredictable, and therefore
the least suitable program for all purpose.

Law 9.10 ⊥ ' p = p ('-⊥ unit)

On the other hand, # suits any situation.

Law 9.11 # ' p = p ('-# zero).

Like ", angelic choice ' is idempotent, commutative and associative.

Law 9.12 p ' p = p (' idemp)

Law 9.13 p ' q = q ' p (' comm)

Law 9.14 (p ' q) ' r = p ' (q ' r) (' assoc)

6. Ordering Relation

Here we define the ordering relation & on programs: p & q holds whenever
the program q is at least as deterministic as p or, alternatively, whenever q
offers only a subset of the choices offered by p. In this case, q is at least as
predictable as p. This coincides with the meaning we adopt for refinement.
Thus p & q can be read as “p is refined by q”.

We define & in terms of ". Informally, if the demonic choice of p and q
always yields p, one can be sure that p is worse than q in all situations.

Definition 9.9 (The ordering relation) p & q⇔ (def as)(p " q) = p

In the final section, we prove that this ordering coincides with the ordering
on the lattice of predicate transformers described in the beginning of this
chapter. Alternatively, the ordering relation could have been defined in terms
of '.

Law 9.15 p & q ≡ (p ' q) = p (&-')

9.3 Algebraic Foundation and Reasoning Language 253

From Definition 9.9 and the laws of ", we conclude that & is a partial
ordering on programs.

Law 9.16 p & p (& reflexivity)

Law 9.17 (p & q) ∧ (q & p) ⇒ (p = q) (& antisymmetry)

Law 9.18 (p & q) ∧ (q & r) ⇒ (p & r) (& transitivity)

Moreover & is a lattice ordering. The bottom and top elements are ⊥
and #, respectively; the meet (greatest lower bound) and join (least upper
bound) operators are " and ', in this order. These are also consequences of
the definition of & and the laws of " and '.

Law 9.19 ⊥ & p (&-⊥ bottom)

Law 9.20 p & # (&-# top)

Law 9.21 (r & p ∧ r & q)≡ r &(p " q) (& -" glb)

Law 9.22 (p & r) ∧ (q & r) ≡(p ' q) & r (&-' lub)

In order to be able to use the algebraic laws to transform subcomponents
of compound programs, it is crucial that p & q imply that F(p) & F(q), for
all contexts F (functions from programs to programs). This is equivalent to
saying that F (and consequently, all the operators of our language) must be
monotonic with respect to &. Then we have the law as follows.

Law 9.23 If p & q, then
1) (p " r) & (q " r) (" monotonic)

2) (r; p) & (r; q) and (p; r) & (q; r) (; monotonic)

We will not state monotonicity laws explicitly for the remaining operators
of our language.

7. Unbounded Nondeterminism

Here we generalize the operators " and ' to take an arbitrary set of
programs, say p, as argument. ' p denotes the least upper bound of p; its
definition is given below.

Definition 9.10 (least upper bound) (' p & p) ≡ (∀X|X ∈ p · X & p).

The above definition states that p refines the least upper bound of the set
p if and only if, for ∀ X ∈ p, p refines X.

The greatest lower bound of p, denoted by " p, is defined in a similar
way.

Definition 9.11 (Greatest lower bound) (p & " p) ≡ (∀X|X ∈ p · p & X).

Let ' be the set of all programs, and ∅́ be empty set. Then we have
' ∅ = ⊥ = " U∅

" ∅ = # = ' U.

254 Chapter 9 Algebraic Method of Compiler Design

From the above we can easily show that sequential composition does not
distribute rightward through the least upper bound or the greatest lower
bound in general, since we have

⊥;" ∅ = ⊥ �= " ∅

#;' ∅ = # �= ' ∅.
The rightward distribution of sequential composition through these opera-
tors is used below to define Dijkstra’s healthiness conditions. However, the
leftward distribution is valid in general, and can be verified by considering
programs as predicate transformers. In the following, the notation {X| b ·
F(X)} should be read as: the set of elements F(X) for ∀ X in the range
specified by b.

Law 9.24
1) ' p; p = ' {X|X ∈ p · (X; p)} (; -' left dist)

2) " p; p = " {X|X ∈ p · (X; p)} (; -" left dist)

It is also possible to verify that the lattice of programs (considered as
predicate transformers) is distributive.

Law 9.25
1) (' p) " p = ' {X|X ∈ p · (X " p)} ("-' dist)

2) (" p) ' p = " {X|X ∈ p · (X' p)} ('-" dist)

As discussed before, among all predicate transformers Dijkstra singles out
the implementable ones by certain healthiness conditions. Here we formulate
these conditions as equations relating operators of our language.

1) p; ⊥ = ⊥ p is non-miraculous

2) p; " p = " {X|X ∈ p·(p; X)} p is conjuctive

for all (non-empty) sets of programs p

3) p; ' p = ' {X|X ∈ p·(p; X)} p is disjunctive

for all (non-empty) sets of programs p

4) p; ' {i|i�0· qi} = ' {i|i�0· pi; qi} p is continuous

provided qi & qi+1 for all i�0
We say that a program p is universally conjunctive if the second equation

above holds for all sets of programs p (possibly empty). Similarly, if the third
equation holds for all p, we say that p is universally disjunctive.

8. Recursion

Let X stand for the name of the recursive program we wish to construct,
and let F(X) define the intended behavior of the program, for a given context
F. If F is defined solely in terms of the notations introduced already, it follows
by structural induction that F is monotonic:

p & q⇒ F(p) & F(q).
Actually, this will remain true for the commands that will be introduced

9.3 Algebraic Foundation and Reasoning Language 255

later, since they are all monotonic.
The following two properties [6], say that μX·F(X) is a solution to the

equation X = F(X); furthermore, it is the least solution.

Law 9.26 μX · F(X)= F(μX · F(X)) (μ fixed point)

Law 9.27 F(Y) & Y ⇒ μX · F(X) & Y (μ least fixed point)

9. Approximate Inverse

Let F and G be functions on programs such that for all programs X and
Y

F(X) = Y ≡ X = G(Y).
Then G is the inverse of F, and vice versa. Therefore, G(F(X)) = X =
F(G(X)), for all X. It is well-known, however, that a function has an inverse
if and only if it is bijective. As the set of bijective functions is relatively small
this makes the notion of inverse rather limited. The standard approach is to
generalize the notion of inverse functions as follows.

Definition 9.12 (Approximate inverse) Let F and F−1 be functions on
programs such that, for all X and Y

F(X) & Y ≡ X & F−1(Y)
Then we call F the weakest inverse of F−1, and F−1 the strongest inverse of
F. The pair (F, F−1) is called the Galois connection.

The left and right weakest inverses of the sequential composition are de-
fined together with a calculus of the program development. Broadly speaking,
the aim is to decompose a task (specification) r into two subtasks p and q,
such that

r & p; q.
The method allows one to calculate the weakest specification that must

be satisfied by one of the components p and q when the other one is known
and then gets the problem totally solved. For example, one can calculate the
weakest specification of p from q and r. It is denoted by q�r and satisfies
r & (q�r); q. This is called the weakest prespecification. Dually, r/p is the
weakest specification of the component q satisfying r & p; (r/p). It is named
the weakest postspecification.

The strongest inverse of language constructs is less commonly used. This
is because perhaps they exist only for operators that are universally disjunc-
tive. Article [8] have suggested a method to reason about recursion based on
the notion of the strongest inverse which they call weak-op-inverse. We list
some of the properties of strongest inverses as follows.

Before presenting the properties of strongest inverses, we review two basic
definitions. F is universally conjunctive if for all sets (possibly empty) p,

F(" p) = "{X | X ∈ p · F(X)}.
Similarly, F is universally disjunctive if for all sets (possibly empty) p,

F(' p) = '{X | X ∈ p · F(X)}.

256 Chapter 9 Algebraic Method of Compiler Design

Theorem 9.2 (Strongest inverses)

1) If F−1 exists then F and F−1 are monotonic.
2) F−1 is unique if it exists.
3) If F−1 exists then for all programs X,

F(F−1(X)) & X & F−1(F(X)).
4) F exists if and only if F is universally disjunctive; in this case, it is

defined by
F−1(Y)⇔ (def as) ' {X | F(X) & Y ·X}.

5) F−1 is universally conjunctive if it exists.
The following lemma shows that sequential composition has a strongest

inverse in its first argument. This allows a concise proof (will be given later
in this chapter) of an important property about composition of the iteration
command.

Lemma 9.1 (Strongest inverse of ;) Let
F(X)⇔ (def as)(X; p).

Then F has a strongest inverse which we denote by
F−1(X)⇔ (def as)X; 'p.

Furthermore, for all X,
(X; 'p); p & p.

From law 9.24 (; -' left dist) it follows that F is disjunctive. Consequently,
from Theorem 9.2 4), it has a strongest inverse. The inequation follows from
Theorem 9.2 3).

10. Simulation

Here we consider the inverse of programs themselves. An inverse of the
program S is a program T that satisfies

S; T = skip = T; S.
That means that running S followed by T and T followed by S are the same
as not running any program at all, since skip has no effect whatsoever.

The inversion of programs has been previously discussed by Dijkstra and
Gries. A More formal approach to program inversion is given in [9]. It defines
proof rules for inverting programs written in Dijkstra’s language. A common
feature of these works is the use of the notion of the exact inverse given above.
But it seemed that this notion of inverse is rather limited, hence we adopt a
weaker definition of the program inversion.

Definition 9.13 (Simulation) Let S and S−1 be programs such that
(S; S−1) & skip & (S−1; S).

Then the pair (S, S−1) is called a simulation, S−1 is the strongest inverse of
S, whereas S is the weakest inverse of S−1.

A very simple example of simulations is the pair (⊥,#) since
(⊥;#) = ⊥ & skip & # = (#;⊥).

For further examples of simulations one might see them later.

9.3 Algebraic Foundation and Reasoning Language 257

Simulations are useful for calculation in general. When carrying out pro-
gram transformation, it is not seldom to meet situations where a program
followed by its inverse (that is S; S−1 or S−1; S) appears as a subterm of the
program being transformed. Thus, from the definition of simulations, it is
possible to eliminate the subterm of the above form by replacing them with
skip (of course, this is only valid for the inequational reasoning). This will
be illustrated in many proofs in the next two sections where we give further
examples of simulations.

But the most valuable uses for the concept of simulations are for data
refinement. This was discussed in some detail in the previous section where
we introduced the concepts of encoding and decoding programs that form
a simulation pair. The distributivity properties of simulations given below
are particularly useful to prove the correctness of the change of the data
representation phase of the compilation process, where the abstract space of
the source program is replaced by the concrete state of the target machine.
The appropriate encoding and decoding programs will be defined when the
need arises.

Now we present some of the properties of simulations.

Theorem 9.3 (Simulation) Let S be a program. The following properties
hold:

1) S−1 is unique if it exists.
2) S−1 exists if and only if S is universally disjunctive.
3) S−1 is universally conjunctive if it exists.

We define the following abbreviations.

Definition 9.14 (Simulation functions) Let { S, S−1} be a simulation.
We use S and S−1 themselves as functions defined by

S(X)⇔ (def as)S; X; S−1,
S−1(X)⇔ (def as)S−1; X; S.

The next theorem shows that the concepts of simulations and appropriate
inverse are closely related.

Theorem 9.4 (Lift of simulation)
Let S and S−1 be simulation functions as defined above. Then S−1 is the

strongest inverse of S. Furthermore from Theorem 9.2 we have
S(S−1(X)) & X & S−1(S(X)).

The following theorem shows how simulation functions distribute through
all the language operators introduced so far, with possible improvement in
the distributed result.

Theorem 9.5 (Distributivity of simulation functions)

1) S(⊥) = ⊥;
2) S(#) & #;
3) S(skip) & skip;

258 Chapter 9 Algebraic Method of Compiler Design

4) S(X; Y) & S(X); S(Y);
5) S(" p) & " {X | X ∈ p · S(X)};
6) S(' p) = ' {X | X ∈ p · S(X)};
7) S(μX · F(X)) & μX · S(F(S−1(X))).

11. Assumption and assertion

The assumption of a condition b, designated as b�, can be regarded as
a miraculous test: it leaves the state unchanged (behaving like skip) if b is
true; otherwise it behaves like #. The assertion of b, designated as b⊥, also
behaves like skip when b is true; otherwise it fails, behaving like ⊥.

We assume that the evaluation of an expression always yields a result.
Clearly, for boolean expressions this is either true or false. While this de-
cision considerably simplifies our algebraic system, it is worth pointing out
that there are no theoretical limitations that prevent one from dealing with
undefined expressions.

The intended purpose of assumptions and assertions is to give precondi-
tions and postconditions, respectively, the status of programs. For example,

a�; p; b⊥
is used to express the fact that the assumption of a is an obligation placed
on the environment of the program p. If the environment fails to provide a
state satisfying a, a� behaves like miracle; this saves the programmer from
dealing with state not satisfying a, since no program can implement #. On
the other hand, an assertion is an obligation placed on the program itself. If
p fails to make b true on its completion, it ends up behaving like abort.

The first three laws formally state the assumption and the assertion of a
true condition are equivalent to skip, that the assumption of a false condition
leads to miracle, and that the assertion of a false condition leads to abort.

Law 9.28 true� = true⊥ = skip (b⊥, b⊥true cond)

Law 9.29 false� = # (b� false cond)

Law 9.30 false⊥ = ⊥ (b⊥ false cond)

Two consecutive assumptions can be combined, giving rise to an assump-
tion of the conjunction of the original condition; this obviously means that
if any of the condition is not satisfied, the result will be miraculous. An
analogous law holds for assertions.

Law 9.31 (a�; b�) = (a∧b)� = (a�' b�) (b� conjunction)

Law 9.32 (a⊥; b⊥) = (a∧b)⊥ = (a⊥" b⊥) (b⊥ conjunction)

The assumption of the disjunction of two conditions will behave like a
miracle if and only if none of the conditions are satisfied. There is a similar
law for assertions.

Law 9.33 (a∨b)� = (a�" b�) (b� disjunction)

9.3 Algebraic Foundation and Reasoning Language 259

Law 9.34 (a∨b)⊥ = (a⊥' b⊥) (b⊥ disjunction)

It does not matter if a choice is made before or after an assumption (or
an assertion) is executed.

Law 9.35 b�; (p" q) = (b�; p) " (b�; q) (b�-" dist)

Law 9.36 b⊥; (p " q) = (b⊥; p) " (b⊥; q) (b⊥-" dist)

The next law states that (b⊥, b�) is a simulation.

Law 9.37 (b⊥; b�) = b⊥ & skip & b�= (b�; b⊥) (b⊥-b� simulation).

An assumption commutes with an arbitrary program p in the following
sense.

Law 9.38 If the free variable of b are not assigned by p,
(p; b�) & (b�; p) (b�; p commute)

The inequality occurs when b is false and p is ⊥, in which case the left-
hand side reduces to ⊥ whereas the right-hand side reduces to #.

12. Guarded command

The standard notation b→ p stands for a guarded command. If the guard
b is true, the whole command behaves like p; otherwise it behaves like #.
This suggests that a guard have the same effect as an assumption of the given
condition, that allows us to define a guarded command as follows:

Definition 9.15 (Guarded command)
b→ p⇔ (def as)b�; p

The laws of guarded commands can therefore be proven from the above
definition and the laws of sequential composition and assumptions.

Law 9.39 (true→ p) = p (→ true guard)

Law 9.40 (false → p) =# (→false guard)

Guards can be unnested by taking their conjunction.

Law 9.41 a→(b→ p) = (a∧b)→ p (→ guard conjunction)

Guard distributes over ".

Law 9.42 b→(p " q) = (b→ p) " (b→ q) (guard -" dist)

The demonic choice of guarded commands can be written as a single
guarded command by taking the disjunction of their guards. This is easily
derived from the last two laws.

Law 9.43 (a→ p " b→ q) = (a∨b)→(a→ p " b→ q) (→ guard dis-
junction 1)

260 Chapter 9 Algebraic Method of Compiler Design

Proof

RHS = (a∨b)→(a→ p) " (a∨b)→(b→ p) {Law 9.42 (guard -" dist)}
= (a∨b)→(a→ p " b→ q) {Law 9.41 (→guard conjunction)}
= LHS

When p and q above are the same program, we have the following laws.

Law 9.44 (a→ p " b→ p) = (a∨b)→ p (→guard disjunction 2)

Surprisingly, perhaps this is not a consequence of the previous one.
Sequential composition distributes leftward through guarded commands.

Law 9.45 (b→ p); q = b→(p; q) (; -→left dist)

13. Guarded Command Set

Our main use of guarded commands is to model the possible actions of
deterministic executing mechanism. The fact that the mechanism can perform
one of the n actions, according to its current state, can be modeled by a
program fragment of the form

b1 → action1 " . . . " bn → actionn

provided that b1, .., bn are pairwise disjoint. Instead of mentioning this dis-
jointness condition explicitly, we will write the above as

b1 → action1�. . .�bn → actionn

and will call it as the guarded command set. Strictly speaking, � is not a
new operator of our language. It is just syntactic sugar to improve conciseness
and readability. Any theorem that uses � can be readily restated in terms
of " with the associated disjointness condition. As an example we have the
following law.

If a guarded command set has the same guard as a command in this set,
then the guarded set behaves the same as the command with this guard.

Law 9.46 a→(a→ p � b→ q) = a→ p (� elim)

Proof The proof relies on the (implicit) assumption that a and b are dis-
joint (or a∧b= false).

LHS = a→ (a→ p " b→ q)
= (a→ (a→ p)) " (a→ (b→ q)) {Law 9.42 (guard-" dist)}
= (a → p) " (false→ q) {Law 9.41 (→ guard conjunction)

and a ∧ b = false}}
= a→ p {Law 9.40 (→ false guard) and Law 9.6 (-" unit).

Other laws and theorems involving � will be discussed if need be.

14. Conditional

A conditional command has the general syntax p � b � q that is concise
form of the more usual notation

9.3 Algebraic Foundation and Reasoning Language 261

If b then p else q
It can also be defined in terms of more basic operators.

Definition 9.16 (Conditional)
(p � b � q)⇔ (def as)(b→ p �¬b→ q).

The most basic property of a conditional is that its left branch is executed
if the condition holds initially; otherwise its right branch is executed.

Law 9.47 (a∧b)�; (p� b ∨c � q) = (a ∧b)�; p (� � true cond)

Law 9.48 (a∧¬ b)�; (p� b∧c � q) = (a ∧¬ b)�; p (� � false cond)

The left branch of a conditional can always be preceded by an assumption
of the condition. Similarly, to precede the right branch by an assumption of
the negation of the condition has no effect.

Law 9.49 (b�; p)� b � q = (p� b � q) = p�b � (¬ b�; q) (� � void
b�)

If the two branches are the same program, the conditional can be elimi-
nated.

Law 9.50 p� b � p = p (� � idemp)

Guard distributes through the conditional.

Law 9.51 a→(p� b � q) = (a→ p)� b� (a → q) (guard- � � dist)

Sequential composition distributes leftward through the conditional.

Law 9.52 (p �b � q); r = (p; r)� b �(q; r) (; - � �left dist)

The following two laws allow the elimination of nested conditionals in
certain cases.

Law 9.53 p� b � (p � c � q) = p �b∨c� q (� � cond disjunction)

Law 9.54 (p� b � q)� c � q = p� b∧c � q (� � cond conjunction)

We have considered assumptions and assertions as primitive commands
and have defined guarded commands and conditionals in terms of them. The
following equations show that an alternative could be to consider the con-
ditional as a constructor and regard assumptions, assertions and guarded
commands as special cases. These are stated as laws because they are not
necessary in our proofs.

b⊥ = skip � b � ⊥,
b� = skip � b � #,
b→ p = p � b � #.

15. Assignment

The command x := e stands for a multiple assignment where x is a list
of distinct variables, and e is an equal-length list of expressions. The com-
ponents of e are evaluated and simultaneously assigned to the corresponding

262 Chapter 9 Algebraic Method of Compiler Design

(same position) components of x. For example,
x, y := y, x

swaps the values of x and y.
We have mentioned that the evaluation of an expression always yields a

result, so the assignment will always terminate. Furthermore, the validity of
most of the laws relies on the fact that expression evaluation does not change
the value of any variable; that is, no side-effect is generated.

Obviously, the assignment of the value of a variable to itself does not
change any thing.

Law 9.55 (x:= x) = skip (:= skip)

In fact, such a vacuous assignment can be added to any other assignment
without changing its effect.

Law 9.56 (x, y := e, y) = (x := e) (:= identity)

The list of variables and expressions may be subjected to the same per-
mutation without changing the effect of the assignment.

Law 9.57 (x, y, z:= e, f, g) = (y, x, z:= f, e, g) (:= sym)

The sequential composition of two assignments to the same variable is
easily combined to a single assignment.

Law 9.58 (x := e; x := f) = (x := f [x← e]) (:= combination)

Recall that f[x ← e] denotes the substitution of e for every occurrence of
x in f.

If the value of a variable is known, the occurrence of this variable in an
expression can be replaced with that value.

Law 9.59 (x = e)→(y := f) = (x = e) → (y := f [x←e]) (: = substitu-
tion)

Assignment is universally conjunctive.

Law 9.60 x := e; " p= " {X| X∈ p · (x := e; X)} (:= -" right dist)

Assignment distributes rightward through a conditional, replacing occur-
rences of the assigned variables in the condition by the corresponding expres-
sions.

Law 9.61 x := e; (p� b � q) = (x := e; p) �b [x←e]� (x := e : q) (:=
-� � right dist)

Similarly, assignment commutes with an assertion in the following sense.

Law 9.62 (x := e; b⊥) = (b[x←e])⊥; x := e (:= -b⊥ commutation)

16. Generalized Assignment

The notation x: ∈b stands for a generalized or a nondeterministic as-

9.3 Algebraic Foundation and Reasoning Language 263

signment command. Whenever possible, x is assigned an arbitrary value that
makes the condition b hold. But if no such value exists, the assignment be-
haves like #.

Law 9.63 (x :∈ false) = # (: ∈ false cond)

On the other hand, a true condition imposes no constrains on the final
value of x. In this case, the generalized assignment might even leave every-
thing unchanged, behaving like skip.

Law 9.64 (x: ∈ true) & skip (: ∈ true cond)

To follow a generalized assignment by an assumption of the same condi-
tion has no effect. If the assignment establishes the condition, the assumption
behaves like skip; otherwise, the assignment itself (and consequently, its com-
position with the assumption) behaves like #.

Law 9.65 x: ∈ b; b� = x: ∈b (: ∈ void b�)

A similar law holds for assertions.

Law 9.66 x: ∈ b ; b⊥= x: ∈b (: ∈ void b⊥)

A generalized assignment is refined by an assumption of the same condi-
tion. The reason is that the final values of variables of the assignment might
be arbitrary, whereas the assumption does not change the value of any vari-
able. Actually, an assumption can be regarded as a generalized assignment
to an empty list of variables.

Law 9.67 (x: ∈b) & b� (: ∈ refined by b�)

Generalized assignment distributes rightward through the conditional,
provided that the following condition is observed.

Law 9.68 If x does not occur in b,
X :∈ a; (p � b � q) = (x :∈ a; p) � b � (x :∈ a; q)

(;∈ − � � right dist)

In general, an assignment cannot be expressed in terms of a generalized as-
signment only. For example, there is no generalized assignment that corre-
sponds to the assignment x := x+1. The reason is that we have not introduced
the notation to allow the condition of a generalized assignment of the form
x: ∈b to refer back to the initial value of x. But x := e can always be written
as a generalized assignment whenever the expression e does not mention x.

Law 9.69 If e does not mention x,
x : ∈ (x = e) = x := e (:∈ − := conversion).

If x and y are to be assigned arbitrary values (in sequence) to make a
given condition hold, we can reduce the nondeterminism by ensuring that
the same (arbitrary) value is assigned to both x and y.

Law 9.70 If b does not mention y,

264 Chapter 9 Algebraic Method of Compiler Design

(x: ∈b; y: ∈b[x←y]) & (x: ∈b; y:= x) (: ∈ refined by :=)

We can commute the order of execution of assignment and an arbitrary
program p, provided that no interference occurs with the global variables.

Law 9.71 If no free variables of b nor x is assigned by p,
(p; x: ∈b) & (x: ∈b; p) (x: ∈b; p commute)

The inequality occurs when p is ⊥ and assignment results in #.

17. Iteration

We use b*p to denote the iteration command. It is a concise form of more
conventional syntax,

while b do p
Iteration can be defined as a special case of the recursion.

Definition 9.17 (Iteration)
b*p⇔ (def as)μX · ((p; X) � b � skip)

As iteration is a derived operator in our language, we are able to prove
(rather than just postulate) some of its properties. This illustrates the mod-
ularity provided by the algebraic laws in developing more elaborate trans-
formation strategies from the basic ones. These strategies are largely used in
the next two sections, substantially simplifying the proof of normal form the
reduction.

If the condition b does not hold initially, the iteration b*p behaves like
skip; otherwise it behaves like p followed by the whole iteration.

Law 9.72 (a∧¬ b)�; b*p = (a∧¬b)� (* elim)

Proof

LHS = (a∧¬ b)�; (p; b*p) � b � skip

{Definition 9.17 (Iteration) and Law 9.26 (μ fixed point)}
= (a∧¬ b)�

{Law 9.63 (� � false cond) and Law 9.1 (; -skip unit)}
= RHS.

Law 9.73 a�; (a∨ b)*p = a�; p; (a∨ b)*p (* unfold)

Proof

LHS= a�; ((p; (a∨ b)*p)�(a∨ b)� skip) {Definition 9.10

(Iteration) and Law 9.26 (μ fixed point)}
= a�; ((p; (a∨ b)*p) { Law 9.47 (� � true cond)}
= RHS

A recurrent step in our proof is to unfold an iteration and simplify the
unfolded body when this is a guarded command set.

9.3 Algebraic Foundation and Reasoning Language 265

Law 9.74 Let R = (a→ p � b→ q). Then
a�; (a∨b)*R = a�; p ; (a∨b)*R (*-� unfold)

Proof The formula follows immediately from Law 9.73 (∗unfold) and Law
9.46 (� elim).

A guarded command set within an iteration can be eliminated if the
condition of the Iteration allows only one of the guards to hold.

Law 9.75 Let R = (a→ p� b→ q). Then a*R = a*p (*-� elim)

Proof

LHS= a* (a→ p � b→ q)

= μX·((a�; (a→ p � b→ q); X)�a �skip) {Definition 9.10

(Iteration) and Law 9.49 (� � void b�)}
= μX·((a�; p; X)�a�skip) {Law 9.46 (� elim)}
= a*p {Law 9.49 (� � void b�) and Definition 9.10 (Iteration)}
= RHS.

The following allows the replacement of a guarded command inside an
iteration.

Law 9.76 Let R = (a→ p � b→ q). If r; (a∨ b) * R & p; (a∨ b) * R, then
(a ∨ b) * (a→r � b→ q) & (a∨ b) * R (* replace guard command)

Proof This time, the proof starts from right hand side.

RHS= (a ∨ b) * (a→ p � b→ q)

= ((a→ p� b→ q); (a ∨ b) * ((a→ p�b→ q) * R))� a∨ b �skip

{Definition 9.10 (Iteration) and Law 9.26 (μ fixed point)}
= (a→(p; (a→ p� b→ q) � b→(q; (a→ p � b→ q))� a∨ b �skip))

{Law 9.24 (; -" left dist)}
((a→(r; (a→ p� b→ q)) � b→(q; (a→ p � b→ q)))�a∨ b�skip

{Assumption}
= ((a→r � b → q); (a→ p � b→ q))� a∨b � skip

{Law 9.24 (; " left dist)}
= (a∨ b) * (a→r � b→ q) {Law 9.27 (μ least fixed point)}.

The following law establishes the connection between tail-recursion and
iteration. Its proof illustrates the use of approximate inverses of programming
constructs.

Law 9.77 (b * p); q = μX·((p; X)� b � q) (* -μ tail recursion)

Proof The proof is carried out in two directions: LHS (RHS and RHS (
LHS. At first, we establish LHS (RHS.

266 Chapter 9 Algebraic Method of Compiler Design

(b * p); q

= ((p: b * p)� b � skip); q {Definition 9.10 (Iteration) and

Law 9.26 (μ fixed point)}
= (p; ((b * p); q)� b � q {Law 9.62 (; - � � left dist) and

Law 9.1 (; - skip unit)}
(μX·((p; X)� b � q) = RHS {Law 9.26 (μ least fixed point)}.

RHS= (μX·((p; X)� b � q))

= (p; (μX·(p; X)� b � q))� b � q

((p; (μX·(p; X)� b � q)); q); q)� b � q

{From Lemma 9.1 (strongest inverse of ;) we have (RHS; ' q);

q & RHS}
(((p; ((μX·((p; X)� b � q); ' q)� b �skip); q

{Law 9.62 (; -� � left dist) and Law 9.1 (; skip unit)}.
Then from Definition 9.12 (Approximate inverses) we have

(RHS ; ' q)= (μX·((p; X)� b � q)); q (
(p; ((μX·((p; X)� b � q)); ' q) � b � skip

(b * p {Law 9.26 (μ least fixed point) and Definition 9.12

(Approximate Inverses)}.
So RHS (LHS, according to Definition 9.12.

The following law is surprisingly important, mainly in proving the cor-
rectness of the normal form reduction of sequential composition.

Law 9.78 (b * p); (b∨c) * p = (b∨c) * p (* sequence)

Proof The proof once again is done by two sides RHS (LHS and LHS (
RHS. At first, RHS (LHS.

RHS= RHS� b � RHS {Law 9.50 (� � idemp)}
= ((p; RHS)� b∨c � skip)� b � ((b∨c) * p)

{(Definition 9.10 (Iteration) and Law 9.25 (μ fixed point)}
= ((p; RHS)� b∨c � (b∨c) * p)� b �((b∨c) * p) {Law 9.49

(� � void b�) and Law 9.72 (* elim)}
= (p; RHS) � b � ((b∨c) * p) {Law 9.54 (� � cond conjunction)}
(μX·(p; X)� b �((b∨c) * p) {Law 9.26 (μ least fixed point)}
((b * p); ((b∨c) * p) {Law 9.77 (* -μ tail recursion)}
= LHS,

LHS= (q; (b * p))� b �skip); (b∨c) * p) {Definition 9.10 (Iteration) and

Law 9.26 (μ fixed point)}

9.3 Algebraic Foundation and Reasoning Language 267

= (p; LHS)� b � RHS {Law 9.52 (; -� � left dist) and Law 9.1

(; - skip Unit)}
= (p; LHS)� b �((p; RHS)� b∨c �skip) {Law 9.26 (μ fixed point)}
((p; LHS)� b∨c � skip {Law 9.55 (� � cond disjunction)} and

LHS & RHS}
= (b∨c) * p.

18. Static Declaration

The notation dec x · p declares the list of the distinct variable x for use in
the program p (the scope of the declaration). Local blocks of this form may
appear anywhere a program is expected.

It does not matter whether variables are declared in one list or singly.

Law 9.79 If x and y have no variables in common,
dec x · (dec y · p) = dec x, y · p (dec assoc)

The order in which variables occur does not matter either.

Law 9.80 dec x·(dec y · p)= dec y · (dec x · p) (dec commu)

If a declared variable is never used, its declaration has no effect.

Law 9.81 If x is not free in p,
dec x · p= p (dec elim)

One may change the name of a bound variable, provided that the new
name is not used for a free variable.

Law 9.82 If y is not free in p, then
dec x · p = dec y · p[x←y] (dec rename)

The value of a declared variable is totally arbitrary. Therefore, the ini-
tialization of a variable may reduce nondeterminism.

Law 9.83
1) dec x · p & dec x·x := e; p (dec- := initial value)
2) dec x · p & dec x·x :∈ b; p (dec- :∈ initial value)

An assignment to a variable just before the end of its scope is irrelevant.
But a generalized assignment cannot be completely ignored, since it may
result in a miracle.

Law 9.84
1) dec x · p = dec x · p; x := e (dec- x:= final value)
2) dec x · p & dec x · p; x :∈ b (dec- x :∈ final value)

The scope of a variable may be increased without effect, provided that
it does not interfere with the other variables with the same name. Thus
each of the programming constructs has a distribution law with declaration.

268 Chapter 9 Algebraic Method of Compiler Design

For example, if one of the arguments of the sequential composition operator
declares the variable x then the scope of the declaration can be extended with
the other component, provided that there is no capture of free variables.

Law 9.85 If x is not free in q,

1) (dec x·p); q = dec x·p; q (; -dec left dist)
2) q; (dec x ·p) = dec x· q; p (; -dec right dist)

When both arguments declare the same variable, the two declarations can
be replaced with a single one.

Law 9.86 (dec x·p); (dec x· q) & dec x ·p; q (dec-; dist)

But note that this may reduce nondeterminism. Consider the case that q
is y := x. Then the final value of y on the left-hand side of above inequation
would be totally arbitrary. On the right-hand side, however, it may be the
case that x was assigned a value in p; thus the final value of y would be
that of x. In all cases, the right hand-side is at least as deterministic as the
left-hand side.

If each component of a guarded command set or conditional declares
the variable x then the declaration may be moved outside the constructor,
provided that x does not occur in the guard or in the condition.

Law 9.87 If x does not occur in a or b,

a→(dec x·p) � b→ (dec x· q) = dec x·a→p � b→ q (dec-� dist)

Law 9.88 If x does not occur in b,

(dec x·p)� b �(dec x· q) = dec x ·p� b � q (dec -� � dist)

Note that it is possible to deal with cases where x is only declared in one
of the branches (and is not free in the other ones) being used in Law 9.81.

Declaration can also be moved outside an iteration, possibly reducing
nondeterminism. As shown below, this law can be derived from more basic
ones.

Law 9.89 b * (dec x·p) & dec x·b * p (dec- * dist)

Proof Our proof starts with right – hand side.

RHS= dec x· (p; b * p) � b �skip {Definition 9.10 (Iteration) and

Law 9. 26 (μ fixed point)}
= (dec x ·p; b * p) � b �skip {Law 9.88 (dec-� � dist) and

Law 9.81 (dec elim)}
(((dec x·p); dec x· b * p)� b �skip {Law 9.86 (dec-; dist)}
= b * (dec x·p) = LHS {Definition 9.10 (Iteration) and

Law 9.26 (μ fixed point)}.

9.3 Algebraic Foundation and Reasoning Language 269

19. Dynamic Declaration

The command var x introduces a dynamic scope of x that extends up to
• the end of the static scope of x,
• the execution of the command end x,

whichever comes first.
An operational argument may help to clarify how the two kinds of decla-

rations relate to each other. The general idea is to associate an unbounded
stack with each variable. One can think of a static declaration of x as intro-
ducing a new variable (that is assigned an arbitrary value) with its (implicit)
unbounded stack that is initially empty. Rather than creating a new variable,
commands for the dynamic declaration operate on this stack. The effect of
var x is to push the current value of x onto the stack, assigning to x an arbi-
trary value; end x pops the stack and assigns the popped value to x. If the
stack is empty, this value is arbitrary.

As our language does not enforce the variable declaration, we must con-
sider how is the view of an undeclared variable in this scenario. The opera-
tional interpretation in this case is that an unbounded (and initially empty)
stack is automatically associated with the undeclared variable, when the vari-
able is first used. The effect of var and end concerning this stack is the same
as discussed above.

Recall that having separate commands to introduce and end the scope
of a variable is an essential feature to define the encoding and decoding
programs used in our approach to data refinement: the encoding program
introduces the abstract state and ends the scope of the concrete state whereas
the decoding program introduces the concrete state and ends the scope of the
abstract state.

The commands var and end obey laws similar to those of dec. Never-
theless, one immediate difference is that renaming is not valid in general for
dynamic declarations (except when static and dynamic declarations have the
same effect as explained later in this section).

Both var and end are associative in the sense described below.

Law 9.90 If x and y have no variables in common,
1) (var x; var y) = var x, y (var assoc)
2) (end x; end y) = end x, y (end assoc)

The (dynamic) scope of a variable may be increased without effect, pro-
vided that this does not interfere with other free variables.

Law 9.91 If x is not free in p,
1) p; var x = varx ; p (var change scope)
2) end x; p = p; end x (end change scope)

Both var and end distribute rightward through the conditional, as long
as no interference occurs with the condition.

Law 9.92 If b does not mention x,

270 Chapter 9 Algebraic Method of Compiler Design

1) (var x; p) � b �(var x; q) = var x; (p� b � q) (var- � � right
dist)

2) (end x; p)� b �(end x; q) = end x; (p� b � q) (end- � � right
dist)

As explained above var x assigns an arbitrary value to x. The nondeter-
minism can be reduced by initialization of x.

Law 9.93
1) var x & (var x; x := e) (var- := initial value).
2) var x & (var x; x: ∈ b) (var- : ∈ initial value).

An assignment to a variable just before the end of its scope is irrelevant.
But a generalized assignment cannot be completely ignored, as it may result
in miracle.

Law 9.94
1) end x= (x := e ; end x) (end- ; = final value)
2) end x & (x : ∈ b; end x) (end- : ∈ final value)

The next two laws are essential for reasoning about data refinement. They
are precisely the ones that assign the dynamic declaration semantics to var
and end. The first law says that end x followed by var x leaves all variables
but x unchanged; var x followed by end x has no effect (even on x). Therefore,
the pair (end x, var x) is a simulaton.

Law 9.95 (end x; var x) & skip & (var x; end x) (end-var simulation)

The second law postulates that the sequential composition of end x with
var x has no effect whenever it is followed by an assignment to x that does
not rely on the previous value of x.

Law 9.96 (end x; var x; x: ∈ b) = x: ∈ b (end-var skip)

Observe that this law holds even when x occurs in b because an occurrence
of x in b does not refer to the previous value of x; rather, it is a requirement for
the current value of x. Also note that the syntax of the static declaration (dec)
promptly disallows the above two laws, since there is no separate construct
to end the scope of a variable.

The following two laws relate the two kinds of declarations. They formalize
the intuitive meaning given before.

If the first command in the scope of a static declaration of x is var x or
end x, this command has no effect.

Law 9.97
1) dec x·var x; p = dec x·p (var elim 1)
2) dec x· end x; p = dec x·p (end elim 1)

First we give a justification of 1). Recall that a static declaration of x
creates an implicit stack that is initially empty. Then the effect of var x on

9.3 Algebraic Foundation and Reasoning Language 271

the left-hand side of 1) is to push the current value of x (that is arbitrary)
onto this stack and to assign the arbitrary value to x. But the value of x
was already arbitrary; thus the assignment has no effect. Furthermore, the
effect of pushing an arbitrary value onto the empty stack is also immaterial.
The only command that may access this value is a subsequent end x that
would assign an arbitrary value to x if the stack was empty anyway. The
justification of 2) is simpler. As the stack associated with x is initially empty,
the effect of end x is to assign an arbitrary value to x; but the value of x was
already arbitrary.

As we mentioned before, the dynamic scope of a variable x cannot extend
further than its static scope. Therefore, starting or ending a dynamic scope
of x just before the end of its static scope is irrelevant.

Law 9.98
1) dec x·p; var x= dec x·p (var elim 2)
2) dec x·p; end x = dec x·p (end elim 2)

In some cases, there is no need to distinguish between a static and a
dynamic scope of a given variable. So we must examine when the two kinds
of declarations have the same effect.

As already discussed, having separate constructs to introduce and end
the (dynamic) scope of a variable allows more flexibility than with a single
construct. This fact has been well illustrated by the simulation concept in-
troduced before; it would not have been possible to express this notion in our
language if we had only allowed static declaration.

Therefore, a static declaration cannot, in general, replace a dynamic dec-
laration.

However, under certain conditions this can be achieved. One immediate
requirement is that each var x in a program has a corresponding, statically
determined, end x, so that replace blocks of the form

var x; q; end x,
with

dec c · q.
This requirement is captured by the following definition.

Definition 9.18 (Block-structure) A program p is block-structured with
respect to a variable x if it is built according to the following two rules:

1) all the programs that do not contain the commands var x or end x are
block-structured with respect to x.

2) if p is block-structured with respect to x, so is
var x; p; end x.

While the above condition is clearly necessary to allow the replacement of
a dynamic by a static declaration of x, it is not sufficient. The reason is
that a static declaration is governed by static scope rules, whereas a dynamic
declaration is governed by dynamic scope rules, as illustrated by the following
example.

272 Chapter 9 Algebraic Method of Compiler Design

Suppose that the program identifier x is bound to the program text x := y.
Now consider the following program (assuming that x, y, and z are distinct
variables)

var y; y:= z; X; end y,
where the above occurrence of X stands for a call of the program bound to
it: x := y. Dynamic scope rules determine that the occurrence of y in the
program (identified by) X is bound to the above (dynamic) declaration of y.
Therefore, one can easily conclude that the effect of the above program is to
assign z to x.

Now let us consider what is the effect of the program
dec y · y:= z; X.

In this case, because the declaration of y is static, any call command in
the scope of this declaration is governed by static scope rules. That means
that the occurrence of y in the program X is bound to the declaration of y
whose scope includes the definition of X, and not to the above declaration
whose scope includes a call of X. Therefore, the y introduced in the above
declaration is a different variable from the occurrence of y in X; they just
happen to have the same name. Renaming the local declaration of y above
(recall that renaming in general is allowed only for static declaration), say
with a fresh variable w, does not change the behavior of the above program.
This leads to

dec w · w:= z; X
that can itself be easily transformed (using simple laws of declaration) into

x:= y.
As a result, we observe that static and dynamic declaration of the same
variable in this case have distinct effects. This happens only in the presence
of call commands since these are governed by different scope rules, depending
on whether static or dynamic declaration are introduced.

To capture the precise context where one cannot distinguish between a
static and a dynamic declaration of a given variable, we need the following
concept:

Definition 9.19 (Contiguous scope) We state that a variable x has a
contiguous scope in a program p if
• p contains no free program identifiers (standing for call commands) or
• if the program identifier X is free in p, then the variable x must not be

free in (the program defining) X.
Note that in the situation exemplified above by the program

dec y; y:= z; X
the variable y does not have a contiguous scope, since there is a free program
identifier X in which y is free(recall that X is bound to the program x := y).
Finally, we present the law that precisely relates the two forms of the variable
declaration.

Law 9.99 If p is a block-structured with respect to x, and x has a contigu-
ous scope in p, then

9.3 Algebraic Foundation and Reasoning Language 273

dec x · p = var x; p; end x (dec-(var, end) conversion)
We can ensure that programs will always have contiguous scope (with respect
to any local variable) by requiring that nested declarations always use distinct
names for variables (that are also distinct from the names used for global
variables). When applying the above law we will assume that the condition
of contiguous scope is always satisfied.

For example, as explained above, the scope of y in
dec y; y:= z; X

is not contiguous, but renaming allows us to transform this program (as-
suming that w is a fresh variable) into one that clearly satisfies the contigu-
ous scope condition concerning w, since w does not appear in the program
(x := y) bound to X. Now we can deduce that the above is equivalent to

var w; w:= z; X; end w
that is itself equivalent to x, x := y, as expected.

From Law 9.99, we derive the following law about introduction of local
declarations.

Law 9.100 If p is block-structured with respect to x, and x has a contiguous
scope in p, then

x :∈ b; p; x :∈ c = (dec x · x :∈ x :∈ b; p); x :∈ c (dec introduction)

Proof

LHS = end x; var x; x: ∈ b; p; end x; var x; x: ∈ c

{Law 9.96 (end-var skip)}
= end x; (dec x · x: ∈ b; p); var x; x: ∈ c

{Law 9.99 (dec- (var-end) conversion)}
= (dec x · x: ∈ b; p); end x; var x; x: ∈ c

{Law 9.91 (end change scope)}
= (dec x · x: ∈ b; p); x: ∈ c {Law 9.96 (end-var skip)}
= RHS.

The above two laws will be used in the next section to perform transfor-
mations on source programs. These are always block-structured, since var and
end are not part of our source language. We have explained how to ensure
that programs always have contiguous scope (with respect to any local vari-
able). Therefore, these laws will be applied assuming that these conditions
are always satisfied.

20. Correctness of Basic Laws

In a purely algebraic view, the laws of a given language are an algebraic
semantics for this language. There is no place for the task of verifying the
validity of the more basic laws; they are axioms that express the relationship
between the operators of the language. However, the method of postulating
is questioned by those who follow a model-oriented approach, especially when

274 Chapter 9 Algebraic Method of Compiler Design

the set of axioms is relatively large as it is the present one. Postulating an
inconsistent set of laws could be a disaster: it would allow one to prove invalid
results, like the correctness of an inaccurate compiler.

The way to avoid the danger is to link the algebraic semantics of the lan-
guage with a (non-trivial) method in which the laws can be proven. There
are many references concerning this issue. It is also possible to link the al-
gebraic semantics of the language to a more concrete (operational) model.
This allows to check for feasibility (implementability) of language operators.
But in our case, this is impossible, as our reasoning language includes non-
implementable operators.

Once the laws have been proven, in whichever model, they should serve as
tools for carrying our program transformation. The mathematical definitions
that allow their verification are normally more complex, and therefore, not
appealing to practical use.

But even after the model has served its intended purpose, additional re-
sults of practical interest can be achieved. For example, from the experience
in the application of basic laws of programming to solve a given task, one
discovers more elaborate transformation strategies that allow more concise
and elegant proofs. This was illustrated in the section on iteration where all
the laws were derived from more basic ones.

The existence of these nontrivial models for the reasoning language shows
that its algebraic laws in some sense consistent. In the following, we use the
predicate transformer model to illustrate how the basic laws of our language
can be verified.

We deal with a few operators only. Their definitions were given in the last
section, but will be repeated again for convenience. In the following a ranges
the set of predicates, p and q stand for arbitrary programs, and P stands for
an arbitrary set of programs.

skip⇔ (def as)λa · a
⊥ ⇔ (def as)λa · false

⇔ (def as)λa · true

' P⇔ (def as)λa · (∃X | X ∈ P · X(a))

" P⇔ (def as)λa · (∀X | X ∈ P · X(a))

p; q⇔ (def as)λa · p(q(a)).

The binary versions of ' and " are defined as special cases of the above
definitions:

p ' q ⇔ (def as)λa · p(a) ∨ q(a),

p " q⇔ (def as)λa · p(a) ∧ q(a).
The definition of the remaining operators can be given similarly. One can also
found them from, for example [3]. From the above definition we can prove
that the laws of the corresponding operators. For example, from the definition
of & we can derive its characteristics in terms of weakest preconditions:

9.4 A Simple Compiler 275

p & q ≡ (p " q) = p {Definition 9.1 (The ordering relation)}
≡ (λa·p(a) ∧ q(a)) {definition of "}
≡ ∀a·(p(a) ∧ q(a)⇔p(a)) {the axiom of extensionality}
≡ ∀a·(p(a)⇒ q(a)) {predicate calculus}.

That corresponds precisely to the definition of refinement adopted in all ap-
proaches to the refinement based on weakest preconditions, as discussed in
the previous section. As another example, we verify law ('-" dist) (Law 9.25):
('P)" p = λa·('P)(a)∧p(a) {definition of " }

= λa·(∃X|X ∈ P·X(a))∧p(a) {definition of '}
= λa·(∃X|X ∈ P·(X(a)∧p(a))) {Assuming that X is not free in p}
= λa·(∃X|X ∈ P·(X " p) (a)) {definition of " }
= λa·(∃X|X ∈ {X|X ∈ P·(X " p)})·X(a) {set theory}
= '{X∈ P·(X " p)} {definition of '}.

9.4 A Simple Compiler

In this section, we will exemplify our system to see how it works in producing
a compiler. Of course, it is a simple one and not practical as its purpose is
only to show that our approach to compiler design works. In this section, we
first describe the normal form of a model of an arbitrary executing mecha-
nism. The normal form theorems in the section are concerned with control
elimination: the reduction of the nested control structure of the source pro-
gram to a single flat iteration. These theorems are largely independent of a
particular target machine.

Then we design and prove the correctness of a compiler for a subset of
our source language, not including procedures or recursion. The construc-
tions considered here are skip, assignment, sequential composition, demonic
nondeterminism, conditional, iteration and local declaration.

As mentioned early, the compilation process is split into three main
phases: simplification of expressions, control elimination and data refine-
ment (the conversion from the abstract space of the source program to the
concrete state of the target machine).

Each of these generic transformations has the status of a theorem. The
more specific transformations that illustrate the compilation process for a
specific target machine have a status of a rule. Each rule describes a trans-
formation that brings the source program closer to a normal form with the
same structure as the specific target machine. Taking collectively, these rules
can be used to carry out the compilation task.

It is necessary to emphasize that one should notice the different roles
played by the algebraic laws of the last section and these reduction rules: the
laws express general properties of the language operators, whereas the rules

276 Chapter 9 Algebraic Method of Compiler Design

serve the special purpose of transforming an arbitrary program to a normal
form. In one word, the laws are necessary to prove the rules, and these (not
the laws) are used to carry out compilation.

9.4.1 The Normal Form

A program of the form
decv · v :∈ a; b ∗ p; c⊥

can be interpreted as a very general model of a machine executing a stored
program in the following way:

1) The list of variables represents the machine components (for example,
registers). They are introduced as local variables since they have no counter-
part at the source level; therefore their final values are irrelevant.

2) a is an assumption about the initial state. If it is impossible to make
a true by assigning to v, the machine behaves like a miracle; this saves the
compiler designer from dealing with states not satisfying a. Observe that the
use of the nondeterministic assignment v: ∈a to initialize the machine allows
us to abstract from the way control state is encoded.

3) P is the stored program; it is executed until the condition b becomes
false. Usually, P will be a guarded command set of the form

b1 → p1�. . .�bn → pn.

Whenever the machine is in the state bi the action (or instruction) pi is
executed. In this case, the condition b is given by

b1 ∨ . . . ∨ bn.

4) c is an assertion about the final state of the machine; if execution of the
stored program does not assert c, the machine ends up behaving like abort.
Notice that, upon termination of the iteration b ∗ p, b is false and we have

b ∗ p; c⊥ = b ∗ p; (¬b)⊥; c⊥ = b ∗ p; (¬b ∧ c)⊥.

Thus, there is no loss of generality in assuming that c= (¬ b∧c), and con-
sequently that (b∧c)= false. The normal form theorems will rely on the as-
sumption that b and c are disjoint.

A normal form program will be abbreviated as follows:

Definition 9.20 (Normal form)

v : [a, b→ p, c]⇔ (def as) dec v · v :∈ a; b ∗ p; c⊥ where (b ∧ c) = false

For convenience, we will sometimes use the form

v : [a, (b1 → p1�. . .�bn → pn), c]

9.4 A Simple Compiler 277

as an abbreviation of

v : [a, (b1 ∨ . . .bn)→ (b1 → p1�. . .�bn → pn), c].

9.4.2 Normal Form Reduction

To reduce arbitrary program to normal form, it is sufficient to show how
each primitive command can be rewritten in the normal form, and how each
operator of the language (when applied to operands in the normal form) yields
a result expressible in the normal form. The following reductions involve no
change of data representation. Therefore, we can directly compare the source
constructs with the associated normal form programs.

Some of the theorems state very simple results (some are just corollaries
of algebraic laws or lemmas), but they have this status because each one
shows how a given operator of the source language can be reduced to normal
form. These theorems can be regarded as expressing generic transformations
in that they are independent of the target machine.

If the initial state coincides with the final state, the machine does not
perform any action. In the more concrete terms, the empty code is a possible
implementation of skip.

Theorem 9.6 (Skip) skip & v : [a, b→ p, a]

Proof

RHS = dec v·v: ∈a; a⊥ {Law 9.75 (*elim) (, remember a∧b= false)

= dec v·v: ∈a; skip {Law 9.66 (: ∈ void a⊥) and

Law 9.1 (; -skip unit)}
(skip = LHS {Law 9.93 (dec- : ∈ initial value) and

Law 9.91 (dec elim)}.
The following lemma shows how a primitive command can be written in

normal form. Actually, the lemma is valid for all programs p, but we will not
make use of it for non-primitive constructs because we follow an innermost
(bottom-up) reduction strategy.

Lemma 9.2 (Primitive commands) If v is not free in p then
p &v: [a→(p; v: ∈c), c]

Proof

RHS = dec v · v: ∈ a; p; v: ∈ c; c⊥
{Law 9.73 (*unfold) and Law 9.72 (*elim)}

(dec v*p; v: ∈c

{Law 9 83 (dec -: ∈ initial value) and Law 9.66 (: ∈ void c⊥)}
(p {Law 9.84 (dec- : ∈ final value) and Law 9.81 (dec elim)}

278 Chapter 9 Algebraic Method of Compiler Design

= LHS.
The following normal form representations of skip and assignment are

initialization of the above lemma. The one of skip is further simplified by
the fact that it is an identity of sequential composition. The operational
interpretation is that skip can be implemented by a jump.

Theorem 9.7 (Skip)
skip & v : [a, (a→ v :∈ c), c]

Theorem 9.8 (Assignment)
x := e & v : [a, a→ (x := e; v :∈ c), c]

The reduction of sequential composition assumes that both arguments are
already in the normal form, and that the final state of the left argument
coincides with the initial state of the right argument. The guarded command
set of the resulting normal form combines the original guarded commands.
First we consider the particular case where the guarded command set of the
right argument includes that of the left argument.

Lemma 9.3 (Sequential composition)

v : [a, b1 → p, c0]; v : [c0,, (b1 → p � b2 → q), c] & v : [a, (b1 → p � b2 → q), c]

Proof Let R= (b1 →p � b2 → q), then

LHS = dec v · v: ∈ a; b1∗p; c0⊥; v: ∈ c0; (b1∨ b2)∗R; c⊥
{Law 9.86(dec-; dist)}

& dec v·v: ∈a; b1∗p; (b1∨ b2)∗R; c⊥ {Law 9.95 (v: ∈c0 refined
by c�0) and Law 9.37 (c0⊥-c�0 conversation)}

= dec v·v: ∈a; b1∗R; (b1∨ b2)∗R; c⊥ {Law 9.75 (∗-� elim)}
= v: [a, (b1 →p � b2 → q), c]= RHS {Law 9.78 (∗sequence)}.

Now we show that the guarded command set of a normal form program
can be reduced by eliminating arbitrary guarded commands; the program
obtained is worse than the original one. Put the other way round, extending
the guarded command set by introducing new guarded commands leads to
refinement.

Lemma 9.4 (Eliminate guarded command)
v : [a, (b1 → p � b2 → q), c] (v : [a, b1 → p, c]

Proof
Let R = (b1 →p � b2 → q)
LHS (v: [a, b1 →p, c]; v: [c, r, c]

{Lemma 9.3 (sequential composition)}
(v: [a, b1 →p, c]

{Theorem 9.7 (skip) and Law 9.1 (; - skip unit)}
= RHS.

The reduction of sequential composition is proven directly from the above
two lemmas. These lemmas will be of more general utility.

9.4 A Simple Compiler 279

Theorem 9.9 (Sequential composition)

v : [a, b1 → p, c0]; v : [c0, b2 → q, c] & v : [a, (b1 → p � b2 → q), c]

Proof

RHS (v: [a, b1 →p, c0]; v: [c0,(b1 →p � b2 → q), c]

{Lemma 9.3 (sequential composition)}
(v: [a, b1 →p, c0]; v: [c0, b2 → q, c]

{Lemma 9.4 (eliminate guarded command)}
= LHS.

The following lemma shows how to eliminate a conditional command when
its branches are normal form programs with identical components, except for
the initial state. The first action to be executed in the resulting normal form
program determines which of the original initial states should be activated.

Lemma 9.5 (Conditional)
If v is not free in b then

v : [a1, R, c] � b � v : [a2, R, c] & v : [a, R, c]
where R= (a→(v: ∈a1� b �v: ∈a2) � b1 →p).

Proof

RHS = dec v·v: ∈a; (v: ∈a1 � b �v: ∈a2); (a∨ b1)*R; c⊥
{Law 9.74 (*- � unfold)}

= dec v·v: ∈a; (v: ∈a1; (a∨ b1)*R; c⊥) � b �
(v: ∈a2; (a∨ b2)*R; c⊥) {Law 9.52 (; -� � left dist)}

= (dec v·v: ∈a; v: ∈a1; (a∨ b1)*R; c⊥ � b �
(dec v·v: ∈a; v: ∈a2; (a∨ b1)*R; c⊥) {Law 9.68 (: ∈� �

right dist) and Law 9.88 (dec-� � dist)}
= v: [a1, R, c]� b � v: [a2, R, c]= LHS

{Law 9.93 (dec-: ∈ initial value)}.
The above lemma is useful for intermediate calculations. It is used in the

proof of the normal form reduction of conditional and iteration commands.

Theorem 9.10 (Conditional)
If v does not occur in b then

v : [a1, b1 → p, c1] � b � v : [a2, b2 → p, c] & v : [a, R, c]
where R = (a→(v: ∈a1 � b � v: ∈a2) � b1 →p � c1 →v: ∈c � b2 → q)

Proof

RHS = v: [a, R, c]

(v: [a1, R, c]� b �v: [a2, R, c] {Lemma 9.5 (conditional)}

280 Chapter 9 Algebraic Method of Compiler Design

((v: [a1, b1 →p, c1]; v: [c1, c1 →v: ∈c, c]� b � v:

[a2, b2 → q, c] {Lemma 9.3 (sequential composition)

and Lemma 9.4 (eliminate guarded command)}
(v: [a1, b1 →p, c1]� b � v: [a2, b2 → q, c] = LHS

{Theorem 9.7 (skip) and Law 9.1 (; - skip unit)}.
The next lemma establishes a simple fact that if the unique effect of the
first guarded command to be executed is to make a certain expression true.
We may substitute the expression for the initial state of the normal form
program.

Lemma 9.6 (Void initial value)

v : [c0, (c0 → v :∈ a � b→ p), c] (v : [a, (c0 → v :∈ a � b→ p), c].

Proof

LHS = v: [c0, (c0 →v: ∈ a� b→p), c] (v: [a, (c0 →v: ∈ a �b→p), c]

= dec v·v: ∈ c0; v: ∈ a; (c0∨ b)*(c0 →v: ∈ a � b→p); c⊥
{Law 9.73 (*-� unfold)}

(v: [a, (c0 →v: ∈ a � b→p), c] = RHS

{Law 9. 83 (dec-: ∈ initial value)}.
In order to reduce an iteration command, we assume that its body is in the
normal form. Let a0 and c0 be the initial and final state of this normal form
program. The normal form of the whole iteration behaves as follows: The first
action to be executed is a conditional command that tests if the condition
of the iteration holds, in which case a0 is activated; otherwise, the program
reaches its final state. When c0 is activated, the guard of the first action is
activated so that the conditional command is executed again.

Theorem 9.11 (Iteration)

If v does not occur in b then
b ∗ v : [a0, b1 → p, c0] & v : [a, R, c]

where R = (a→(v: ∈ a0 � b � v: ∈ c) � c0 →v: ∈ a � b1 →p).

Proof
RHS = v: [a, R, c]

(v: [a0, R, c]� b � v: [c, R, c] {Lemma 9.5 (Conditional)}
(v: [a0, b1 →p, c0]; v: [c0, R, c]� b � skip {Lemma 9.3

(sequential composition) and Theorem 9.7 (skip)}
((v: [a0, b1 →p, c0]; RHS) � b � skip

{Lemma 9.5 (Void initial state)}
(b*v: [a0, b1 →p, c0] = LHS {Law 9.37 (μ least fixed point)}.

The demonic nondeterministic choice " of two programs can be imple-
mented by either of them. We can actually eliminate the choice at the source

9.4 A Simple Compiler 281

level, and avoid compiling one of the component.

Theorem 9.12 (Nondeterminism)
1) (p " q)& p
2) (p " q)& q

Proof It follows from Law 9. 22 (&-" glb).

9.4.3 The Target Machine

The compiler which we design produces code for a simple target machine that
consists of four components:

A Accumulator
P a sequential register (program counter)
M a store for instructions (ROM)
m a store for the data or operand

The idea is to regard the machine components as program variables and
design the instructions as assignments that update the machine state.

P and A will be represented by single variables. Although we do not
deal with types explicitly, P will be assigned integer expressions, standing
for locations in ROM. A will be treated as an ordinary source variable; it
will play an important role in the decomposition of expressions, that is the
subject of next section. M will be modeled as a map (finite function) from
addresses of the program counter in P to address where the instruction to be
executed is stored, and m as a map from the address variable in expression
to the location in RAM.

In order to model M and m, we need to extend our language to allow map
variables. We use the following operators on maps:

{ x→e} singleton map

m1∪ m2 union

m1% m2 overriding

m[x] application
Perhaps the least familiar of these operators is overriding: m1%m2 contains
all the pairs in m2 plus each pair in m1 whose domain element is not in the
domain of m2. For example,

{x→ e, y→ f} % {y→ g, z→ h} = {x→ e, y→ g, z→ h}.

Furthermore, we use the following abbreviations:

{x1, . . ., xn → e1, . . ., en} ⇔ (def as){x1 → e1} ∪ . . . ∪ {xn → en}.

282 Chapter 9 Algebraic Method of Compiler Design

Problems

Problem 9.1 Using the derivative language of this chapter, express the
following computation

a ×(1+p)n–a.
Problem 9.2 Using the derivation language of this chapter, express the

following computation
Area= (s(s – a) (s – b) (s – c))1/2

where s = (a + b + c)/2.
Problem 9.3 Using the derivation of this chapter, write a program to com-

pare three numbers a, b, and c, find out the biggest one.
Problem 9.4 Using the derivation language of this chapter, find out the

smallest n such that
1 + 2 + . . . + n � 500

and compute the real sum.
Problem 9.5 Using the derivation language of this chapter, write two ver-

sions of program of finding the greatest common divisor. The definition
of greatest common divisor of two integers x and y is

y, if y�and x mod y= 0

gcd(x, y)= gcd(y, x), if y>x

gcd(y, x mod y), otherwise.

Problem 9.6 Using the derivation language of this chapter, convert the
input decimal integers into the number of any system.

Problem 9.7 Using the derivation language of this chapter, write a pro-
gram that receives a character from keyboard, then sort these characters
according to the increasing order of these characters. Delete the replicated
characters (if any).

Problem 9.8 Using the derivation language, write a program to compute
the following the proposition formula:

(P→(Q∧R)∧(∼P→∼Q)∧ ∼R).

Problem 9.9 Write a program that realizes the function of the accumula-
tor, it accumulates the input of user until the input is zero. Then output
the result of the accumulator. Then using the methods provided in the
chapter, compile the program.

References

[1] Dijkstra EW (1976) A discipline of progranmming. Prentice-Hall, Englewood
Cliffs, New Jersey.

References 283

[2] Sampio A (1997) An algebraic approach to compiled design. World Scientific,
Singapore.

[3] Guinan PJ, Cooprider JG, Sawyer S (1997) The effective use of automated
application development tools. IBM System Journal 36, (1) 124 – 139.

[4] Hoare CAR (1969) An axiomatic basis for computer progamming. Commu-
nications of the ACM 12, pp 567 – 583.

[5] Dijkstra EV (1968) A Constructive approcach to the problem of program
correctness. BIT 8 (3): 174 – 186.

[6] Meyer B (1985) On Formalism in Specifications, IEEE Software 2, pp. 6 – 26.

[7] Hoare CAR (1987) An overview of some formal methods for progran design.
IEEE Computre 20, pp 85 – 91.

[8] Fenton NE, Fleege SLP (1997) Software Metrics: A rigorous and practical
approach, 2nd eds. IEEE Society, Los Alamitos (Chapter 5).

[9] Tracz WJ (1979) Computer programming and the human thought process.
Software: Practice and Experience 9, pp 127 – 137.

Chapter 10 Generation of Intermediate Code

Our task is to cross the river but without the bridge we
have no way to cross it. In order to build the bridge,
we have to prepare all the materials needed for the con-
struction of the bridge.

Mao Zedong

We cross the river via touching the stones on the bot-
tom of the river.

Deng Xiaoping

10.1 Motivation of the Chapter

After finishing the first phase, i.e., the analytical phase of compilation, natu-
rally we may enter the second phase, i.e., the synthetic phase. And the main
task of this phase is to generate the target code. Why don’t we directly gen-
erate the target code instead of bothering to generate the intermediate code?
The first question should be answered in this chapter.

Theoretically there is no any difficulty for us to generate the target code
after finishing the analysis of the source program and storing all the infor-
mation (data). It will be beneficial for generating efficient target code by
generating the intermediate code instead of directly generating the target
code.

The so-called intermediate code means the program rewritten from the
source program in the intermediate language. Actually if we compile the
source program in a number of passes, the intermediate language has already
existed.

We use it as the media that transits from one pass to the next pass. That
means that the output of a pass is the input of the next pass. They are the
same thing and it is in the intermediate language. At first after the lexical
analysis, a rewriting source version is yielded. The lexical analysis transformes
the identifiers, variables, constants and reserves words of the language into
the machine version with the fixed-length. Therefore after lexical analysis, the

286 Chapter 10 Generation of Intermediate Code

program text will consist of the text with a series of symbols of fixed-lengths.
They are the replacements of the original symbols with variable lengths. The
simplest form is integers, some of which correspond to the reserved words,
while the others represent the pointers to the identifier table or constant
table and so on. We may call this form of the program the intermediate code.
The difference between this kind of intermediate form and the source text is
that this kind of intermediate code contains no original information which the
source text contains. It can only contain all the information when it combines
with the various tables which the lexical analyzer generates.

Therefore, the intermediate code which we mentioned here is the kind
which the analytical phase generates in the last pass. It is closer to the ma-
chine code though it is independent of the machine. In general the analyzer
generates the syntax trees or parser trees as the intermediate form that is not
yet the intermediate code. The parser trees still remain the tracks of most of
the source language and program paradigm to which the parser trees belong
to. It is not beneficial to carry out the generation of the target code. There-
fore, we hope that by the generation of the intermediate code, the specific set
of nodes is reduced to a small set of general purpose concept nodes. Such set
is easier implemented on real machines, and thus it is also easier to generate
the target code. Therefore, the intention of this chapter is to cover all issues
concerning the generation of the intermediate code.

Besides, we want to point out that there is another advantage with the
intermediate code, i.e., an optimization program that is independent of the
machine may be applied to the intermediate code [1]. Fig. 10.1 shows the
positions of the intermediate code generator and code optimizer.

Fig. 10.1 the Position of the intermediate code generator and code optimizer.

10.2 Intermediate Code Languages

Suppose that through an analytical phase we obtain a parser tree. In this
tree, the nodes may be divided into three classes: management, expression,
and control stream.

Management nodes are those nodes that correspond to the declaration,

10.2 Intermediate Code Languages 287

the indication of module structures, etc. The management nodes may contain
the evaluation of expressions, e.g., the evaluation of the address of an array
element. In the normal situation, they seldom has the code that corresponds
to the target code. However, in other cases, for example, for modules, the
compiler must generate the code to execute the initialization of modules.
However, the code which management nodes need is very short.

Control stream node [2] describes many characteristics: the branch caused
from conditional statement, the multi- selections drawn from switch state-
ment, computational goto statement, function invocation, abnormal han-
dling, method applications, Prolog rule selection and remote procedure in-
vocation. The characteristics of the code which control stream nodes need
depend on the category to which the source program belongs. Correspond-
ingly the code needed by control stream nodes is not much either.

Expressions occur in all the categories. Expressions explicitly occur in the
codes of almost all languages. Expressions are the main object that the inter-
mediate code needs to handle. Therefore, we need to consider how to select
the intermediate language. In principle, the intermediate language should
satisfy the following conditions:

1) independent of machine;
2) simple;
3) easy to generate intermediate code, moreover, it is also easy to transfer

to the machine code;
4) easy to handle the optimizing code program.
According to these requirements of the intermediate language, through

extensive theoretical research and massive practice, people gradually form
the intermediate languages that are rather mature and popularly accepted.
They are acyclic directed graph (ADG), postfix expression and three address
code.

In the following, we will successively introduce the ways of generating the
intermediate code by these languages.

10.2.1 Graphic Representation

A parser tree describes the natural layer structure of a source program. An
acyclic directed graph presents the same information with more compact
mode as it can identify common subexpressions. For example, for assignment
statement a := (b+c)×(b−c)−(b×c)/3, its parser tree and acyclic directed
graph representations are shown in Fig. 10.2.

The parser tree of the assignment statement above is generated from
the syntax-driven definition. The syntax-driven definition of the assignment
statement is defined as follows:

S→ id := E,

E→ E1 + T|E1 − T,

288 Chapter 10 Generation of Intermediate Code

Fig. 10.2 The graphic representation of a := (b + c)× (b− c)− (b× c)/3.

E→ T,

T→ T1 × F,

T→ F,

F→ (E),

F→ id,

F→ num.
Notice that in these productions, E1 and T1 are not new nonterminals,

actually they are E and T respectively. It is for convenience that we introduce
them. Meanwhile, id and num represent identifiers and numbers respectively,
so they are terminals. According to these production rules, we may obtain
the semantic rules as shown in Fig. 10.3.

Fig. 10.3 Syntax driven definition of parser tree for assignment statement.

According to the syntax driven definition given above, the parser tree in
Fig. 10.2 (a) is formed and a series of function calls is carried out:

p1:=mkleaf(id, entry a);

p2:=mkleaf(id, entry b);

p3:=mkleaf(id, entry c);

10.2 Intermediate Code Languages 289

p4:=mknode(‘+’, p2, p3);

p5:=mknode(‘–’, p2, p3);

p6:=mknode(‘×’, p4, p5);

p7:=mkleaf(num, 1/3);

p8:=mknode(‘×’, p2, p3);

p9:=mknode(‘-’, p7, p8);

p10:=mknode(‘-’, p6, p9);

p11:=mknode(‘:=’, p1, p10);

We now explain function calls and relevant symbols. In the semantic rules, the
nptr indicates the node pointer. mknode means the construction of the node.
The construction node includes separated components. The first component
is the label of the node while the second and third components are the left
child and right child. The mkleaf means the construction of leaf. It has two
components, the first of which is the identification or type while the second
is the identifier. If it is a constant, then the first component represents type,
and the second one is the value. There is one left that is id.place. It points
to the corresponding pointer or address of this identifier in the symbol table.

The acyclic directed graph is also generated from the same syntax driven
definition. If the function mknode(op, left, right) or mkunode(op, child) (rep-
resents that it is a node with only one subnode) are encountered, then before
the construction of the node, it needs to check whether its left child and right
child have already existed. If they exist, then the only thing that needs to
do is to establish the pointer that points to the node. And also the node
itself has to be created. In this way, the acyclic directed graph in Fig. 10.2 is
generated.

There are two ways to represent the parser tree of Fig. 10.2 (a), as shown
in Fig. 10.4.

In Fig. 10.4 (a), each node represents a record in which the leftmost field
is the operator, and the last two fields are the pointers of the left child and
right child of the operator, respectively. They contain two fields. One is its
type and another is its name or value (if it is a number). In Fig.10.4(b), the
node is distributed from a record array, and the index or position of the node
is taken as the pointer of the node. From the root node located on position
15, and following the pointers, all the nodes of the parser tree may be visited.

290 Chapter 10 Generation of Intermediate Code

Fig. 10.4 Two representations of the parser tree of Fig. 10.2 (b).

10.2.2 Postfix Representation

Postfix representation is only the linearization representation of the parser
tree. It is the list of the nodes of the tree in such an order that a node directly
follows its children. According to the principle, the postfix representation of
expression a := (b + c)× (b− c)− (b× c)/3 is

abc× bc− (1/3)bc××− := .

Now we will further introduce postfix representation. At first we present the
definitions of trees.

Definition 10.1 A finite set T of one or more nodes is called tree, if in
which

1) there is a special node called the root of the tree;
2) the rest nodes are divided into m (� 0) disjoint sets T1, . . . , Tm, and

each of them is also tree. Then T1, . . . , Tm are called the subtrees of T.
Especially, if m=2, the tree is called binary tree.

10.2 Intermediate Code Languages 291

In computer science, one is especially interested in binary trees as they
have wide applications in data structures. We may represent any expression
with binary tree. The way to do it is to denote the operator with the root,
and its two childrens represent two operation numbers as shown in Fig. 10.5.

Fig. 10.5 The representation of a+b with binary tree.

Definition 10.2 Given a binary tree, we call systematically visit each of
the nodes of the tree the traversal of the tree.

D.E.Knuth proposed three types of the traversal of a binary tree. They are
postorder, inorder and preorder respectively. The three types are recursively
defined. When the binary tree is empty, nothing to visit has realized traversal;
otherwise the traversal may be proceeded in three steps as follows:

Preorder Inorder Postorder

visit root traverse left subtree traverse left subtree

traverse left subtree visit root traverse right subtree

traverse right subtree traverse right subtree visit root

For example, for the parser tree in Fig. 10.2(b) that corresponds to ex-
pression

(b + c)× (b− c)− (b× c)/3.

The binary tree that represents the expression is shown in Fig. 10.6. If we
traverse it with preorder, we get

−×+bc− bc× 1/3× bc,

where each operator occurs before its operands, and so it is called pre-
order. Preorder is also called Polish notation as the inventor of the notation
Lukasiewicz is a Polish. If we traverse it with inorder, what we get is just

(b + c)(b− c)− (b× c)/3,

where the parentheses indicate the priority of the operators. It is just the orig-
inal expression. Since the operators are always located between the operands,
it is called inorder.

Finally, if we traverse it with postorder, we have

bc + bc−×1/3bc××−,

where each operator occurs after the operands, so it has the name. It is also
called reversed Polish notation.

292 Chapter 10 Generation of Intermediate Code

Postorder is very suitable for the stack machine that also has the postorder
form of expressions. The so-called stack machine is the machine that uses
stacks to store and operate. It has no register. It has two kinds of instructions:
One kind is to copy or move values between the top of the stack and other
places. The other kind is to perform operations upon the element on the
top of they stack and other stack elements. The other kind of machines that
are in contrast to this one is pure register machines that have one memory
(values are stored in it) and a set of registers. This kind of machines has
also two types of instructions. One kind is to copy value between memory
and registers; the other kind is to perform operations upon two values on the
registers, and then store the result into one of the registers.

In order to generate code for the stack machine, the only thing that needs
to do is to read in the expression in postorder, then perform the following
actions:

1) when a variable is met, generate code that pushes the value to the top
of the stack;

2) when a binary operator is met, generate code that performs the op-
eration of the operator upon the two top elements of the stack, and replace
second top element of the stack (the top of the stack is removed);

3) when a unary operator is met, generate code that performs the opera-
tion of the operator upon the top element of the stack, and then replace the
top element with the result.

All the operations are based on the assumption that we can discern the
unary operators and binary operators. The code that pushes the value of
variable on the top of the stack will include the computation that transforms
the variable address of the form

(number of block layer, offset)
on compilation time into the real address on run-time.

10.2.3 The Quadruple Code

The general form of the quadruples is
y op z = x,

where x, y, and z are names, constants or temporary variables which the com-
piler generates. Op represents any operator, e.g., fix-point, float-point arith-
metic operators, or logical operators that perform operations upon boolean
data.

The grammar of quadruples has the following production rules:

QUAD→ operand op1 operand = INT|
op2 operand

operand→ INT|ID

10.2 Intermediate Code Languages 293

INT→ DIGIT|DIGIT INT

DIGIT→ 0|1|2|3|4|5|6|7|8|9
ID→ a|b|c|d|. . .|z|(a|b|c|. . .|z)ID
op1→ +| − | × | ÷ |and|or

op2→ −| ∼ .

The example of quadruples is as follows:

−a = 3,

a + b = 5,

b + 1 = 3,

a and b = 2.

The expression

(b + c)× (b− c)− (b× c)/3

may be expressed as quadruple form as follows:

b + c = 1 (+b c) = 1

b− c = 2 (−b c) = 2

1× 2 = 3 or expressed as (×1 2) = 3

b× c = 4 (×b c) = 4

#(1/3)× 4 = 5 (×#(1/3)4) = 5

3− 5 = 6 (−3 5) = 6

where the integers correspond to the identifiers which the compiler assigns
to. The constants should be preceded with #. The code is also called three
address code in which two addresses are used for operands, and the other
address is used for the result. We assume here that the operator is of binary
one. As for unary operator, it can be considered as the special case of the
binary one that only needs one operand address and one result address. If
the operator is unary, then the second operand is empty. Quadruples may be
replaced by triples or two address code. Each triple consists of two operand
addresses and an operator. Obviously, the operands of two address code are
the same as the operands of the quadruples. Apart from being variables and
constants, the operands may be the indices of other triples. For example, the
triple code of

(b + c)× (b− c)− b× c/3

294 Chapter 10 Generation of Intermediate Code

is
position triple

1 b + c

2 b− c

3 @1×@2∗

4 b× c

5 (1/3)×@4

6 @3−@5

Note∗: we have used @ to precede the index to the triple, so for numbers,
no need to use # to precede them again. In the following, we present a triple
code from which one may easily derive the computation which it performs.

position triple

1 a + 1

2 @1×@1

3 b + @2

4 @3 + c

5 @4 =: x

6 @1 + 1

7 d×@6

8 @7 =: y

It presents the computations of x and y as follows:

x := b + (a + 1)2 + c,

y := d× (a + 2).

Quadruples and triples are widely used as the intermediate code. Therefore,
we should transform the parser tree that is generated from analytical phase
into quadruple form, then can finally the target code that is equivalent to the
source program be formed, or the target code that is expected by the source
code.

Now we analyze the quadruple form of intermediate code generated by
various statements:

1. Assignment statement

The assignment statement has the following form:
v := e

where v is a variable, and e is an expression. We have introduced the quadru-
ple form of intermediate code previously in the chapter. Now the problem is

10.2 Intermediate Code Languages 295

about variable that may be a simple variable, it may also be an indexed vari-
able. If it is a simple variable, then the intermediate code of the assignment
statement is

<v:=e>≡ the quadruple code that evaluates e
:= v << e >>

where <e> denotes the address that stores the expression, so <<e>> denotes
the value of the expression.

2. The address evaluation for the elements of the arrays

We have mentioned that in the assignment statement, the variable at the
left hand side may be an indexed variable. If it is the case, then the assignment
statement needs to assign the value f the expression at the right hand side to
the address of the indexed variable. Therefore it involves how to evaluate the
address of indexed variable from its index. Besides, in the evaluation of the
expression of the assignment statement, the indexed variables may also be
involved; hence we also need to evaluate their addresses from their indices.
Therefore, addressing array elements is an issue which the compiler cannot
avoid.

The arrays may be of the one-dimension, two-dimension and even higher
dimension. For the simplest one-dimension, the general form is

array (num) of T,
where num indicates the number of the elements. The count of the number
may start from 0, if it is the case, the real number of the elements is num+1;
if the count starts from 1, then the number is just num itself. T is the type of
elements, it may be the integer or float, etc. The type determines the length
or width of elements, and is denoted by w.

In order to make the access of the elements more convenient, in general,
the elements of the array are allocated in a contiguous block, sitting one
by one. And the first element is put on the start location that is called the
base address. In order to make the number more explicit, num is written as
low..up, that is

array (low..up) of T.
Suppose that the ith element is to be visited, then it needs to check whether
i satisfies

low � i � up.

If the condition does not hold, it means that the element which we want to
access is not within the range, then the compiler reports error. If the condition
holds, and the width of each array element is w, then the ith element of the
array begins in location

base + (i− low)× w, (10.1)

where low is the lower bound on the subscript and base is the relative address
of the storage allocated for the array. That is, base is the relative address of
A[low], A is the name of the array.

296 Chapter 10 Generation of Intermediate Code

Expression (10.1) can be partially evaluated at compilation time if it is
rewritten as

i× w + (base− low× w).
The subexpression base – low × w can be evaluated when the declaration of
the array is seen, it is fixed after the array is allocated. Hence we assume
that c = base – low × w is saved as an entry in the symbol table for the array
A, so the relative address of A[i] is obtained by simply adding i × w to c.
Every time when A[i] is accessed, only i × w needs to be evaluated while c
has existed in the symbol table.

For the address evaluation, we have the quadruple form of intermediate
code:

(×low w) = 1,

(−base 1) = 2,

(×i w) = 3,

(+3 2) = 4,

or simply

(×i w) = 1,

(+c 1) = 2.

The last quadruple implies that base – low × w has been saved in c. The
practice for c is called the compilation-time precalculation.

This practice can also be applied to address calculations of elements of
multi-dimensional arrays. For the two-dimensional array, it has the following
form

array A(i1..u1, i2..u2),
for example, the array A(1..2, 1..3) of integer. This declares that A is an
array of integers with 2 rows and 3 columns. There are 6 elements in A. A
two-dimension array is normally stored in one of two forms, either row-major,
i.e., row-by-row, or column-major, i.e., column-by-column. Fig. 10.6 shows

Fig. 10.6 the layout of a 2×3 array A.

10.2 Intermediate Code Languages 297

the layout of a 2 × 3 array A in (a) row-major form and (b) column-major
form.

The same as in the case of one dimension. If one wants to access the
element of the array A[i, j], at first it needs to check whether [i, j] satisfies

i1 � i � u1 and i2 � j � u2.
Only if both inequalities hold then can the address of A[i, j] be evaluated. In
the case of a two-dimensional array stored in the row-major form, the relative
address of A [i, j] can be calculated by the following formula

the address of Array A[i, j] = base+((i−i1)×(u2−i2+1)+j−i2)×w. (10.2)

Once again, where w is the width of the element. The calculation can also be
partially evaluated if it is rewritten as

base− (i1 × (u2 − i2 + 1) + i2)× w + (i× (u2 − i2 + 1) + j)× w, (10.3)

where base=the address of A[i1, i2]. The first term of Expression (10.3) is a
fixed value if the array A is allocated already in the memory, it has no any
relation with [i, j], it has relation with the array itself, so it can be saved as
an entry in the symbol table entry for A, thus the relative address of A[i, j]
is obtained by simply adding the second term of Expression (10.3) to that
value saved in the symbol table (assuming that it is also denoted c, then we
just simply add the term to c).

The quadruple form of the intermediate code for Expression (10.3) is as
follows:

(−u2 i2) = 1,

(+1 #1) = 2,

(×l 2) = 3,

(+3 j) = 4,

(×4 #w) = 5,

(+5 c) = 6.

Similarly, if the array is stored in the column-major form, then we have

the address of A[i, j] = base + (j− i2)× (u1 − i1 + 1) + i− i1)× w. (10.4)

The expression can also be partially evaluated at compilation time if it is
rewritten into two parts as we did in the raw-major form.

As for a three-dimensional array
array A[i1..u1, i2..u2, i3..u3]of T.

If the array is stored in row-major form again, then for the address of A[i, j,
k], the calculation is as follows: The address of

A[i, j, k] = base + ((u2 − i2 + 1)× (u3 − i3 + 1)× (i− i1) + (u3 − i3 + 1)×
(j− i2) + (k− i3))× w. (10.5)

298 Chapter 10 Generation of Intermediate Code

Expression (10.5) can also be rewritten into two parts: a fixed part on com-
pilation time and a changing part as i, j, and k change.

We can generalize the row-major or column-major form to multi-
dimensional arrays. The generalization of row-major(column- major) form
is to store the elements in such a way that, as we scan down a block of
storage, the rightmost (leftmost) subscripts appear to vary fastest. The ex-
pression (10.3) generalizes to the following expression for relative address of
A[i1, i2, . . . , ik] is

(base + (i1n2 + i2)× n3 + i3). . .)× nk + ik)× w +
((. . .(i1n2 + i2)× n3 + i3). . .)× nk + ik)× w, (10.6)

where for all j, nj=uj− ij+1 and they are assumed fixed, the first term of the
expression (10.6) can be computed at the compilation time and saved with
the symbol table entry for A.

However, the generation code for the computation of array address can
also be done at the syntactical analysis. In order to do so, the production
rules of the grammar need to be transformed, that is, actions are inserted
into production rules so that the corresponding quadruples are generated. We
illustrate the procedure with the grammar of the expression. The production
rules for the expression are as follows:

S→ EXP

EXP→ TERM|
EXP + TERM,

TERM→ FACT|
TERM× FACT,

FACT→ −FACT|
ID|
(EXP).

In order to describe actions, we need to use a stack that keeps the array con-
sisting of concrete records. Each of its entry contains an integer or character
(when quad=true, it stores qno meaning the number of the quadruple; oth-
erwise it stores idop meaning the operator). ptr is the pointer of the stack.
quadno is a variable, of which the value is the number of quadruple just al-
located last time. Initially both the values of ptr and quadno are 0. Suppose
that the character (or symbol) that has just read last time is kept in “in”.

The following is the production rules that have attached actions:
1) S → EXP {ptr:=ptr−1 (the stack grows bottom-up)}
2) EXP → TERM |

EXP+{ptr:=ptr+1: (notice the interpretation on the text,

stack[ptr].quad:=false: if quad=true it stores qno;

stack[ptr].idop:=in} otherwise it stores operator)

10.2 Intermediate Code Languages 299

TERM{for (i=ptr−2;i=ptr;i++)

if stack[i].quad then

emit (stack[i].qno)

else emit(stack[i].idop);

quadno:=quadno+1;

emit(‘=’, quadno);

(/* print ‘=’ and the quadruple number */)

ptr:=ptr−2;

stack[ptr]:=true;

stack[ptr]:=quadno;}
3) TERM → FACT|

TERM ×{ptr:=ptr+1;

stack[ptr].quad:=false;

stack[ptr].idop:=in;}
FACT {for(i=ptr−2:i=ptr;i++)

if stack[i].quad then

emit(stack[i].qno)

else emit(stack[i].idop);

quadno:=quadno+1;

emit(‘=’, quadno);

ptr:=ptr−2;

stack[ptr]:=true;

stack[ptr]:=quadno;}
4) FACT → − {ptr:=ptr+1;

stack[ptr].quad:=false;

stack[ptr].idop:=in}
FACT {for (i=ptr−1;i=ptr;i++)

If stack[i].quad then

emit(stack[i].qno)

else emit(stack[i].idop);

quadno:=quadno+1;

emit(‘=’, quadno);}
| ID {ptr:=ptr+1;

stack[ptr].quad.:=false;

stack[ptr].idop:=in}

300 Chapter 10 Generation of Intermediate Code

| (EXP)
5) ID → a | b| c | d |. . . |z
For the places without any action attached in the productions above, it

means that no action needs to attach to.
Now in order to do the same for array, that is, when syntactical analysis

is performed upon array, the actions are put to the production rules so that
the quadruple form can also be generated, we need to set up the production
rules for the array. At first, in order for the elements of the array may also be
visited at where id appears in the expression grammar, we need to introduce
a nonterminal called N to replace id. We then have

N→ id[Elist]|id,

Elist→ Elist, E|E.

However, in order to make use the bounds of various dimensions when we
combine the expressions of subscripts to form Elist, when forming N, we need
to attach the array name at the leftmost of the subscript expression, rather
than connecting it with Elist. Thus the inserting actions can be done easier.
Therefore, the productions above are rewritten as

N→ Elist]|id,

Elist→ Elist, E|E.

In this way, the pointer of symbol table entry of the array may be transmitted
as the synthetic attribute of the array of Elist.

After rewriting the production rules above, we may now define the gram-
mar of arrays. And the element of the array may occur either at the left of
production rules or the right of production rules. The production rules are
as follows:

1) S → N:=E;
2) E → E+E;
3) E → (E);
4) E → N;
5) N → Elist];
6) N → id;
7) Elist → Elist, E;
8) Elist → id[.
In order to attach actions to these production rules, we need to explain the

symbols that will be used. At first, we use Elist.dim to record the dimensions
in Elist, i.e., the number of subscript expressions. Function limit (array.j)
returns the value of nj, that is in the symbol table entry of the element
number of jth-dimension of array pointed by ‘array’. Finally, Elist place
represents the temporary unit that stores the value computed from subscript
expression.

When accessing the array element [3] A[i1, i2, . . . , ik], the actions gener-
ated in the production rules will use the following recurrence relations:

10.2 Intermediate Code Languages 301⎧⎪⎪⎨
⎪⎪⎩

e1 := i1,
...

em := em−1 × nm + im

(10.7)

to compute the first m indices of kth-dimensional array

(. . .(i1n2 + i2)× n3 + i3). . .)× nm + im. (10.8)

Thus, when m=k, a multiplication by the width w is all that will be needed
to compute the second term of Expression (10.6). Note that the ij’s here may
really be values of expressions. And the first term of Expression (10.6) is fixed
and stores as an entry in the symbol table of array A.

By passing, we state that the grammar aforementioned is ambiguous as
it contains left recursion. We may transform it to remove the left recursion.
After that we get the following grammar:

1) S → N:=E;
2) E → (E);
3) E → N;
4) E → (E)A;
5) E → NA;
6) A → +E;
7) A → +EA;
8) N → Elistid];
9) N → id;
10) Elist → id[;
11) Elist → id[E B;
12) B →, E;
13) B →, E B.
Notice that this is not an LL(1) grammar yet as many productions with

the same left part have common derivation symbols. But it is not difficult to
transform it into of LL(1). We just do not do it.

Strictly speaking, we should use these production rules to insert the ac-
tions that would generate the quadruples. However, since the address compu-
tation for array, in general, cannot cause the problem of ambiguity, therefore
for simplification, we still attach the actions to the general productions:

1) S → N:=E
{if N.offset=null then /*N is simple id*/
emit(N.place‘:=’ E.place);

else
emit(N.place‘[’N.offset‘]’‘:=’E.place)}

2) E → E1+E2

{E.place:=newtemp:
emit(E.place‘:=’E1.place ‘+’ E2..place)}

3) E →(E1)
{E.place:=E1.place}

302 Chapter 10 Generation of Intermediate Code

We have mentioned before that E1 and E2 are not new nonterminal. They
are actually E itself. We use them only for discerning them from the E at the
left hand side.

4) E → N
{if N.offset=null then / ∗ N is a simple id ∗/

E.place:=N.place
else begin

E.place:=newtemp;
emit (E.place ‘:=’ L.place ‘[’ N.offset ‘]’)
end}

In the case of indexed variable, we want to get the value of some element
of the array. N.place[N.offset] is just the value of the element which the index
corresponds to.

5) N → Elist]
{N.place:=newtemp;
N.offset:=newtemp;
emit(N.place‘:=’c(Elist.array));
emit(N.offset‘:=’Elist.place‘*’width(Elist.array))}

Where N.offset is the new temporary variable that represents the second
term of Expression (10.6); function width (Elist.array) returns w in Expres-
sion (10.6). N.place represents the first term of Expression (10.6), returned
by the function c (Elist.array).

6) N → id
{N.place:=id.place;
N.offset:=null}

A null offset indicates a simple name, so this corresponds to a simple
variable.

7) Elist→Elist1. E
{t:=newtemp;
m:=Elist1. ndim+1;
emit(t‘:=’Elist1. place‘∗’limit(Elist1. array, m));
emit(t‘:=’t‘+’E.place);
Elist.array:=Elist1.array;
Elist.place:=t;
Elist.ndim:=m}

Here the actions are produced using the recurrence relation above, where
Elist1.place corresponds to em−1 of Expression (10.7) while Elist.place corre-
sponds to em.

8) Elist → id[E
{Elist.array:=id.place;
Elist.place:=E.place;
Elist.ndim:=1}

Here E.place holds both the value of Expression E, and the value of Ex-
pression (10.8) for m=1

10.2 Intermediate Code Languages 303

Example 10.1 Suppose that A is a 15 × 25 array with i1=i2=1. There-
fore, n1=15 and n2=25. Take w to be 4. Assignment statement x := A[y, z]
corresponds to the following parser tree (Fig. 10.7):

Fig. 10.7 The annotated parser tree of x:=A[y, z].

The assignment statement may be translated into the following sequence
of quadruples or three address statements: Notice that as the array takes 0
row and 0 column as the initial address, and now i1=i2=1, that means that
the 0 row is deleted. However, the base address is still taking 0 row and 0
column. Hence the real base address should take the base address of A minus
26× 4 = 104.

Y * 25 =1 t1:=y * 25

1+z=2 t2:=t1+z

baseA-#104=3 or t2:=baseA-#104

2*#4=4 t3:=4*t1
3[4]=5 t4:=t2[t3]

5:=x x:=t4
quadruple code three-address code

304 Chapter 10 Generation of Intermediate Code

3. Type conversion within assignments

In programming languages, various different types of variables and con-
stants are defined. For some types, the operations between them are not
allowed or there is no definition for the operations between them. However,
for other types, the operations between them are allowed, provided that some
of them is transformed to another type that will operate to the former one.
For example, suppose that there are two types— real and integer, with in-
tegers converted to reals, these two types may operate together. Therefore,
the compiler must be able to determine according to the grammar [4], either
prohibit the operation or perform the conversion first, to have the operation
between different types.

For the grammar of the assignment statement introduced above, we in-
troduce another attribute, whose value is either real or integer. The semantic
rule type associated with the production E → E+E is

E →E+E
{E.type:=

if E1.type=integer and

E2.type=integer then integer

else real}
This rule is not enough to generate the quadruple form of intermediate

codes. And we omit the checks for type errors. The entire semantic rule for
E → E+E and most of the other productions must be modified to generate,
when necessary, three-address statements of the form x :=inttoreal y, whose
effect is to convert integer y to a real of the equal value, called x. We must
also include with the operator code an indication of whether fixed or floating-
point arithmetic is intended. The complete semantic actions for a production
rule of the form E → E1+E2 is as follows:

E.place:=newtemp;
if E1. type=integer and E2. type=integer then

begin
emit(E.place‘:=’ E1.place‘int+’ E2.place);
E.type:=integer

end
else if E1.type=real and E2.type=real then
begin

emit(E.place‘:=’ E1.place‘:=’ E1.place ‘real+’ E2.place);
E.typr:=real

end
else if E1.type=integer and E2.type=real then

begin
u:=newtemp;
emit(u‘:=’ ‘inttoreal’ E2..place);
E.type:=real

end
else if E1.type == real and E2.type=integer then
begin

10.2 Intermediate Code Languages 305

u:=newtemp;
emit (u‘:=’ ‘inttoreal’E2.place);
emit(E.place ‘:=’ E1.place a‘real+’u);
E.type:=real

end
else

E.type:=type-error;

We just present the conversations between integers and reals for addition
within assignments. For subtract, multiplication and division, the cases are
similar to this one. The semantic action stated above uses two attributes
E.place and E.type for the nonterminal E. As the number of types that are
subjects to conversion increases, the number of cases that arise increases
quadratically (or worse, if there are operators with more than two argu-
ments). Therefore, with large numbers of types, the careful organization of
the semantic actions becomes more critical.

For example,
x:=y × z+a × b,

where x, y, and z are reals while a and b are integers. Then the output of the
intermediate code is as follows:

t1:=a int × b,
t2:=y real × z,
u:= inttoreal t1,
t2:=t2 real+u,
x:=t2.

4. Conditional statements

Previously, we have encountered the problem regarding the generation of
intermediate codes of conditional statements. Now we will discuss it again in
more detail.

The form of conditional statements is as follows:
if e then S1 else S2

For the execution of the statement, at first, it calculates the value of the
expression e. Hence, there will be a series of quadruples for the calculation.
For simplicity, we just express it as <e>. Then the truth or false of the value
of e needs to be judged. If it is true, then subsequently the statement (or
statements) represented by S1is (or are) executed. The statement(s) should
follow the judgment of e. When the execution finishes it will exit from the
sequence. Otherwise if the value of e is false, then the statement (or state-
ments) represented by S2 is (or are) executed. Therefore, the quadruple code
that corresponds to the conditional statement is

<e> (a series of quadruple code that evaluates the

expression e)

(then, <<e>>, 0, 0) (if e is true, then sequentially execute the

306 Chapter 10 Generation of Intermediate Code

following statement)

<S1> (the code of the statement S1)

(goto, , ,) (branch address after S1 is executed)

(else, , ,) (if e is false, branch to here)

<S2 > (the code of the statement S2)

(if end, , ,) (the end if the conditional statement).

Example 10.2 Suppose that a nesting conditional statement is

if E1 then S1 else
if E2 then S2 else S3

Then the quadruple form of its intermediate code is

<E1 >
(then, <<E1 >>, 0, 0)
< S1 >
(goto, , ,)
(else, , ,)
<E2 >
(then, <<E2 >>, 0, 0)
<S2 >
(goto, , ,)
(else, , ,)
<S3 >
(ifend, , ,)
(ifend, , ,)

5. Loop statements

Consider the loop statement with while type

While B do S

The statement is similar to the conditional statement. At first, B has to be
evaluated. We need to introduce a label to denote the branch address which
we use L: to represent. It represents the first address of the code that
evaluates . Hence we have

L:

(while, <>, 0, 0)

<S>

(goto, L, 0, 0)

(wfend, 0, 0, 0) (when B is false, branch to the

end of while statement)

Another form of the loop statement is

for (i=a;i � b;i++)

do S

10.2 Intermediate Code Languages 307

The quadruple code that corresponds to it is

(:=, i, a, 0)

L:<S> (the intermediate code sequence where i should be replaced

by its current value and L represents the first quadruple)

(+, I, 1, i)

(�, I, b, 0)

(goto, L, 0, 0) (when i � b branch back to continue the execution

of S)

(forend, 0, 0, 0) (if the extent has been exceeded the loop ends)

6. Procedural statements [5]

We use the following grammar to represent the procedure calls
S → call id(Elist)
Elist → E
Elist → E, Elist

where there should be other production rules that correspond to the nonter-
minal E to generate the arithmetic or boolean expression. Since we are only
concerned the generation of intermediate code for procedure calls, we omit
those productions here.

S → call id(Elist) {execute the evaluation for every E in the

Elist queue

Elist → E then execute assignment E.place:=E;

Elist → E, Elist then execute emit(‘actpar’, E.place);

Emit(‘call’ id.place n)}
For example, if the procedure statement is

G(E1, E2, E3, E4, E5)
Then the quadruple code is as follows:

E1.place:=<E1> (<E1> represents the code for evaluation of
E1. The assignment here indicates that
value evaluated is stored in E1.place. The
same for the following)

E2. place:=<E2>
E3. place:=<E3>
E4. place:=<E4>
E5. place:=<E5>
(actpar, E1.place, 0, 0)
(actpar, E2.place, 0, 0)
(actpar, E3.place, 0, 0)
(actpar, E4.place, 0, 0)
(actpar, E5.place, 0, 0)
(call, G.place, 0, n)

308 Chapter 10 Generation of Intermediate Code

where actpar is specially used for indicating the real parameter, it can also in-
dicate the mode of the transfer of real parameters. The final (call, G.place, 0,
n) implements the function call, where n indicates the number of parameters.

Example 10.3 Given a procedure statement g(x × 3, y+z), the quadruple
code that corresponds to the statement is

(×, 3, x, T1)
(+, y, z, T2)
(actpar, T1.place, 0, 0)
(actpar, T2. place, 0, 0)
(call, g.place, 0, 2)

Example 10.4 Suppose that there is a procedure statement

G(x × 3, g(x+2)× 2)

Then the quadruple code that corresponds to the statement is
(+, x, 2, T1)
(actpar, T1. place, 0, 0)
(call, g. place, 0, 1)
(×, 3, x, T2)
(×, 2, g(x+2), T3)
(actpar, T2. place, 0, 0)
(actpar, T3. place, 0, 0)
(call G. place, 0, 2)

Example 10.5 Suppose that there is a procedure statement R(S(T(x)))+3,
we are required to present its intermediate code. According to the principle
of the bottom-up, we generate it.

(actpar, x. place, 0, 0)
(call, T. place, 0, 1)
(:=, T. place, 0, T1)
(actpar, T1. place, 0, 0)
(call, S. place, 0, 1)
(:=, S. place, 0, T2)
(actpar, T2. place, 0, 1)
(call, R. place, 0, 1)
(:=, R. place, 0, T3)
(+, T3, 3, T4)

7. Boolean expressions

At the beginning of the chapter when we introduce the grammar of
quadruples, we have included the quadruples of boolean expressions. The
only form which we did not define is

E → id1 relop id2

where relop means relation operator that is regarded as binary operator.
Therefore, it will correspond to the code of three-address

10.2 Intermediate Code Languages 309

relop id1 id2 T
where T is used to store the value of the relop operation of the operands id1

and id2. Then we can determine the value of T.
Consider an example

a∧b∨c∧(b∨(x=0))∧d
The quadruple form of the intermediate code of the expression is

(∧ a b)=1

(= x 0)=2

(∧ 2 d)=3

(∨ b 3)=4

(∧ c 4)=5

(∨ 1 5)=6

8. Switch statements

The “switch” or “case” statement is available in a variety of languages.
It provides the possibility of multi choice of a condition. For example, in a
competition of four awards are set up: the champion, the runner-up, the third
place and the rearguard. These four will be awarded with different levels of
bonus. Then this can be processed with a case statement with five cases that
correspond to first, second, third, fourth, and the last one that does not get
any bonus again. There is a variety of the setting of switch statement. The
following is its general form:

switch E
begin

case V1: S1
case V2: S2
...
case Vn−1: Sn−1

default: Sn
end

There is a selector expression which is to be evaluated, followed by n constant
values that the expression might take, including a default “value” that always
matches the expression if no other value does. The intended translation of a
switch statement is as follows [6]:

1) Evaluate the expression.
2) Find which value in the list of cases is the same as the value of the

expression. Recall that the default value matches the expression if none of
the values explicitly mentioned in cases does.

3) Execute the statement Si associated with the value found Vi.
According to the requirement of the execution, there are two ways to

generate the intermediate code for the statement. The first practice is that
after the value of e is evaluated, it is stored in, say location t, then branch to
the test of value t, and according to the result of test, statement Si is selected

310 Chapter 10 Generation of Intermediate Code

and executed.

<the intermediate code of evaluation of e>
t:= <e>
goto test

L1: intermediate code of S1
goto exit

L2: intermediate code of S2
goto exit
...

Ln−1: intermediate code of Sn−1

goto exit
Ln: intermediate code for default value

goto exit
test: if t=V1 then goto L1

if t= V2 then goto L2
...

If t=Vn−1 then goto Ln−1

goto Ln
exit:

The another method is that after the evaluation of E and store it in t, the
test is successively done. At first, to check whether t is equal to V1 or not;
if it is equal, then execute the corresponding statement S1; otherwise check
whether it is equal to V2, . . . , and continue doing so until it meets a value, or
it is not equal to any value (in this case it is regarded as being equal to Vn).
It should be equal to notice that as V1, V2, . . . , Vn−1 are arranged, those
Vi’s that have bigger probabilities that the expression takes should precede
the lower ones so that the efficiency is higher. The intermediate code is as
follows:

<the intermediate code of the evaluation of e>
t:= <e>
if t
= V1 goto L1
the intermediate code of <S1 >
goto exit

L1: if t
= V2 goto L2
The intermediate code of <S2 >
goto exit

L2:
...

Ln−1: if t
= Vn−1 goto Ln
the intermediate code of <Sn−1>
goto exit

Ln: the intermediate code of default
exit:

So far, for almost all the statements of languages we have introduced how to
generate the intermediate code that corresponds to them. There is still one
more thing that should be noted that we do not consider how to make the
code generated more efficient, for example, how to make it shorter, or how
to use less amount of storages. We just consider their implementation.

Problems 311

Problems

Problem 10.1 Develop a program to implement the translation from the
parser tree to quadruple form of intermediate code.

Problem 10.2 Prove that given a string consisting of operators and
operands, if among them all the operators are binary, then the string
is a postfix expression if and only if (1) there is exactly one fewer opera-
tor than operands, and (2) every nonempty prefix of the expression has
fewer operators than operands.

Problem 10.3 Show that infix expressions cannot be translated into prefix
form by translation schemes in which all actions are printing actions, and
all actions appear at the ends of right sides of productions.

Problem 10.4 Some languages permit a list of names to be given a list of
attributes and also permit declaration to be nested within one another.
The following productions abstract the problem:

D→namelist attrlist|
(D) attrlist

namelist→id, namelist|
id

attrlist→A attrlist|
A

A→decimal|fixed|float|real
The meaning of D→(D)attrlist is that all names mentioned in the declara-
tion inside parentheses are given the attributes on attrlist, no matter how
many levels of nesting there are. Note that a declaration of n times and
m attributes may cause mn pieces of information to be entered into the
symbol table. Give a syntax-directed definition for declarations defined
by this grammar.

Problem 10.5 Translate the following assignment statement into three-
address code:

A[i, j]:=B[i, j]+C[i, j]+D[i, j]
Problem 10.6 Translate the executable statements of the following pro-

gram into three-address code (where printf and scanf may be retained):

void main() {
in n; float m;s:
printf (‘‘ the amount of copies!’’);
scanf (‘‘%d’’, &n);
m=n×24;
if (m>20000)

S=m×0.75;
else if (m>10000)

S=m×0.8;
else if (m>2000)

S=m×0.85;
else if (m>100)

S=m×0.9:
else S=m;

312 Chapter 10 Generation of Intermediate Code

printf(‘‘the amount of payment�;%g\n\n’’, s);

}
Problem 10.7 Translater the following procedure statements into quadru-

ple form:
1) g(x(x-1), i+2),
2) f(g(x+1), x-1),
3) p(q(r(x)), r(x)).

References

[1] Davidson JW, Fraser CW (1984) Code selection through object code opti-
mization, TOPLAS 6(4): 505 – 526.

[2] Tanenbaum AS, van Staveren H, Keizer EG, et al (1983) A practical tool for
making portable compilers. Comm. ACM 26(9): 654 – 660.

[3] Laverett TW, Cattell RGG, Hobbs SO, et al (1980) An overview of the
production-quality compiler-compiler project. Computer 13(8): 39 – 40.

[4] Fraser CW, Hanson DR (1982) A machine-independent linker. Software —
Practice and Experience 12, pp 351 – 366.

[5] Nori KV, Ammann U, Jensen K, et al (1981) Pascal implementation notes
in Barron, pp 125 – 170.

[6] Nawey MC, Waite WM (1985) The robust implementation of equence-
controlled iteration. Software — Practice and Experience 15(7): 655 – 668.

Chapter 11 Debugging and Optimization

Nothing is perfect. For doing everything, there is always
room for improvement.

Chinese maxim (anonymous)

There is no the best, there is only the better.
Chinese advertisement word

11.1 Motivation of the Chapter

Before turning the intermediate code generation to target code generation,
we are still facing a number of works that require us to do.

For the target code generated by the compiler, we hope that it will run fast
and well. Today no matter whether it is the computer itself or capacity of the
storage, no one is regarded as precious and scarce things again. Nevertheless,
it does not mean that they can be abused. Excessively using these things
definitely are not acceptable. With this principle in mind, when there are two
programs that both are competent to do the work, but one of them runs faster
and the other slower, or one spends fewer storage, definitely people prefer
the former instead of the latter. In this chapter we will discuss the issues on
debugging and optimization. We regard them necessary steps towards target
code generation.

11.2 Errors Detection and Recovery

The errors that occur in programs mainly have three types: Mistyping mis-
spelling in input, Syntax errors, Semantic errors.

Mistyping and misspelling often happen in input, especially when one
who types the program is not the writer of the program, or is not good in
English, then the rate of the errors over the whole program must be high.

We can classify the errors into two kinds. One belongs to isolated errors
that have limited impact to the whole program, and another belongs to global

314 Chapter 11 Debugging and Optimization

errors that will affect the whole program.
Isolated errors include the mistyping of the reserved words. For exam-

ple, one mistyped begin as bigin or begen. When the lexical analyzer starts
working the mistakes can be spotted easily. The user-friendly compiler may
correct the mistake without causing the stop of the analytical procedure, as
long as it informs the programmer/user of the error message.

In addition, isolated mistakes contain the mistyping/misspelling of identi-
fiers, i.e., some of letters in an identifier is wrongly typed. For example, if AI
was wrongly typed as A1, then in the program, there would be two identifiers
that simultaneously occur. If in the declaration part AI is declared, and A1
would not be declared.

Therefore, in the symbol table there is the record of AI instead of the
record of A1. That means that A1 has not been declared yet. However, the
compiler does not know that A1 is actually the same as AI. It must deem
that the user forgets to declare it. Then it is likely adding a record for A1.
But later this will be discovered, as its occurrence was due to the mistyping
of AI, the number of accesses to it must be few, either never assigned or
never accessed. Therefore, for the following cases that some identifiers are
assigned but never referred or only referred but never assigned, it must be
caused by mistyping/misspelling. Therefore, with an assignment counter and
a reference counter that are set in the built-in symbol, we can check whether
an identifier is correct or not. The checking method is just to check in the
checking phase which built-in symbol occurs like the cases mentioned above.

According to the statistics of experience, there are mainly the following
four kinds that belong to mistyping:

1) A letter is missing in a word or identifier.
2) A letter is excessive in the word or in the identifier.
3) The adjacent two letters are transposed.
4) One letter is wrong in a word or identifier.
The way of correcting them is as follows.
Select those built-in symbols from the symbol table that are most likely to

be mistyped or misspelled. And check every occurrence of these objects to see
whether there is the case in which some identifier is misspelled or mistyped.

Select a subset instead of the whole set to carry out the checking limit
the number of the identifiers that are checked. According to the statistics of
experience, if the number of the letters within the identifier to be checked is
n, the lengths of the identifiers that need to be checked are only n− 1, n and
n + 1. When n � 2, the check against mistyping and misspelling may not be
necessary.

What we have talked so far is about the analysis of isolated mistakes, and
now we analyze the mistakes that affect the global situation, for example,
the mismatching of parentheses.

When there are many pairs of parentheses that appear in the expres-
sion, the mismatching of pairs of parentheses often happens. In some cases,

11.2 Errors Detection and Recovery 315

however, it does not affect much. For example, in the following expression

x := a/((b + c)− d ∗ (e + f)),

if the last right parenthesis is missing, it becomes

x := a/((b + c) d ∗ (e + f).

Through analysis, the mistake can be found easily, so this sill belongs to the
isolated mistake.

However, if in the expression above, the right parenthesis for (b+c) be-
comes a left parenthesis, then the expression becomes

x := a/((b + c(−d ∗ (e + f)).

It becomes a mistake that has the global effect. Obviously, we can find out
that there is mismatching of parentheses, but it is hard to deal with it prop-
erly. Of course, through careful analysis, we can guess that the left parenthesis
that follows c should be a right parenthesis. After we spot it and correct it,
the problem can be solved. We found the problem that the multiplication of
–d and (e+f) has ∗ in between, while the multiplication of c and (−d∗(e+f))
has no the corresponding ∗. However, since the inconsistency is not always
regarded as a problem, it causes the difficulty for checking.

In the current rapid interactive systems, usually when a mistake is found
from debugging, the procedure will immediately stop, and it informs the
user or programmer of the mistake, letting him/her to make correction. If
this is done, the procedure resumes. However, from the stand of the user or
programmer, he/she obviously wants to know more about the mistakes. It
will be most welcome by them if all the mistakes are found. Therefore, he/she
wants that after a problem was found, the debugging procedure continues its
work until it really cannot go further or it has found out all the problems.
When the mistake really affects the global situation, the procedure cannot do
anything again except that the program has been recovered from the previous
mistake, even if the recovery is made presumably.

Therefore, there are two strategies towards recovery from mistakes: one
is the correction of mistakes. This strategy is to make the continue analysis
or debugging possible through the modification of input symbol streams or
internal states of the syntactical program. But the strategy is very prone
to deviate from the analytical program and yield a lot of pseudo mistake
messages.

The other strategy is called non- correction of mistakes. It does not modify
the input stream, and delete all the information generated by the analytical
program. It uses the “remaining” program to continue the analysis of the
remaining part of the program. If the analysis succeeds, there is no mistake
again; otherwise, there must be other mistakes and that means that a correct
parsing tree cannot be generated.

316 Chapter 11 Debugging and Optimization

Actually, when we introduce the parsing trees of LL(1) and LR(1), we have
considered the cases in which mistakes occurred, and we have also correspond-
ingly established the mechanism for debugging and recovery. We consider the
situations of mistakes that exist, that will make the compiler running more
friendly towards users.

11.3 Debugging of Syntax Errors

In LL(1) parsing and LR(1) parsing, we have mentioned the situations in
which errors occur. In the following, we analyze them further respectively.
We first should consider the type errors— the most common errors taking
place in syntax.

In order to check the type error, we must establish the type grammar
first, and then insert the semantic actions into the grammar. Based on these
grammars and actions we carry out the type check, discover the errors and
recover from errors. The following is an example that is the grammar from
very common source language where P stands for the program, and consists
of a series of declaration D followed by a series of statement S. We will discuss
how the type check is added into the statement soon. The following is the
list of productions regarding declaration D.

P → D; S

D → D; D| id: T

T → integer| real| char| boolean| array[num] of T| ↑ T

We postulate that when there is no type error taking place, the type error
checking program returns void, and void is idempotent, i.e., void void = void.
Hence any number of void linking together is equal to single void. But if an
error of the type is found, a type-error message is immediately issued. Hence
we have the type grammar with the semantic action rules inserted.

P → D; S {P.type := if S.type = void then void else

type-error. Notice that the number of

S.type more than one}.
D → D; D

D → id: T {addtype (id, entry, T.type)}
T → integer {T.type := integer}
T → real {T.type := real }
T → char {T.type := char}
T → boolean {T.type :=boolean}
T → array[num] of T {T.type :=array [1..numval, T1.type]}

11.3 Debugging of Syntax Errors 317

T →↑ T {T.type :=Pointer(T1. type)}
For T, we may extend it as follows:

T → T ‘→’ T

that expresses type of functions, that is the transformation from arguments
to the function value. Correspondingly we have

T → T1 ‘→’ T2 {T.type → T1.type →T2.type}
The semantic actions of statements S are as follows:

S → id := E {S.type := if id.type =E.type then void

else type-error}
S → if E then S1 {S.type := if E.type= boolean then S1.type

else type-error}
S → while E do S1 {S.type := if E.type= boolean then

S1.type else type-error}
S → S1;S2 {S.type := if S1.void and S2.type =void

then void else type-error}
As for expressions, we have the grammar with semantic action rules

E → truth {E.type :=boolean}
E → num {E.type := integer}
E → literal {E.type := char}
E → id {E.type := lookup (id, entry)}
E → E1 mod E2 {E.type := if E1.type = integer and E2.type =

integer then integer else type-error}
E → E1[E2] {E. type := if E2.type = integer and E1. type =

array then E.type = array[s,t] else type-

error}
E →E1 ↑ {E.type := if E1.type = pointer(t) then t else

type-error}
In addition, comparative symbols like <, �, >, �, = and �= and connectors

and or may be introduced into the productions of E, yielding the type of E
being boolean. We then may similarly carry out the check of types.

318 Chapter 11 Debugging and Optimization

11.3.1 Error Handling of LL(1) Parser

We now consider the handling and recovery of errors for LL(1) parser. In
the previous chapter, we have discussed which cases are regarded as errors in
LL(1) parser. Here what we want to discuss is that if the error happens how
should we deal with? We are mainly concerned with two points:

1) How should we avoid infinite loop? As infinite loop will cause the
analytical procedure running without termination.

2) How to avoid to generate a parsing tree with error? If the parsing tree
generated contains the error, naturally the goal expected by the compilation
cannot be achieved.

Therefore, we need a good strategy in order to avoid the infinite loop via
removing at least one input symbol: make sure that to avoid the generation
of parsing tree with error via not to throwing away the next symbol that is
guessed or inserting a symbol. The expected symbol means that using LL(1)
parser the sequence of the symbol that will match the input stream. We will
put these expected symbols into a stack called guess stack.

Allowable set method is a frame construct that systematically constructs a
safety method for recovery from errors. The key to the method is to construct
the allowable set and the following three steps are included. When the error
is found, the three steps are executed.

1) Making use of some appropriate algorithms to construct the allowable
set A according to the state of the parser, where A should contain the symbol
of end of file (EOF) and the symbols in Follower Set of nonterminal.

2) Throwing away the symbols from the input stream that is not accept-
able for symbols in A until the first symbol tA that is acceptable by some
symbol in A.

3) Making the parser going on via a suitable algorithm so that after tA is
processed, the guess stack and input stream can go ahead simultaneously.

There is an improving method for this method. It also contains three
steps:

1) Constructing allowable set.
2) Skipping over the non-acceptable symbol.
In this way, there will be zero or multi symbols that will sequentially be

thrown until a symbol in allowable set is met. As the symbol EOF is always
in A, it will terminate when the step is skipped over.

3) Once again, making guess stack and input stream going ahead simul-
taneously.

Let modified parser continuously go to carry out analysis. It first attempts
to do the normal guess or matching shift. If it succeeds, the parser once
again normally runs. If the shift fails, then for the nonterminal at the top of
stack, it guesses the shortest candidate expression. And for terminal, before
it is inputted the top symbol of the guess stack is inserted. Then step 3) is
repeated until the success of shift. In this way, once again let the parser make

11.4 Semantic Error Check 319

a guess stack and input stream go ahead simultaneously.

11.3.2 Error Handling in LR(1) Analysis [1]

In LR(1) analysis the recovery from errors is rather difficult, as most of the
information which it collects is with the property of an assumption. When
a syntax error is found, the LR(1) parser is in the state of Sx, the current
input is tx, and in the analytical table the entry that corresponds to (s, tx) is
empty. This corresponds to error. In order to recovery from errors, we need to
select a nonterminal as the one that recovers from error. We denote it R and
add candidate form errorneous to it. Suppose that the original productions
are

N → α . Rβ

R → . GHI

Now we add
R→ . erorneous R.

Pseudo-terminal errorneous R represents a dumb node that is allowed to be
the replacement of R. The process of recovery from errors starts from moving
out the elements from top of stack one by one, until a state of recovering
from errors is found. Suppose that the state of recovery from errors is sv, due
to that we construct a dumb node errorneous R for R, hence the entry that
corresponds to (sv,errorneous R) cannot be empty, and it is just the symbol
that is allowed by sv.

We denote the state tz. Once again we move out the elements one by
one until a symbol that is in the allowable set of tz is found. The purpose
of the process is to move out the remaining part of production of R from
input in order to avoid the repetition of the loop. But this measurement may
not be successful in avoiding the generation of parsing tree with errors. The
algorithm of recovery from errors for LR(1) is very complicated, we do not
talk much here.

11.4 Semantic Error Check [2]

The lexical error check and syntax error check which we discuss previously
all are carried out when the source program has not run (actually it is unable
to run yet), hence they may be called static check. For semantic check, it
is mainly dynamic check as by static check, the following errors cannot be
found.

1) Zero is divisor, for example in a/b, b may take zero as value in running
time.

320 Chapter 11 Debugging and Optimization

2) As the result of operation, an expression may have the value that
exceeds the range of numbers that the computer can express. For example,
the values of a+b, a ×b, a/b, or a ↑ b, may have the values that exceed the
maximum of numbers in the computer.

3) A variable i is taken as the index (i.e., a[i]) to access the element of
A[l..u]. But i is not in the range l..u.

4) Others.
If some of the cases aforementioned happen the computer definitely cannot

produce correct result of the evaluation, only when the program is modified
then it can evaluate correctly.

11.5 Optimization of Programs [3]

The program generated through intermediate code cannot be most efficient
one. The so-called efficient includes time efficiency and space efficiency. The
former one means it runs the fastest among those that implement the same
task; the latter means that it uses the fewest amounts of memories. This is
also in terms of the programs that implement the same task. However, there
may be a variety of programs that implement the same task. It is almost
impossible for us to compare all of them every time when we measure the
efficiency of a program. As we have mentioned that there is no the best in
the world, there is only the better that might exist.

Therefore, the only thing that is reasonable is that based upon the inter-
mediate code, we see what we can do for improvement, so that after making
it, the target code obtained from it will be more compact, the amount of used
storage is reduced and saver.

The other functions of the compiler are to optimize the intermediate code
generated [4]. The intermediate code after optimization will generate better
target code. The optimization done in this way is called peephole optimiza-
tion or local optimization, and its counterpart is called global optimization.
Global optimization entails the optimization of the whole source program,
and the program is determined by the algorithm which the program was de-
veloped according to. Hence the global optimization requires that in order to
optimize the program, and the corresponding algorithm should be modified.
For example, if we want to sort a series of numbers, and we have developed
a sort program based on the bubble algorithm. We know that the bubble
algorithm has worse performance. Therefore, the global optimization would
replace the algorithm by one of the other algorithms that has better per-
formance and quick sort or Shellsort can be the choice. Besides, if the the
original program is a recursive one as recursive programs are elegant and
compact in structure, but its efficiency is not as good as the iterative one,
then we may replace the recursive program by iterative program.

Now we list the criteria for local optimization and some optimization

11.5 Optimization of Programs 321

techniques [5]:
The criteria of local optimization are:
1) An optimization step must preserve the purpose of the program. That

is, an optimization must not change the output produced by a program for a
given input. If the so-called optimization causes an error, such as a division
by zero, that is not optimization at all, it is simply a deterioration.

2) An optimization should make the program more efficient. That means
that it may run faster, and it reduces the space taken. If it cannot make
any improvement in these two aspects, of course we cannot say optimization
either. At least we should have the improvement of the speed at the price of
the space or vice versa.

3) An optimization must be worth doing the effort. The result of the
optimization should deserve the effort. That means that what we get from
the optimization is more beneficial in comparison with our effort. Otherwise
if we made a big effort but what we got is the only little benefit, why should
we pay the cost?

The following is the techniques that can be adopted in local optimization.
Pre-processing of expressions
(1) Permanent folding method [6].
For expressions the most widely used pre-processing methods for opti-

mization are permanent folding method and arithmetic simplification method.
The first one, permanent folding method is as follows: The name permanent
folding is a traditional term in the compilation of evaluation of constant ex-
pressions. For example, most of the compilers will translate the following
program

char lower-case-from --- capital (char ch){
return ch+(‘a’-‘A’);

}
Into

char lower-case-from-capital (char ch) {
return ch+32
};

as ‘a’ has integer value 97 and ‘A’ has integer value 65 in ASCII.
Permanent folding method is a simplest and most efficient optimization,

although the programmer rarely writes directly constant expressions they
may come from character constants, macros, symbol interpretations and
intermediate code generation.

(2) Arithmetic simplification
Arithmetic simplification method uses the lower cost arithmetic opera-

tions to replace the higher cost operation. In this way we get the profit. The
possible substitutions are listed as follows:

Operation → Substitution

E ∗2 ∗ ∗ n → E << n

2 ∗ V → V+V

322 Chapter 11 Debugging and Optimization

3 ∗ V → (V<<1)+V

V ∗∗ 2 → V ∗ V

E+0 → E

E ∗ 1 → E

E ∗∗ 1 → E

1 ∗∗ E → 1

In this table, E stands for (sub) expression, V stands for variable, <<
stands for left shift operator, ∗∗ stands for exponential operator. It is assumed
that the cost of multiplication is higher than that of addition and shift, but
is lower than that of exponentiation. It is true for most of the computers.
Using the operations with lower cost replaces that with higher cost, this is
called strength reduction. If an operation can be totally removed, it is called
nullification transformation.

The following is a program of the 3D text written in Java that shows the
optimization of the program.

// decide where to place the text...
If (!Isstyleset(CAPTION)) {

switch(text placement) {
case CENTER:
xx=(bound.width/2)-(fm.stringwidth(text)/2);
yy=(bound.height/2)-(fm.getheight()/2);
break;
case LEFT
xx=thickness+TEXT-OFFSET;
yy=(bound.height/2)-(fm.getheight(1/2));
break;
case RIGHT:
xx=bound.width-thickness-EXT-OFFSET-fm

string.width(text);
yy=(bound.height/2)-(fm.getheight()/2);
break:
}

}
else{

int space = fm.char width(‘i’);
xx=thickness+ TEXT-OFFSET + spaces;
yy=0;
// fill a rectangle in bounding space of string...
get.set color (getbackground());
g.setcolor(getbackground());
g.fillrec(xx,yy,
fm.stringwidth(text)+(spacer*2),
fm.getheight());

xx+=spacer;
}

After we transform it into an abstract syntax tree the following interme-
diate code may be obtained:

1) if CAPTION=StyleSET then goto 30

11.5 Optimization of Programs 323

2) T := textplacement
3) if t <> 1 goto 9
4) xx :=bounds.width/2
5) xx :=xx – fm.stringwidth(text)/2
6) yy :=bound.height/2
7) yy – (fm.getheight())/2
8) goto
9) if t <> 2 goto 15
10) xx := thickness
11) xx := xx+ TEXT–OFFSET
12) yy := bound.height()/2
13) yy := – fm.getheight()/2
14) goto
15) xx := bounds.width
16) xx := xx – TEXT–OFFSET
17) xx := xx – fm.stringwidth(text)
18) yy := bound.height/2
19) yy := yy – fm.getheight()/2
20) goto
21) w := fm.char width(‘i’)
22) space := realpoint(w)
23) xx := thickness
24) xx := xx+ TEXT–OFFSET
25) xx := spacer
26) yy := 0
27) t1 := g.set color(getbackground ())
28) t2 := g.fillrec(xx,yy,

fm.stringwidth(text),(spacer*2),
fm.getheight());

29) xx := xx+ spacer
30) (the exit of the program) Notice that in the program above, some

goto’s have no destinations yet and for each case fm.getheight() should be
used, and apart LEFT, other cases also need to use fm.stringwidth(text).

Therefore, we may optimize the program to get:
1) if CAPTION+Styls then goto 23
2) t := fm.getheight()
3) t1 := textplacement
4) goto 34
5) xx := thickness
6) xx :=xx +TEXT –OFFSET
7) yy :=bounds.width/2
8) yy :=yy – t/2
9) goto 34
10) xx := bounds.width/2
11) xx := xx – t2/2

324 Chapter 11 Debugging and Optimization

12) yy := bounds.height/2
13) yy := yy – t/2
14) goto 34
15) xx := bounds.width
16) xx := xx - thickness
17) xx := xx – – t2
18) yy := bounds.height/2
19) yy := yy – t/2
20) goto 34
21) If t1 = 2 goto 5
22) t2 := fm. String width(text)
23) if t1 = 1 goto 8
24) if t3 = 3 goto 13
25) t2 := fm.stringwidth(text)
26) t3 := fm.charwidth(‘i’)
27) space := realpoint(t3)
28) xx := thickness
29) xx := xx+ TEXT–OFFSET
30) xx := xx+ spacer
31) yy := 0
32) t2: := fm.stringwidth(text)
33) t3 := g.setcolor (getbackground())
34) t4 := g.fill rect(xx, yy, t2, (spacer*2),t)
35) xx := xx+ spacer
36) (the exit of the program)
The length of this program is longer than that of the original one, but it

is indeed the improvement of it. The reader may check it oneself.

11.6 Principal Ways of Optimization

The principal ways of optimization are: elimination of common subexpres-
sions, copy propagation, dead-code elimination, loop optimization, elimina-
tion of induction variables and reduction in strength, etc. In the following we
will explain each of them one by one. But before we start our explanation,
we should point out that these optimizations will not change the functions of
programs that they intend to implement. As the optimization is performed
only at the statements in a basic block, so they are called local optimization.

11.6.1 Elimination of Subexpressions

At first we present the definition of common subexpressions.

11.6 Principal Ways of Optimization 325

Definition Common subexpression. An expression E is called common
subexpression, if it is

1) an expression;
2) its value had been evaluated previously somewhere.
For example, if we have a program shown in Fig. 11.1(a), then by the elim-

ination of common subexpressions, we get the Fig. 11.1(b) that is obtained
from 11.1(a).

Fig. 11.1 Elimination of common subexprssion.

11.6.2 Copy Propagation

The assignment such as a := b is called copy propagation or copy. If we inves-
tigate the example of elimination of common subexpression deeper, we can
find out that there is also copy propagation in it. Very often, there is also the
case in other algorithms. For example, if there are two branches in a program.

if E goto B1
x := t3
t14 := a[t1]
a[t2] := t14
a[t1] := x
goto B0

B1: x := t3
a[t2] := t5
a[t4] := x
goto B2

B0

In the program given above, the assignment x:=t3 is a copy that occurs
twice. Copy propagation applies to it yields

x := t3
a[t2] := t5

326 Chapter 11 Debugging and Optimization

a[t4] := t3
goto B2

The idea of copy propagation is that after the copy assignment a:=b,
using b instead of using a as often as possible.

11.6.3 Dead-Code Elimination

A variable is live at a point in a program if its value can be used subsequently;
otherwise, it is dead at that point. A related idea is that a segment of code is
dead or useless if the value which it computes has never been put to use. The
programmer himself/herself is unlikely to write some segment of code that is
never executed, or assign a value to variable but later in the execution of the
program the value is never accessed. However, the cases may appear as the
result of previous transformations. These situations may also happen due to
modifications of the program for many times and unintentionally generating
the problem.

For example, in the design of the switch statement, the common practice
is as follows:

switch E
begin
case V1:S1
case V2:S2
...
case Vn−1:Sn−1

default:Sn
end

Later it was found that the treatment for some cases is the same, for
example, V2 and V5, V3 and V7 have the same treatments, hence they may
be combined together. But if rewrite it as

switch E
begin
case V1:S1
case V2,case V5:S2
case V3,case V7:S3
case V4:S4
case V5:S5
case V6:S6
case V7:S7
...
end

then case V5 : S5 and case V7 : case S7 both are dead-code, as they can
never be executed. They should be removed from the program.

Apart from the case, there is another case. That is when a program has
been modified, it was found that it should move out from somewhere then a

11.6 Principal Ways of Optimization 327

goto statement is added to the original program

...

...
goto L
...

Then the code following goto L becomes dead-code as it will not be executed.
Therefore, when we have a goto statement we have to be careful of the code
following it to make sure there is some instruction to access it.

11.6.4 Loop Optimization

Loop programs belong to such a situation that the execution time is not pro-
portional to the length of the program. It can be the case that the length of
the program is short, but it repeats for many times. Then the running time
can also be very long. We will especially pay attention to the inner loops
where programs tend to spend the bulk of their time. The running time of
a program may be improved if we decrease the number of instructions in an
inner loop, even if we increase the amount of code outside that loop. We re-
gard that the following three techniques are important for loop optimization:
code motion that moves code outside a loop; induction-variable elimination
which we apply to eliminate variables from the inner loops; and reduction
in strength that replaces an expensive operation by a cheaper one, such as a
multiplication by an addition. In the following, we explain these techniques
one by one.

Code motion

The factors that determine the length of execution time are the length of
the loop body and the number of the execution of the loop. Therefore, an
important modification that decreases the amount of code in a loop is code
motion, especially when the number of the execution of the loop is fixed.

The variable that should remain in the loop is one that really needs to be
executed in the loop. If a variable does not change while the loop is executed,
then the variable is called loop invariant variable. For loop invariant variable,
we do not need to keep it inside the loop to spend time on its computation.
For example, if we have

u := a
v := b
...
while (i < (u + v)(u− v))

If the while loop body does not change the values of u and v, then (u+v)(u−v)
is a loop invariant variable and we do not need to repeat the evaluation of it.
So we may have the code motion as follows:

328 Chapter 11 Debugging and Optimization

u := a ...
v := b
t := (u+v)(u-v)
while (i<t)...

The induction variable elimination

We have mentioned before that in a loop for the computation that is
really needed we should make the computation more efficient. The induction
variable elimination and the reduction of strength just belong to the category.

Now we consider the induction variables’ elimination. When there are two
or more variables in a loop it may be possible to get rid of all but one, by
the process of the induction-variable elimination.

For example, we have the following program with loop

i := n-1
j := m
t1 := 5*j
v := a[t1]

B2:
...

B3: j := j-1
t1 := 4*j
t2 := a[t1]

if t2 > v goto B4 else B3
B4: if i� j goto B6 else B5
B5: goto B3
B6:

In this program B3 forms an inner loop and both j and t1 are induction
variables. As t1 changes along with the change of j, so we cannot get rid of
either j or t1 completely, t1 is used in B3 and j in B4. However, we can make
some modification so that partly reduces the strength of the computation. By
further analysis, we can even really realize the induction variable elimination.

11.6.5 Reduction of Strength [7]

The following is a program that evaluates
∑n

k=0 akxk.

double power-series(int n, double a[],double x){
double result=0.0;
int k:
for (k=0; k�n; k++) result+=a[k] ∗ (x ∗∗ k);
return result;

}
If we set x as 1.0, the segment of the program above becomes

double power-series x-1(int n, double a[]) {
double result=0.0;
int k;

Problems 329

for (k=0; k�n;k++)
result+=a[k] ∗ (1.0 ∗∗ k);
return result;

}
Through reduction of strength 1.0 ∗∗ k=1, we obtain

double power-series x-1 (int n, double a[]) {
double result=0.0;
int k;
for (k=0; k�n; k++) result +=a[k];
return result ;

}
Optimization of programs involves pre-processing before the generation

of intermediate codes, the generation, and pos-processing of correct codes.
The pre-processing before the generation of intermediate codes means the
improvement of abstract syntax trees. The generation of correct codes means
that when codes are to generate one should manage to replace intermediate
codes with better codes (more efficient and even optimal); post-processing
means that even after the code has been generated, there is a possibility to
make some optimization (peephole optimization).

In the whole course, we focus on control stream, data flow and code
sequence, where control stream is most critical. But if we want to get the
best effect of optimization, then every aspect should be valued.

Problems

Problem 11.1 Explain why does a configuration A of prediction stack al-
ways contain the notation EOF in its allowable set.

Problem 11.2 The following is the simple grammar of the top-down parser
analysis

input → expression EOF
expression → term rest-expression
term → IDENTIFIER | parenthesized-expression
parenthesized-expression→ ‘(’ expression ‘)’
rest-expression → ‘+’ expression|ε
Using it and the relevant knowledge in this chapter, determine the

allowable stack of parenthesized-expression rest-expression EOF for LL(1)
parser.

330 Chapter 11 Debugging and Optimization

References

[1] Graham SL, Haley CB, Joy WN (1979) Practical LR error recovery. ACM
SIGPLan Notices 14 (8): 168 – 175.

[2] Alfred V Aho, Ravi Sethi, Jeffrey Ullman D (2003) Compilers, principles,
techniques and tools. Prentice-Hall, Englewood cliffs.

[3] Giegerich R (1983) A formal framework for the derivation of machine-specific
optimizers. TOPLAS 5(3): 422 – 448.

[4] Cocke J, Kennedy K (1977) An algorithm for reduction of operator strength.
Comm. ACM 20(11): 850 – 856.

[5] Graham SL (1984) Code generation and optimization. In B Lorho (ed)
Methods and Tools for Compiler Construction: An Advanced course, pp,
251 – 288.

[6] Cocke J, Markstein J (1980) Measurement of code improvement algorithms.
Information Processing 80, 221 – 228.

[7] Allen Fe, Cocke J, Kennedy K (1981) Reduction of operator strength. In:
Muchicks, Jones N (ed) Program Flow an algsis: theory and application.
Prentice-Hall, Englewood Cliffs, pp. 79 – 101.

Chapter 12 Storage Management

Management involves the planning, Monitoring, and
control of the people, process, and events that occur

Roger S. Pressman

The task of compilers is to translate the source programs to the target pro-
grams. Therefore, strictly speaking there is nothing to do for a compiler with
the storage management. Storage management is not its task. However, com-
pilers can only work when they stay in the memory and the target code
which they generate is also in memory. During the compilation, the compiler
should consider the layout of the source program, the various tables and the
placements of intermediate code and target code, etc. If the layout is not
appropriate, the compiler will not be able to efficiently access and the work
of compiler cannot be efficient either. Therefore, in this sense, compiler has
intimate relation with the storage management.

12.1 Motivation of the Chapter

Now that we have known that compilers have related to storage in many ways.
It is the task of the chapter to illustrate the storage management that affects
the process of compilation. We will explain what the storage management
means for compilers. In order for compilers to run efficiently how should
one realize the storage management? What strategies should be adopted to
realize the storage management? etc.

Suppose that the compiler obtains a block of storage from the operating
system for the compiled program to run in. Of course, before this the compiler
needs to compile the source program, and build up a number of symbol tables
that are stored in the memory too. From the lexical analysis, the syntax
analysis and the generation of intermediate code, etc., finally we just have
the compiled program that is called the target code. During these phases, how
does the storage management work? This chapter should explicitly explain
the issues in details.

332 Chapter 12 Storage Management

12.2 Global Allocation Strategy

The operating system is in charge of the whole management of storage, as well
as other resources of the computer. When a compiler starts its work, executing
various tasks of the compilation of the source program. In order to support
the compiler, it will allocate the storage to compiler. The operating system
at least will allocate the following three segments of storage to compiler:
• Code segment. It contains program code. Code segment is accessed via

program counter.
• Stack segment. It contains stack, it can also contain the monitor mech-

anism for lower bound and upper bound constraint. The stack segment
is accessed via one or more pointers, usually it is automatically executed
by machine instructions.

• Data segment. This is a continuously extendable unit alone. It may be
controlled by program to store data. The start address and the size are
available for the program, and the content is addressable for machine
instructions. We call data segment as a heap that corresponds to the
stack above.
The task of the storage management is to allocate and reclaim subseg-

ments in data segments so that these subsegments may be properly loaded
to data segments. In this way, the main memory address is guaranteed not
to be in multi subsegments. In addition, the other important goal of storage
management is that when the storage space is enough to satisfy the need, it
should not reject the applications for storage space. According to the partic-
ularities of the called program, the correspondence between real parameters
and formal parameters is realized in different ways.

The size of the generated target code is fixed at the compile-time, so the
compiler can place it in a statically determined area, perhaps in the low end
of memory. Similarly, the size of some data objects may also be known at the
compile-time, and these too can be placed in a statical area, as follows.

The reason for statically allocating as many data objects as possible is
that the addresses of these objects can be compiled into target code. All data
objects in some programming language can be allocated statically.

Implementations of languages use extensions of the control stack to man-
age activations of procedures [1]. When a call occurs, execution of an activa-

12.2 Global Allocation Strategy 333

tion is interrupted and information about the status of the machine, such as
the value of the program counter and machine register, is saved on the stack,
along with other information associated with the activation.

Stack allocation is based on the idea of a control stack; storage is organized
as a stack, and activation records are pushed and popped as activations begin
and end, respectively. Storage for the locals in each call of a procedure is
contained in the activation record for that call. Thus locals are bound to
fresh storage in each activation, because a new activation record is pushed
onto the stack when a call is made. Furthermore, the values of locals are
deleted when the activation ends; that is, the values are lost because the
storage for locals disappears when the activation record is popped.

We now describe a form of stack allocation in which sizes of all activation
records are known at compile-time. Situations in which incomplete informa-
tion about the size is available at compile-time are considered below.

Suppose that register top marks the top of the stack. At run-time, an ac-
tivation record can be allocated and deallocated by incrementing and decre-
menting top, respectively, by the size of the record. If procedure q has an
activation record of size a, then top is incremented by a just before the tar-
get code of q is executed. When control returns from q, top is decremented
by a.

A separate area of run-time memory, called a heap, holds all other infor-
mations. In some languages, they provide facilities for the dynamic allocation
of storage for data, under program control. Storage for such data is usually
taken from a heap. The stack allocation strategy cannot be used if either of
the following is possible:

1) The value of local names must be retained when an activation ends.
2) A called activation outlives the caller. This possibility cannot occur

for those languages where activation trees correctly depict the flow of control
between procedures.

In each of the above cases, the deallocation of activation records need not
occur in a last-in-first-out fashion, so storage cannot be organized as a stack.
Heap allocation parcels out pieces of the contiguous storage, as needed for
activation records or other objects. Pieces may be deallocated in any order,
so over time the heap will consist of alternate areas that are free and in use.

The difference between heap and stack allocations of an activation records
is that the record for an activation of procedure, say r, is retained when the
activation ends. The record for the new activation, say q(1, 9), therefore,
cannot follow that for s physically. Now if the retained activation record for
r is deallocated, there will be free space in the heap between the activation
records for s and q(1, 9). It is left to the heap manager to make use of this
space.

The sizes of the stack and heap can change as the program executes, so
we show these at opposite ends of memory where they can grow towards
each other if need be. By convention, stacks grow down. That is, the ‘top’ of
the stack is drawn towards the bottom of the page. Since memory addresses

334 Chapter 12 Storage Management

increase as we go down a page, “downwards-growing” means towards higher
addresses. If top marks the top of the stack, offsets from the top of the stack
can be computed by subtracting the offset from top. On many machines, this
computation can be done efficiently by keeping the value of top in a register.
Stack addresses can then be represented as offsets from top.

12.3 Algorithms for Allocation

12.3.1 Algorithm for Stack Allocation

The stack allocation is run-time allocation. It is used to allocate memory for
the need of procedure that calls for other procedures to implement specific
tasks. As we have mentioned that, the register top marks the top of the
stack. At run-time, suppose top marks the location of the end of a record.
The address of a local name x in the target code for the procedure might
therefore be written as dx (top), to indicate that the data bound to x can
be found at the location obtained by adding dx to the value in register top.
Note that addresses can alternatively be taken as offsets from the value in
any other register r pointing to a fixed position in the activation record.

Therefore, the algorithm for the stack allocation will start with the initial-
ization of register top [2]. Then it dynamically arranges the calling sequences.
A call sequence allocates an activation record and enters information into its
fields. A return sequence restores the state of the machine so the calling
procedure can continue execution.

Calling sequences and activation records and activation record differ, even
for implementations of the same language. The code in a calling sequence is
often divided between the calling procedure (the caller) and the procedure
it calls (the callee). There is no exact division of run-time tasks between the
caller and callee— the source language, the target machine, and the operating
system imposes requirements that may favor one solution over another.

A principle that aids the design of calling sequences and activation records
is that fields whose sizes are fixed early are placed in the middle. In the gen-
eral activation record, the control link, access link, and machine-status fields
appear in the middle. The decision about whether or not to use control and
access link is part of the design of compiler, so these fields can be fixed at
compiler-construction time, if exactly the same amount of machine-status in-
formation is saved for each activation. Moreover, programs such as debuggers
will have an easier time deciphering the stack contents when an error occurs.

Even though the size of the field for temporaries is eventually fixed at
compile-time, this size may not be known to the front end. Careful code
generation or optimization may reduce the number of temporaries needed by

12.3 Algorithms for Allocation 335

the procedure [3], so as far as the front end is concerned, the size of the field is
unknown. In the general activation record, we therefore show this field after
that for local data, where change in its size will not affect the offsets of data
object relative to the fields in the middle.

Since each call has its own actual parameters, the caller usually evaluates
actual parameters and communicates them to the activation record of the
callee. Methods for passing parameters will be discussed in the next section.

In the run-time stack, the activation record of the caller is just below
that for the callee. There is an advantage to placing the fields for parameters
and a potential returned value next to the activation record of the caller.
The caller can then access these fields using offsets from the end of its own
activation record, without knowing the complete layout of the record for the
callee. In particular, there is no reason for the caller to know about the local
data or temporaries of the callee. A benefit of this information hiding is
that procedures with variable numbers of arguments can be handled. Some
programming languages require arrays local to a procedure to have a length
that can be determined at the compile-time. More often, the size of a local
array may depend on the value of a parameter passed to the procedure. In
that case, the size of all the data local to the procedure cannot be determined
until the procedure is called.

A common strategy for handling variable-length data is some how different
from the handling of fixed-length data. Suppose that procedure p has four
local arrays. The storage for these arrays is not part of the activation record
for p; only a pointer to the beginning of each array appears in the activation
record. The relative addresses of these pointers are known at compile-time,
so the target code can access array elements through the pointers.

Suppose that there is a procedure called q that is called by p. The activa-
tion record for q begins after the arrays of p, and the variable- length arrays
of p, and the variable-length arrays of q begin beyond that.

Access to data on the stack is through two pointers, top and top-sp. The
first of these marks the actual top of the stack; it points to the position at
which the next activation record will begin. The second is used to find local
data.

Suppose that top-sp points to the end of machine-status field. The top-sp
points to the end of this field in the activation record for q. Within the field is
a control link to the previous value of top-sp when control was in the calling
activation of p.

The code to the reposition top and top-sp can be generated at compile-
time, using the size of the fields in the activation records. When q returns,
the new value of top is top-sp minus the length of the machine-status and
parameter fields in q’s activation record. After adjusting top, the new value
of top-sp can be copied from the control link of q.

Having introduced the details of handling communications of procedure
and the procedure it calls, we can now introduce the call sequence and return
sequence, or the algorithms for doing so. Once again, we should make it

336 Chapter 12 Storage Management

clear that register top-sp points to the end of the machine- status field in
an activation record. This position is known to the caller, so it can be made
responsible for setting top-sp before control follows to the called procedure.

The code for the callee can access its temporaries and local data using
offsets from top-sp.

The call sequence is as follows:
1) The caller evaluates actual.
2) The caller stores a return address and old value of top-sp into the

callee’s activation record. Then the caller increments top-sp to the position
with the new pointer value. That is, top-sp is moved past the caller’s local
data and temporaries and the callee’s parameter and status fields.

3) The callee saves register values and other status information.
4) The callee initializes its local data and begins execution.
As for return sequence, it is likely to be as follows:

• The callee places a return value next to the activation record of the caller.
• Using the information in the status field, the callee restores top-sp and

other registers and branches to a return address in the caller’s code.
• Although top-sp has been decremented, the caller can copy the returned

value into its own activation record and use it to evaluate an expression.
The above calling sequences allow the number of arguments of the called

procedure to depend on the call. Note that, at compile-time, the target code of
the caller knows the number of arguments it is supporting to the callee. Hence
the caller knows the size of the parameter field. However, the target code of
the callee must be prepared to handle other calls as well, so it waits until
it is called, and then examines the parameter field. Using the organization
described above, information describing the parameters must be placed next
to status field so the callee can find it.

12.3.2 Algorithm for Heap Allocation

We will be more concerned with that techniques needed to implement dy-
namic storage allocation depend on how storage is deallocated. Some lan-
guages provide the facilities for the dynamic allocation of storage for data
under program control [4]. Storage for such data is usually taken from a
heap. Allocated data is often retained until it is explicitly deallocated. The
allocation itself can be either explicit or implicit. If deallocation is implicit,
then the run-time support package is responsible for determining when a
storage block is no longer needed. There is less a compiler has to do if deal-
location is done explicitly by the programmer. We now consider the explicit
allocation strategy first.

For explicit allocation, we need to consider two different situations: one
is for fixed-sized blocks and another one is for variable-sized blocks.

The simplest form of dynamic allocation involves blocks of a fixed size.

12.4 Reclamation of Used Space 337

In this situation, we organize the blocks in a list into a link. Allocation and
deallocation can be done quickly with little or no storage overhead.

Suppose that blocks are to be drawn from a contiguous area of storage.
Initialization of the area is done by using a portion of each block for a link
to the next block. A pointer called available points to the first block.

Allocation consists of taking a block off the list and deallocation consists
of putting the block back on the list.

The compiler routines that manage blocks do not need to know the type
of object that will be held in the block by the user program. We can treat
each block as a variant record, with the compiler routines viewing the block
as consisting of a link to the next block and the user program viewing the
block as being of some other type. Thus there is no space overhead because
the user program can use the entire block for its own purposes.

When the block is returned, the compiler routines use some of the space
from the block itself to link it into the list of available blocks.

With the variable-sized blocks, when they are allocated and deallocated,
storage can become fragmented; that is, the heap may consist of alternate
blocks that are free and in use.

For example, if a program allocates five blocks and then deallocates the
second and fourth, then the fragmentation is formed. Fragmentation is of no
consequence if blocks are of fixed size, but if they are of variable size, then it
will be a problem, because we could not allocate a block larger than any one
of the free block, even though the space is available in principle.

One method for allocating variable-sized blocks is called the first-fit
method. When a block of size s is allocated, we search for the first free
block that is of size f � s. This block is then subdivided into a used block of
size s and a free block of size f–s. Note that allocation incurs a time overhead
because we must search for a free block that is large enough.

When a block is deallocated, we check to see if it is next to a free block.
If possible, the deallocateed block is combined with a free block next to it to
create a larger block. Combining adjacent free blocks into a larger free block
prevents further fragmentation from occurring. There are a number of subtle
details concerning how free blocks are allocated, deallocated, and maintained
in an available list or lists. There are also several tradeoffs between time,
space, and availability of large blocks. The reader is referred to articles [5]
and [6] for a discussion of these issues.

12.4 Reclamation of Used Space

The so-called reclamation of used space means automatically reclaims the
storage space which targets program no longer uses in order to continue us-
ing it. Dynamically allocated storage can become unreachable. Storage which
a program allocates but cannot refer to is called garbage. Therefore, this kind

338 Chapter 12 Storage Management

of reclamation usually is called garbage collection, or implicit reclamation be-
cause it is not done by programmer using free() function to manually reclaim
the storage space unavailable. The purpose of providing such reclamation is
for freeing programmer from manually using free() function to reclaim the
storage space that is usually fault-prone.

Before we further discuss garbage collection, we introduce a concept called
dangling reference. Whenever storage can be deallocated, the problem of dan-
gling references arises. A dangling reference occurs when there is a reference
to storage that has been deallocated. It is a logical error to use dangling ref-
erences, since the value of deallocated storage is undefined according to the
semantics of most languages. It is even worse since that storage may later
be allocated to another datum, mysterious bug can appear in the program
with dangling references. Many programmers had experienced such things
that they deallocated the space, and then they referred to it. For example,
consider the effect of executing dispose (head↑.next) as follows:

insert(7, 1); insert(4, 2); insert(73, 3);
dispose(head↑.next)
Writeln(head↑.key, head↑.info);

The call to dispose deallocation of the cell is followed by the one pointed
to by head. However, head↑.next has not been changed, so it is a dangling
pointer. If the deallocation was made long time ago and the reference to it
was made indirectly, then the error cannot be found easily. The reasons for
this are:

1) dangling pointer possibly has long been released wrongly in storage
space before it was referred, hence it is difficult to discover it.

2) After dangling pointer was referred, the program that referred to it
probably has run on incorrect data for a while before it found the error of
inconsistency.

3) Only when the steps of storage allocation and that of the deallocation
are the same, then can the errors be discovered, otherwise this kind of errors
is hard to discover.

Therefore, garbage collector is regarded as an important feature of modern
compilers, it can remarkably reduce the workload of programming.

12.4.1 Basic Garbage Collection Algorithm

The goal of the garbage collection is to automatically reclaim the storage
fragments that are already not in use. Therefore, naturally one may ask
when is it carried out as it is automatically done it? If it is carried out
frequently, then it must affect the normal operations of the program. It is
something like the work of cleaning. If the work of cleaning for offices is
carried out frequently, it definitely must affect the work of people who work
in the offices. But as another extreme, if the work of cleaning did not carry

12.4 Reclamation of Used Space 339

until the offices are full of wastes. Or in the storage, it has been such full
that the garbage collector has no room to be inside the storage, how can it
carry out the reclamation work? Therefore the work of the garbage collection
should be done regularly or periodically. It cannot be suspended until the
garbage has occupied the whole storage space.

The second problem is even more important, in order to correctly carry
out the work of collection, we need to make it very clear, what is garbage? For
this purpose, people propose two concepts that are approximate but actually
are different. One is “the set of storage fragments that have no pointers
pointing to” and the next is “not reachable set of fragments from the data
of allocator of non heap style.” The data in these two sets obviously are
not accessible by any program. They incur the techniques which garbage
collectors depend upon. The first one incurs the technique called reference
counts. And the second one incurs marking scanning and the copies of two
spaces.
• Reference counts. This approach directly identifies wasted fragment. It is

relatively simple and efficient. But it requires that while a program runs
all the activities of pointers be monitored, and it is not unlikely to cover
all the wasted fragments.

• Token and scan. This approach defines the reachable fragments, and the
rest is regarded as garbage. It is rather efficient and it needn’t carry out
the pointer detection. But it is rather complicated. It can cover all the
available spaces.

• The dual space copy. This approach copies the reachable fragments of
the storage area within the so-called source space into the storage area
of the so-called target space. The rest of the target space is of free frag-
ments. This approach is also very efficient and needn’t carry out pointer
detection, but it is also complicated, and it wastes about half of the space.
Once the wasted fragments have been determined through these approa-

ches, they should be transformed into free space available for use. Those that
are discovered by reference counts or token and scan should be returned to
free space link table via the specific algorithm. Those that are discovered by
the dual space copy may automatically create new free space link table that
is a single storage fragment that contains all free storage spaces.

Regarding storage allocation, we need to further explain the concept of
the fragment. As we mentioned before, if a program in execution requires a
storage space with length of s, the allocator found a space with length f from
free storage link table, where f > s. Then it allocates a part of the storage
with length s to the program. Then there is storage with length f – s left.
This is a fragment.

Gradually, these fragments will scatter over the storage space. Though
all these fragments may have limited lengths only, the sum of them may
be quite big. Therefore, if a program applies for a space that its length is
bigger than the size of the current biggest storage fragment in the table, then
the allocator must fail to satisfy the requirement. However, if a compressing

340 Chapter 12 Storage Management

technique is adopted, that is, to combine these fragments together and move
them to one side of the storage, forming an independent and single free space,
it will be used to satisfy the requirement of the program. It may be seen from
here that this is the best approach that collects the storage space being not
in use.

Compressing technique is not perfect either. The main problem with it is
that it needs to shift the reachable fragments around and in these fragments
it is likely that they contain pointers pointing to other fragments also needing
to shift. Therefore, in order to correctly shift them the careful design must
be done first.

Garbage collector algorithms may have three kinds:
• Working at once. After the garbage collector is initialized, it will com-

pletely control all the storage fragments until it finishes running, then it
returns back. After the processing, the situation of storage will be im-
proved that wasted fragments will not scatter over the storage again.
Since this kind of the garbage collector completely controls the storage
fragments when it runs, the situation is simpler. But if there is unexpected
activation happening, there will be some sort of damages. This is possibly
a problem in compiler but it is not the case in application programs.

• Dynamic (also called incremental). Some garbage collector starts working
when procedure malloc or free is called. These activities will locally modify
the structures of the storage fragment in order to enhance the ability of
searching free fragments. The dynamic garbage collector is more complex
than the kind of working at once in structure, but its execution is more
stable, and has smaller damage. When it cannot meet the requirements,
it may need the help from the former one.

• Concurrent one. In this kind, the garbage collector concurrently works
with the application program. They work on different processors, and
each runs in one processor. These two run parallel but each carries out
its own task.

Garbage collectors need lots of help from compiler, and it is the aim of
this book to explain them.

12.4.2 Supports to Garbage Collector From Compilers

At first, we need to point out that, only when a program has a pointer
directly pointing to the storage fragment, then the fragment is reachable for
the program, or it has a pointer indirectly pointing to that storage fragment,
then it is so. The pointer available to the program depends on its specific
implementation, it may be located in different locations such as a global
variable, local variable, routine parameter, register, and other. We call those
non heap-style storage space which the program code may directly access to
the area of program data, and the set of all pointers in the area of program

12.4 Reclamation of Used Space 341

data the root set. Notice that the root set is only an overall concept, rather
than a kind of structures. It is the set of all pointers in the area of program
data, rather than the list of their values. The root set usually cannot be
implemented directly. It only occurs conceptually inside of the program code
of garbage collector.

The pointers in the root set may point to storage fragments that are con-
trolled by garbage collector, hence they are reachable. The reachable frag-
ments in a heap also contain pointers of other fragments. These fragments
pointed to by pointers are also reachable.

Compilers must provide the root set and the distributive information of
each storage fragment to the garbage collector, meanwhile, it must ensure
that when the garbage collector is activated, all the reachable pointers in
the area of program data and heap are effective. Based on the support from
compilers, the garbage collectors resolve the following three problems:

1) To determine the root set via searching all the pointers and their types
in the area of program data.

2) To search for all the pointers and their types in some given storage
fragment.

3) To find out all the reachable storage fragments using 1) and 2).
From these one may see that, without the supports from compiler, the

garbage collectors cannot complete the task of collecting garbage. Compiler
completely controls the distribution of pointers of storage fragmentation,
hence the problem is how to transmit the information to garbage collector.
The following is some methods that garbage collector in compiler provides
information of distribution of pointers.

1) Compiler generates a bit image for every fragment type to assign which
field in that type segment points to the pointer of other fragments. When this
method is used, the fragment must be self-described, because as long as there
is pointer the garbage collector is ensured to keep working. Therefore, every
storage fragment must contain each own bit image, or the pointer that points
to the bit image.

2) Compiler generates a specific routine for each fragment type that calls
for garbage collector, and passes each pointer in the fragment as the param-
eters. This method avoids the explanation of the bit image in running time
and the requirement for self-description because the code can transmit the
fragment types and pointers to garbage collector.

3) Compiler organizes the fragments to form an array that contains all
the internal pointers, followed by other data structure types. Through this
organization, the garbage collector can start working as long as it knows
the addresses of the pointers in the array and the number of pointers in the
fragment.

342 Chapter 12 Storage Management

12.4.3 Reference Counts

Reference counts is an intuitive algorithm for the garbage collection. It records
the number of pointers that are pointed to it in each storage block. When the
number drops to zero, that means that the block is not used because it can-
not be referred to. The block now becomes the garbage that can be collected.
Here we regard the pointer pointed to it as the reference to it, maintaining
reference counts can be costly in time. The pointer assignment p :=q leads
to changes in the reference counts of the blocks pointed to by both p and q.
The count for the block pointed to by p goes down by one, while that for the
block pointed to by q goes up by one. Reference counts are best used when
pointers between blocks never appear in cycles.

The two main problems with the implementation of reference counts are
tracking all the operations of references and recursive reclamation of blocks
with reference counts zero. Compiler plays an essential role, and recursive
reclamation is done by the execution of routine procedure.

Compiler adds special code for all the operations of references. When
the references to blocks are copied, the reference count is increased 1, while
the reference to the block is removed, the reference count is decreased 1. In
the source language, reference is copied in the assignment operations. Besides
assignment operations, compilers should also supplement the code for increase
of references in parameters passing because references taken as parameter
passing is an efficient assignment to local variables of calling routines.

The removal of references happens when a procedure call returns. When
a procedure returns, all the local variables need to remove. For those lo-
cal variables that contain block reference, it needs the decrease handling of
the references counts. Meanwhile, for those parameters that contain block
references the same handling is also needed.

Reference counts technique is a simple one, and it has some serious draw-
backs. These problems limit its applications. At first, reference counts method
cannot reclaim the cyclic structures. For example, if the reference counts for
a includes a reference to it from the root set and now the reference is cut off
then even the reference counts have not dropped to zero, but it has become
unreachable from the root set, and so it has become garbage. Another block
that has reference to it has also become garbage as they become cycle. In
order to reclaim a cyclic structure, one needs to reclaim all the nodes in the
cyclic structure. But it is impossible if they are unreachable.

The second problem with reference counts is its efficiency. Compilers have
to monitor all the reference operations, and each reference operation entails to
adjust corresponding reference counts. In comparison with other techniques
that do not need to monitor these operations, this is a big overhead.

The third problem with reference counts is that the number of free frag-
ments in the list will increase as the number of reclamation increases, but
they still appear in the form of fragments.

12.4 Reclamation of Used Space 343

Although there exist above problems, reference counts method is still a
popular method when it is used to manage dynamic distributed structures
with relatively small in sizes.

12.4.4 Tokens and Scans

The tokens and scans garbage collection algorithm may be divided into two
processes. The first one is making token process that is used to mark all
reachable blocks. The second one is the scanning process that is used to scan
distributed storage space and regard those that have not been marked as
reachable blocks free blocks so that they may be reused. The tokens and scans
garbage collection algorithm sometimes is also called marking and removing
garbage collection algorithm. In comparison with the reference counts the
garbage collection algorithm that was introduced before and the dual space
copy algorithm that will introduce soon, the efficiency of tokens and scans is
highest because it can claim all the storage space that can be claimed while
by reference counts algorithm the cyclic reference counts structures cannot
be claimed. As for dual space copy algorithm it leaves half of the storage
space that is not available.

1. Tokens

Token marking is based on two principles, one is that those storage blocks
that are reachable from the root set are reachable. The second one is that any
storage block that is reachable from a pointer in reachable blocks is reachable.
Suppose that the root set resides in program data area or in the highest end
of the active record. Its data type specification has been constructed and for
compilers it is accessible. Now from the earliest form token program data area
is reachable, by its data type description the internal pointer may be found.
If the recursive procedure found that a block has no pointer or the block that
has been marked, then it backtracks and uses the next pointer to continue
the recursive procedure. As the number of reachable blocks is limited, and
the processing of each storage block is only for finite times (in general, is
only once, occasionally it can be more than twice). Therefore, the depth-
first-search scanning algorithm can terminate and the time it spent increases
linearly proportional to the increase of the number of reachable fragments.

Besides the free bit, marking process needs another auxiliary bit —marking
bit in the head of management field of storage blocks. Initially, the bit is in
the state of “removal”.

2. Scan and reclamation

The reclamation of unreachable fragments is relatively easy. According to
the length of record in the fragment, we traverse storage fragments one by
one. With every fragment, we check whether it is marked as reachable. If it

344 Chapter 12 Storage Management

has been marked reachable, then remove its marking bit, otherwise open its
free bit.

The adjacent free fragments can also be combined together using scanning
algorithm from left to right. When the algorithm finished, we reserve a pointer
and let it point to the first free fragment and record its size. As long as we
meet free fragments, we accumulate their sizes until we meet an occupied
block, or we reached the end of the storage. At the time the size in the
management field is just the total size of free fragments. In this way, we create
a bigger space. Continuing the scanning process whenever a free fragment is
met then the process repeats, and so forth.

The outcome of the marking and scanning process is the generation of
a heap where all the blocks that are marked occupied reachable. Moreover,
occupied block must be between free fragments. This is the best method for
the implementation of reclamation of fragments under the situation that the
fragments do not need to move. If once again using the contracting process to
combine all the free fragments to form a bigger free block, then the efficiency
of the execution may be further raised.

12.4.5 Dual Space Copy

The token (marking) process of the tokens and scans the garbage collection
algorithm only involves reachable blocks, but the scanning process involves
all the storage blocks. When it is working the most part of the heap con-
sists of garbage and the workload of the algorithm is huge. Considering the
problem, the dual space copy algorithm avoids the scanning of all the storage
blocks, it only scans the reachable blocks. Therefore, it saves time through
the requirement for storage increases almost doubly. As the price of storage
gradually decreases to save the time at the expense of storage is worthwhile.
The idea of the dual space copy algorithm is to divide the available heap into
two equal parts: source space and target space.

In daily computation the new storage block can be obtained in the source
space simply using the moving ahead of the pointer. When the source space
consumes up, all the reachable blocks will be copied to the empty target
space through garbage collector.

The operation of the dual space copy starts with the copy of source space
storage which is referred to by the pointers in the root set, it puts the copy
starting from beginning position to the target space. Then the primitive stor-
age blocks of source space are marked “copied” and in the block a forward
pointer is set that points to corresponding copy in the target space. When the
copying operation finishes the content may be destroyed. In copying, there
is no update of pointers hence the pointers still point to the blocks in source
space. Subsequently, a “scanning pointer” is used to scan the storage blocks
of the target space from left to right in order to search for the pointers of

12.4 Reclamation of Used Space 345

storage blocks in the target space. Suppose that the one of scanning point-
ers of storage block R points to a storage block S in the source space, then
there are two possibilities: S is marked “copied” or S has not been marked
“copied”. In the first case, it contains a forward pointer to update the pointer
in R, while in the second case it should be immediately copied. When the
copying operation finishes, it is marked “copied” and its content is replaced
by the copy which the pointer points to. Repeat this process until the target
space does not contain the pointers that point to the storage blocks in the
source space.

Finally, all the reachable blocks in the source space have been copied to
the target space, and all the pointers are updated, pointing to the target
space. Now the roles of the two spaces exchange. The computation continues.

By using copying garbage collector the overhead of fragmentation and
time complexity which the tokens and scans the garbage collection algorithm
incurs may be solved. The key problem is that moving storage blocks makes
free space keeping consecutive and this can be done by moving ahead a global
pointer. The main drawback of dual space copy is that it may waste half of
the heap space, and when the heap is nearly full, the performance of the
algorithm will deteriorate. The dual space copy algorithm is a highly efficient
algorithm while it entails rigorous requirements. When running efficiency is
more important in comparison with space efficiency, then it is a good choice.

12.4.6 Contract

The problem of fragmentations is one of the important problems which the
garbage collection algorithms need to resolve. Fragments actually are the
available free space. But due to that the size of every fragment is far too
small, and it is unable to put them in use, unless they are put together
to form an even biggest free space. Therefore, the contract of fragments is
significant for their availability. If there are only two types of fragments,
either marked “occupied” or free, and the pointers in storage blocks that
are marked “occupied” are consistent, then the contract algorithm can be
performed. Even when some of the storage blocks marked “occupied” are in
fact unreachable, the contract method still can be used because the fragments
can be found by scanning. From the point of view, the contract algorithm
can almost be put in execution in any time. It is independent from garbage
collector to a great extent, and it is a technique that improves the free lists.
After the execution of the garbage collector, then the contract program runs,
it will get very good effect.

Through adding one more extra pointer to every storage block, and scan-
ning the storage for three times from left to right, the contract of the storage
can be done. The three times of scanning are: the first scanning computes
the address of new position of the storage block, the second scanning updates

346 Chapter 12 Storage Management

the existing pointer to point to the new position, and the third really move
the storage block.

1) Address computation. Scanning the storage blocks down-up, computing
the new position for ever storage block after contract. The corresponding
address of the new position is kept in the management field of the storage
block. Since we know the new position of the first occupied storage block
(located at the lower end of the storage), we also know the size of the storage
block, hence there is not any problem for the computation of address.

2) Update of pointer. Scanning the program data area and storage blocks,
to search for the pointers of the heap where every pointer that points to the
storage blocks should be updated to the new position in the management
field of the storage block.

3) Move of the storage blocks. The storage program scans the storage
blocks from low to high. Every occupied block is moved to new position. The
new position can be found from the management field of the storage block.
The storage blocks can only be moved to left (moved to low end), or kept
still, hence the work can be done by single way scanning from left to right.
All the pointers in the blocks are repointed to the storage blocks that are
pointed at the beginning of the contract.

12.5 Parameter Passing

In programming languages people use procedures to handle the multi uses of
the same operations. But in the different uses of these operations there may
be different values of the parameters. In order for the procedure to meet the
need of using different values of parameters, the formal procedure does not
involve the specific values of these parameters, and positions are in place of
them. This is what we say of formal parameters. People found that different
effects may be produced if one uses different methods to associate the actual
parameters and formal parameters, and the association naturally is related
to the management of storage.

Several common methods for associating actual and formal parameters
are discussed in this section. They are call-by-value, call-by-reference, copy-
restore and call-by-name.

One should be aware that, the method used for passing actual parameters
is very important for a language (or a compiler), because the outcome of a
program may depend on the method.

Why are there so many methods? These different methods come from
different explanations of the implication of an expression. For example, for
the simple assignment such as

a[i] := a[i]

where a[i] represents a value. While a[j] represents the address where the value

12.5 Parameter Passing 347

of a[i] is put. Whether the storage address which an expression represents
is used or the value of the expression is used, depends on where does the
expression appear, either the left hand side or the right hand side of the
assignment symbol. Therefore, we use the term l-value to refer to the storage
represented by an expression, and r-value to refer to the value contained
in the storage. The prefix l- and r- come from “left” and “right” side of
an assignment. Differences between parameter passing methods are based
primarily on whether an actual parameter represents an l-value, an r-value,
or the text of the actual parameter itself.

12.5.1 Call-by-Value

This is, in a sense, the simplest possible method of passing parameters. The
actual parameters are evaluated, and their r-values are passed to the called
procedure. Call-by-value can be implemented as follows:

1) A formal parameter is treated just like a local name, so the storage for
the formal parameters is in the activation record of the called procedure.

2) The caller evaluates the actual parameters and places their r-values in
the storage for the formal parameters.

A distinguishing feature of call-by-value is that operations on the formal
parameters do not affect values in the activation record of the caller. A pro-
cedure called by value can affect its caller through nonlocal names or through
pointers that are explicitly passed as values.

12.5.2 Call-by-References

Call-by-references is also called call-by-address or call-by-location. When the
method is used for Parameter passing, the caller passes to the called proce-
dure a pointer to the storage address of each actual parameter.

The following is its implementation:
1) If an actual parameter is a name or an expression having an l-value,

then that l-value itself is passed.
2) If the actual parameter, however, is an expression, like 5 or a+b that

has no l-value, then the expression is evaluated in a new location, and the
address of that location is passed.

A reference to a formal parameter in the called procedure becomes, in the
target code, an indirect reference through the pointer passed to the called
procedure. Arrays are usually passed by reference.

348 Chapter 12 Storage Management

12.5.3 Copy-Restore

A hybrid between call-by-value and call-by-reference is copy-restore, it is also
known as copy-in-copy- out or value-result. Its implementation is as follows:

1) The actual parameters are evaluated before control flows to the called
procedure. The r-values of the actual parameters are passed to the called
procedure as in call-by-value. In addition, however, the l-value of those actual
parameters having l-values is determined before the call.

2) When control returns, the current r-values of the formal parameters
are copied back into the l-value of the actual parameters, using the l-value
computed before the call. Only actual parameters having l-values are copied,
of course.

Therefore, the first step “copies in” the values of the actual parameters
into the activation record of the called procedure (into the storage for the for-
mal parameters). The second step “copies out” the final values of the formal
parameters into the activation record of the caller (into l-values computed
from the actual parameters before the call). The difference between copy-
restore and call-by-reference shows up if the called procedure has more than
one way of accessing a location in the activation record of the caller.

12.5.4 Call-by-Name

Call-by-name is traditionally defined by the copy-rule of early language Algol,
that is:

1) The procedure is treated as if it was a macro; that is, its body is
substituted for the call in the caller, with the actual parameters literally
substituted for the formal parameters. Such a literal substitution is called
macro-expansion or in-line expansion.

2) The local names of the called procedure are kept distinct from the
names of the calling procedure. We can think of each local of the called
procedure being systematically renamed into a distinct new name before the
macro-expansion is done.

3) The actual parameters are surrounded by parentheses if to preserve
their integrity is needed.

Although call-by-name is primarily of theoretical interest, the conceptu-
ally related technique of in-line expansion has been suggested for reducing
the running time of a program. There is a certain cost associated with setting
up an activation of a procedure—space is allocated for the activation record,
the machine-status is saved, links are set up, and then control is transferred.
When a procedure body is small, the code devoted to the calling sequences
may overweight the code in the procedure body. It may therefore be more
efficient to use the in-line expansion of the body [7] into the code for the
caller, even if the size of the program grows a little.

Problems 349

The usual implementation of call-by-name is to pass to the called pro-
cedure parameterless subroutines, commonly thunks, that can evaluate the
l-values or r-value of the actual parameters. Like any procedure passed as a
parameter in a language using lexical scope, a thunk carries an access link
with it, pointing to the current activation record for the calling procedure.

Problems

Problem 12.1 When a procedure is passed as a parameter in a lexically
scoped language, its nonlocal environment can be passed using an access
link. Give an algorithm to determine this link.

Problem 12.2 What is printed by the following proram, if the parameter
passing is a) call-by-value; b) call-by-reference; c) copy-restore linkage;
d) call-by-name:

program main (input, output);
procedure p(x, y, z);

begin
y := y+1:
z := z+x;

end;
begin

a := 2;
b := 3;
p(a+b, a, a):

print a

end.

Problem 12.3 The statement f := a on line 11 of the following pseudo-
program calls function a that passes function addm back as a result.

1) Draw the activation tree for an execution of this program.
2) Suppose that lexical scope is used for nonlocal names.

Why will the program fail if stack allocation is used?
3) What is the output of this program with heap allocation?
(1) program ret (input, output);
(2) var f: function (integer): integer;
(3) function a: function (integer): integer;
(4) var m: integer;
(5) function addm(n: integer): integer;
(6) begin return m+n end;
(7) begin m:=0; return addm end;
(8) procedure b(g: function (integer): integer);
(9) begin writeln (g(2)) end;
(10) begin
(11) f := a; b(f)

(12) end

Problem 12.4 Certain languages have the ability to return newly created
procedures at run time. In the following pseudo- program, all functions,
whether defined in the source text or created at run time, take at most one

350 Chapter 12 Storage Management

argument and return one value, either a function or a real. The operator
· stands for composition of functions: that is (f · g)(x) = f(g(x))′

1) What value is printed by main?
2) Suppose that whenever a procedure p is created and returned, its

activation record becomes a child of the activation record of the function
returning p. The passing environment of p can then be maintained by
keeping a tree of activation records rather than a stack. What does the
tree of activation record when a is computed by main in the program?

3) Alternatively, suppose an activation record for p is created when
p is activated, and made a child of the activation record for the pro-
cedure calling p. This approach can be used to maintain the activation
environment for p. Draw snapshots of the activation records and their
parent-child relationships as the statements in main is executed. Is a
stack sufficient to hold activation records when this approach is used?

function f(x: function);
var y: function;

y := x · h; /* creates y when executed */
return y

end {f};

function h():
return sin

end {h};
function g(z: function);

var w: function;
w := arctan · z: /* creates w when executed */
returned w

end {g} ;

function main ();
var a: real:

u, v: function;
v:= f(g);
u:= v();
a:= u(π/2);

print a

end { main }
Problem 12.5 Write a procedure that inserts a new entry to a link list

through passing a list head pointer.
Problem 12.6 List the characteristics of the garbage collection that makes

the concurrent garbage collection algorithms very hard to work.
Problem 12.7 The possible way to decrease walk and stop of token and

scan algorithm is to increasingly use the scan procedure. After token
procedure we do not scan all the storage again, instead, we change the
code of main() so that when a suitable size free fragment is scanned, the
scan procedure stops(the original one continues). Outline the modified
increasing module.

References 351

References

[1] Bentley J L, Cleveland W S, Seth R (1985) Empirical analysis of Hush func-
tions, manuscript. AT&T Bell Laboratories, Murray Hill, New York.

[2] Ableson H, Sussman G J (1985) Structure and interpretation of computer
programs. MIT Press, Cambridge, Mass.

[3] Aho A V, Sethi R, Ullman J D (2003) compilers, principles, techniques and
tools. Addison-Wesley, Reading, Mass.

[4] Grune D, Bal H E, Jacos C, et al (2002) Modern compiler design. Wiley,
New York.

[5] Knuth D E (1998) The art of computer programming. Vol.3 Updated and
revision version. Addison-Wesley, Reading, Mass.

[6] Aho A V, Hopcroft J E, Ullman J D (1974) The design and analysis of
computer algorithms. Addison-Wesley, Reading, Mass.

[7] Steele G L Jr (1984) Common LISP. Digital Press, Burlington, Mass.

Chapter 13 Generation of Object Code

If one wants to get to one hundred miles away, reaching
ninety miles is only half of the destination.

Chinese maxim

13.1 Motivation of the Chapter

After we travelled from the lexical analysis, syntactical analysis, semantic
analysis, generation of intermediate code, and debugging and optimization,
etc. till now, we are ready for getting to the last phase— the generation
of target codes. But before we formally discuss the matter some sorts of
preparation is still needed to do.

What we said of the target code, strictly speaking, should be the code of
the target machine that is an immediately executable. As currently, however,
in every machine, there is assembler installed on it. Therefore, even though
what we generated is not the machine code, but the code written in the
assembly language is not a problem at all. The assembler installed on the
machine will translate it into an executable machine code.

Since the code generated in this way may not be the optimal one, the
compilers have a further function that performs the optimization so that the
target code generated is more efficient. This step is critical for productive
programs as this kind of programs will run day after day for a long period.
So even in one running period it saves only a few seconds, the accumulation
will be significant.

In general, there is a rigorous requirement for the generator of target
codes. In one word, the output code should be of correct and high efficient.
It means that it must make best use of the resources of the target machine.
Moreover, the generator itself should execute effectively.

However, in theory, the problem of generating optimal codes is undecide-
able. Hence, in practice, we must manage to generate the code as good as
possible. It may not be the most optimal one, but we have done what we
can. In order to reach the extent, we must resort to the heuristic searching
techniques. The selection for the heuristic search is very important because a

354 Chapter 13 Generation of Object Code

carefully selected algorithm for the design of generators will be much easier
to generate a highly efficient code than that was rushed out in a short time.

In this chapter, we shall discuss those issues that are related to the design
of target code generators. Though lots of the details about the target code
generation are related to the object language and operating systems, the
storage management, the selection of instructions and registers, the order
of computation, etc. confront almost all the generators of target codes. It
will help the reader to better comprehend the essence of problems which we
explain in the following.

13.2 Issues of Design of Generators of Target Codes

13.2.1 Input of Code Generators

The input of code generators consists of the intermediate code representation
of source programs and the information in symbol tables. The information is
arranged by the front end (the analytical phrase). The information in symbol
tables is used to determine the running addresses of data objects marked by
the names in the intermediate code representation.

We have mentioned that, the intermediate code may be represented in
several ways such as reversed Poland form, quadruples or three-address rep-
resentation, or pseudo machine representation (e.g., stack machines). In ad-
dition, there are also the graphical representations of syntax trees and acyclic
directed graphs (adg). Even though in this chapter, our algorithms are ex-
pressed in three-address code, trees and acyclic directed graphs, there are
many techniques that are suitable for the intermediate code representation.

We assume that before the generation of codes, the compiler has finished
the scanning and analytical analysis of source program, and also has trans-
lated the source program into the intermediate code with bountiful details.
Therefore, the values of names that appear in the intermediate code may be
represented in quantities (binary bits, integers, real numbers, pointers, etc.)
that can directly be operated in the target machines. We have also assumed
that the necessary type checks have been established. Therefore, the type
transformation operators have been put in case of needs. The obvious syntax
errors (e.g., the attempt of taking floating number as the subscript) have
been checked out too. Therefore, the code generation phrase may be carried
out under the assumption that the input has no error. But in some compilers,
this kind of semantic checks is carried along with the code generation.

13.2 Issues of Design of Generators of Target Codes 355

13.2.2 Target Programs

The output of the code generator is the target program. As the intermediate
code, the output may have a variety of forms such as the absolute machine
code, float machine code, or assembly language code.

The advantage of generating programs in the absolute machine language
as output is that the programs may store in fixed positions of the storage and
they can immediately be executed. A small-size program may be compiled
and executed quickly. The compilers for a number of “student programs”,
such as WATFIV and PL/C just generate such absolute machine code.

The advantage of generating programs in the float machine language as
output (target modules) is that it allows the independent compilation of
subprograms. A group of float target modules may be linked up together by
a linker, and then install in storage to execute. If we generate float target
modules, we must add the overhead of corresponding linking and loading.
But due to independent compilation of subprograms and being able to call for
other programs that have been compiled from a target module, the flexibility
is significantly raised. If the target machine cannot automatically handle
floating, then the compiler must provide specific float information to loader
in order to link together the independently compiled program segments.

To generate programs in assembly language as output makes the progress
of the code generation a bit easier, as we may generate symbolic instructions
and making uses of macro facilities provided by assembler to help the code
generation. Of course, the expense that must be paid for the benefit is to make
it in the assembly language again after target generation, but the generation
of assembly code does not repeat the whole task of assembler. This is a
reasonable choice, it is especially true for machine with the smaller size of
storage, as on this type of machines the compiler must be of multipasses. In
this chapter, for sake of readability, we also choose assembly language as the
target language. But we want to emphasize that, as long as addresses can
be computed from offsets and other information in symbol tables, then code
generator may generate float addresses and absolute addresses of names, as
easy as generating symbol addresses.

13.2.3 Storages Management

To map the names in source programs into addresses of data objects in stor-
ages is part of the jobs of the front end of the compiler and it is done through
cooperation with code generation programs.

We have assumed that a name reference in the three-address statement
is the name entry in the symbol table, and the references of entries of the
symbol table are done after checking the declaration of the procedure. The
type in the declaration determines the width of the type that is the quantity

356 Chapter 13 Generation of Object Code

of the storage needed for storing it. The relative address of the name in the
data area of the procedure can be determined by the information in symbol
tables.

If the machine code is to generate, the labels in the three-address state-
ments need to transform to instruction addresses. This procedure adopts the
so-called back-patching technique as we introduced before in the previous
chapter, Suppose that the label refers to a quadruple number in a quadruple,
when we scan every quadruple in turn, we will eventually derive the position
of the quadruple that holds the label. What we need is only to maintain
the count that records the number of words which the generated instructions
used. The number can be stored in the array of quadruples (in the other
field). Therefore, if a reference is met, for example j: goto i, if i is less than j,
then we just need to establish a jump instruction of which the target address
is the storage location of the first appearance of quadruple i. But if the jump
is forward, i exceeds j, then we need to use a table to store the location of
the first appearance of i. When we handle quadruples, we can advance to
location where the first appearance of i stays, and then by back-patching we
replace all the appearances of i’s in quadruples by the location.

13.2.4 Selection of Instructions

The essence of the instruction set of target machine determines the difficulty
of the selection of instructions. The consistency and completeness are impor-
tant factors for the determination of an instruction set. If the target machine
cannot support each kind of data type with consistent manner, then it will
need to have special treatment for every abnormal situation.

The speed and the common usage of the instructions are also important
factors. If we do not care of the efficiency of the target program, then the
selection of instructions is very simple. For every type of three-address state-
ments, we may design a code frame that describes the target code which
the frame generates. For example, for every three-address statement with the
form c := a + b, it has static allocations for a, b, and c. So it may be
translated into the following sequence of code:

MOV a, R1 /* load a into register R1 */
ADD b, R1 /* add b to R1 */
MOV R1, c /* store R1 to c */

But the method that it generates the code one by one often generates very
poor code. For example, if we want to translate the following sequence and
we adopt the one by one method�

x := y + z,
u := x + z.

13.2 Issues of Design of Generators of Target Codes 357

Then we will have the following code as the result of the translation:

MOV y, R1
ADD z, R1
MOV R1, x
MOV x, R1
ADD v, R1
MOV R1,v

Instead, if we consider the translation systematically, we might generate more
compact codes that saves two instructions:

MOV y, R1
ADD z, R1
ADD v, R1
MOV R1, v

The quality of the code generated depends on the length of the running time
and length of the program. The target machine that possesses bountiful in-
struction set may realize any given operations in many modes. The overheads
of different modes may have dramatic differences.

Some translation of the intermediate code may be correct but may also
be very inefficient. For example, if the machine has an INC (increment) in-
struction, then by one instruction alone the three-address statement x := x
+ 1 may be efficiently realized. In contrast, if we adopt the following mode:

MOV x, R1
ADD #1, R1
MOV R1, x

then the speed will naturally be much slower. But in order to determine which
implementation is better and which one runs faster, it needs to comprehend
the execution of instructions.

13.2.5 Register Allocation

The sequence of instructions that contains registers as operands is shorter
than that contains operands in storage, and the speed of execution is usually
faster. Therefore, in the course of the generation of codes, it is especially
important to efficiently make use of registers [1]. For the uses of registers, it
may be divided into two subproblems:

1) During the allocation of registers, we select the variables that will reside
in registers in some period of the execution of the program.

2) In the following phrase of the assignments of registers, we select a
special register where a variable would reside in.

Even for single register, searching a register for the optimal assignment
of variable is also very difficult as it is a NP complete problem. As the hard-
ware and operating system of the target machine maybe have to obey some

358 Chapter 13 Generation of Object Code

regulations about the usage of the registers, it makes the problems more
complicated.

13.2.6 Selection of Order of Computation

The order of computation may also affect the efficiency of the target code.
Probably we have seen that by adopting some order of the computation the
need for registers to store intermediate results will decrease. To choose the
best order is the other NP complete problem. Therefore, at the beginning,
we must take the order by which the intermediate code generator generates
three-address statements. Then the problem is avoided.

13.2.7 Method of Generation of Codes

No doubt, the most important principle for the code generation is that it
generates correct code. As a code generator may encounter some special cases,
the principle of correctness is extremely important. After the priority of the
correctness, our important design goals are easy implementation, easy to
debug, and easy to maintain.

13.3 Target Machine MMIX

To choose target machine, of course we take practicality as the principle.
Where will we install the compiler of some programming language? The
machine should be selected as the target machine. Being familiar with the
machine and its instruction set is the premise of designing good generator
of code. However, in the present general discussion, what specific machine
should we choose as the target machine? We think that any current machine
in the market is improper as it will make our book to be the advertisement
of it, and the users of other machines in market must be not interested in our
book. Therefore, we decide to choose a pseudo machine that represents the
common characteristics of current machines, and MMIX becomes our choice.
MMIX is the new pseudo machine updated from MIX, both are introduced
by Professor D. E. Knuth in his classical monumental The Art of Computer
Programming vol. 1 original version and updated and revision version, re-
spectively [2].

If MMIX is taken as Roman number notation, it denotes 2009. This num-
ber is obtained from taking 14 type numbers of currently available machines
(on these machine the simulation of MMIX can be carried out easily), and

13.3 Target Machine MMIX 359

then make the mean of them with each one having equal weight. The evalu-
ation is as follows:

(Cray I + IBM 801 + RISC II + Clipper C300 + AMD 29 k + Motorola
88k + IBM 601 + Intel I 960 + Alpha 21164 + POWER 2 + MIPSR 4000
+ Hitachi Super H4 + Strong ARM 110 + Sparc 64)/14 = 2009

13.3.1 Binary Bits and Bytes

MMIX works on the model of 0 and 1, and usually treats 64 bits once.
For convenience, we partition them into groups of four bits each, so each
represents a hexadecimal number. The hexadecimal numbers are:

0 = 0000 4 = 0100 8 = 1000 c = 1100

1 = 0001 5 = 0101 9 = 1001 d = 1101

2 = 0010 6 = 0110 a = 1010 e = 1110

3 = 0011 7 = 0111 b = 1011 f = 1111

(13.1)

In order to differentiate decimal digits 0∼9 and hexadecimal digits 0∼9, we
will use different form to denote hexadecimal digits. For example, a hexadec-
imal number

100111100011011101111001101110000001011111110110010100111110000010110 . (13.2)

In hexadecimal system, it becomes

#9e3779b97f4a7c16. (13.3)

It would be looking better if we write it as #936A47B3197259C, but in terms
of the meaning, they are the same. # means hexadecimal.

Eight binary bits or two hexadecimal digits forms a sequence, usually it
is called a byte. Now most of the computers take bytes as the basic, indi-
visible programmable data units. An MMIX program may refer to up to 264

bytes, where each one has its address, ranging from #0000000000000000 to
#ffffffffffffffff. Like language such as English, its alphabet, numbers and
punctuation usually are represented in ASCII (American Standard Code for
Information Interchange), and one byte represents one character. For exam-
ple, the equivalent of MMIX in ASCII is # 4d4d4958. ASCII actually is a
code with 7 bits and contains control characters #00∼ 1f, the printing char-
acters #20∼#7e, and a “removal” character #7f. In 1980s, it was extended
to international standard with 8 bits and was called Latin – 1 or ISO 8859– 1.
Hence the characters with emphasis such as pâté is encoded #70e274e9.

In 1990s, the 16 bit code that supports almost every contemporary lan-
guage becomes an international standard. This code is formally called ISO/

360 Chapter 13 Generation of Object Code

IEC 10646 UCS-2 or informally Unicode UTF-16. It not only contains the
Greek letters such as Σ and σ (#03a3 and #03c3), Cyrillic letters likes W
and w (#0429 and #0449), Armenia letters like and (#0547 and # 0577),
Hebrew letters like (#05e9), Arabic letters like (#0634), and Indian
letters like (#0936) or (#09b6) or (#0b36) or (#0bb7), etc.,
but also tens of thousands of East Asian ideographs such as the Chinese
character for mathematics and computing, �(#7b97). Even it contains the
special encodes for Roman numerals, such as MMIX = # 216f216f21602169.
Through simply adding leading 0 byte to each character, the normal ASCII
and Lain – 1 characters may be represented, such as the Unicode of pâté is
#007000e2007400e9.

We will use convenient term to describe characters with width up to
16 bits like Unicode, as the numbers with two bytes are very important in
practice. For those words that have 4 bytes or 8 bytes, we will call them
double words and four words respectively, hence

2 bytes = 1 word

2 words = 1 double word

2 double words = 1 four word

According to D. E. Knuth, 2 bytes are also called 1 wyde, 2 wydes are called
1 terra, and 2 Tetras are called 1 octa. One octabyte equals four wydes equals
eight bytes equal sixty-four bits. Of course, the quantity consisting of one or
more bytes may represent alphanumerical characters. Using binary system,

one byte without sign may represent numbers 0..255;

one word without sign may represents numbers 0..65535;

one double word without sign may represent numbers 0..4294967295;

one four word without sign may represent numbers

0..18446744073709551615.

Integer numbers usually may be represented in complementary representation
in which the left most bit represents sign. In this representation, if the leading
bit is 1, we obtain the n bit integer by decrease the number from 2n. For
example, −1 is a number with sign. It is #ff in bytes in complementary
representation, and it is #ffff in words in complementary representation,
while in double words it is #ffffffff, and in four words it is #ffffffffffffffff.
Thus we have:

one byte with sign may represent numbers – 128.. 127;
one word with sign may represent – 32768.. 32767;
one double word with sign may represent – 2147483648..2147483647;
one four word with symbol may represent numbers

– 9223372036854775808..9223372036854775807.

13.3 Target Machine MMIX 361

13.3.2 Memory and Registers

From the point of views of a programmer, a MMIX computer has 264 memory
units and 28 general registers, in addition to 32 special-purpose registers (see
Fig. 13.1) [3]. Data are transferred to registers from memory units, and the
operations are performed in the registers, then the numbers are transferred
back to the memory, The memory units are called M[0], M[1],..., M[264 – 1].
Hence, if x is any four word byte, M[x] is a memory byte.

Fig. 13.1 A MMIX computer which a programmer sees there are 256 general-
purpose registers and 32 special-purpose registers, along with 264 bytes of 2 pseudo
memories, each register has 64 effective bits.

General registers are called $0, $1, . . . , $255. If x is an arbitrary byte,
$x is a four word byte. The 264 bytes of the memory are grouped into 263

words.

M2[0] = M2[1] = M[0]M[1], M2[2] = M2[3] = M[2]M[3],

Every word consists of two consecutive bytes

M2[2k]M2[2k + 1] = M[2k]× 28 + M[2k + 1],

hence it can either be represented as M2[2k] or M2[2k+1]. Similarly, there
are 262 double word bytes.

M4[4k] = M4[4k+1] = . . . = M4[4k+3] = M[4k]M[4k+1]M[4k+2]M[4k+3]
(13.4)

362 Chapter 13 Generation of Object Code

and there are 261 four word bytes.

M8[8k] = M8[8k+1] = . . . = M8[8k+7] = M[8k]M[8k+1]. . .M[8k+7]. (13.5)

Generally speaking, if x is four word byte, then the notation M2[x], M4[x],
and M8[x] represent word, double words, four words that contain byte M[x].

When referring to Mt[x] we neglect lg t bits of the lowest effective bits of
x. For the sake of completeness, we also write M1[x] = M[x], when x<0 or
x�264, we define M[x] = M[x mod 264].

The 32 special-purpose registers of MMIX are denoted rA, rB, . . . , rBB,
rTT, rWW, rXX, rYY, and rZZ. It is the same as their intimate relatives,
each one may store four word bytes. Later their usage will be explained. For
example, we will see that rA controls the arithmetic interruptions while rR
stores the residue after division operations.

13.3.3 Instructions

The memory of MMIX not only contains data, but also contains instructions.
An instruction or “order” is a double word bytes of which four bytes may
conveniently be called OP, X, Y, and Z. OP is the operation code, X, Y, and
Z are the operand. For example, #20010203 is an instruction with OP = #20,
X = #01,Y = #02, and Z = #03. And the meaning is to put the addition of
the registers $2 and $3 to register $1. The bytes of operands are regarded as
integers without sign.

Since MMIX provides the operators the length of one byte, it has totally
256 operations. Each of the 256 operators has a convenient mnemonic sym-
bol forms. For example, the operator #20 is denoted ADD. Thereafter, we
will adopt the symbol forms of operators, we will also provide the complete
instruction table. X, Y, and Z have also symbolic representation. They are
consistent with the assembly language which we will discuss later. For exam-
ple, #20010203 may be conveniently written as “ADD $1,$2, $3”. Generally,
addition instruction is written as “ADD $X, $Y, $Z”. Most of the instructions
have three operands, but there are some that have two operands, even some
have only one operand. When there are two operands, the first one is X, and
the second one is number YZ with two bytes. Then the symbolic notation
contains one comma only. For example, the instruction “INCL $X,YZ” is an
instruction that increases the register X with a quantity YZ. When there is
only one operand, it is number XYZ with three bytes and without sign. In
its symbol notation, there is no comma at all.

For example, the instruction “JMP @+4*XYZ” will tell MMIX that the
next instruction can be obtained by jumping to double word byte XYZ.
The instruction “JMP @+1000000” has the form #f003d090 in hexadecimal
system, as JMP = #f0, while 1000000 = #03d090.

13.3 Target Machine MMIX 363

We will introduce each instruction of MMIX neither formally nor infor-
mally. For example, the informal meaning of “ADD $X, $Y, $Z” is to put
into $X the sum of $Y and $Z, while the formal meaning is “s($X)←s($Y) +
s($Z)”, where s(X) represents a signed integer number that corresponds to x
mod modulo bit number according to the convention of 2’s complement. The
assignment like s(X)←N implies that X is to be set to the bit pattern for
which s(X) = N mod bit number. (If N is too big or too small to put in X,
the assignment causes integer overflow or underflow. For example, if the sum
s($Y)+ S($Z) is less than – 263 or greater than 263, then ADD will overflow
or underflow. When we informally explain an instruction, we will point out
the possibility of flows but the formal explanation will accurately describe
everything. In general, the assignment s(X)←N puts X into the binary rep-
resentation of N mod 2n, where n is the bit number in X. If N < – 2n−1 or
N�2n−1, then it claims that it flows).

13.3.4 Load and Store

We will see that It may be classify 256 instructions of MMIX into a number of
groups. We now start with the instructions that transfer information between
the register and memory.

In the following every instruction has the address A of the memory that
is used for storing the sum of addition of $Y and $Z. Formally speaking,

A = (u($Y) + u($Z)) mod 264 (13.6)

is the sum of $Y and $Z that is an integer without sign. Through neglecting
any carry that happens at the left end of the sum when the two numbers are
added, the sum will reduce to a binary number with 64 bits. In this formula,
u(X) is similar to s(X), but it regards X as a binary number without sign.
• LDB $X, $Y, $Z (Load byte): s($X)←s(M1[A])
• LDW $X, $Y, $Z (Load word): s($X)←s(M2[A])
• LDT $X, $Y,$Z (Load double word): s($X)←s(M4[A])
• LDO $X, $Y, $Z (Load four word): s($X)←s(M8[A])

These instructions store data into register $X from memory, meanwhile,
if necessary, these numbers will be transformed from one byte, one word
or double word with sign into a four word byte without sign. For example,
suppose that the four word byte M2[1000] = M2[1002] is

M[1000] = M[1001] = M[1002] = . . . = M[1007] = #fedcba9876543210.
(13.7)

Hence, if $2 = 1002 and $3 = 2, then A = 1002. We have:
• LDB $1, $2, $3 sets $1←#0000 0000 0000 00ba
• LDW $1, $2, $3 sets $1←#0000 0000 0000 ba98
• LDT $1, $2, $3 sets $1←#0000 0000 fedc ba98

364 Chapter 13 Generation of Object Code

• LDO $1, $2, $3 sets $1←#fedc ba98 7654 3210
But if $3 = 5, making A = 1005, then we have:
• LDB $1, $2, $3 sets $1←#ffff ffff ffff ff54
• LDW $1, $2, $3 sets $1←#ffff ffff ffff 7654
• LDT $1, $2, $3 sets $1←# ffff ffff 7654 3210
• LDO $1, $2, $3 sets $1←#fedc ba98 7654 3210

When a byte or a word, or a double word byte is transformed into a four
word byte with sign, its sign bit is expanded to all the positions at the left:
• LDBU $X, $Y, $Z (load byte without sign): u($X)←u(M1[A])
• LDWU $X, $Y, $Z(Load word without sign): u($X)←u(M[2[A]]
• LDTU $X, $Y, $Z (Load double word without sign) : u($X)←u(M4[A])
• LDOU $X, $Y, $Z (Load four word byte without sign): u($X)←u(M8[A])

These instructions are similar to LDB, LDW, LDT, and LDO, but they
handle the data in memory as ones without symbol. When a short number
is lengthened in this way, the binary positions at the left hand side of the
register are set to zeros. Therefore, in the example LDBU $1, $2, $3 above,
$2 = $3 = 1005, it sets $1← #0000 0000 0000 0054.

Instructions LDU and LDOU actually have the same characteristics, as
when a four word byte is put into a register, it need not expand symbol bits
or add 0. However when symbol matters, a good programmer will use LDO,
while it does not matter, he will use LDOU. In this way, the reader of the
program will further understand the meaning of the content loaded.
• LDHT $X, $Y,$Z (Load high part of double word): u($X)←u(M4[A])×232.

Here the double word byte M4[A] is loaded to the left side of $X while
the right side is a set to zeros. For example, LDHT $1, $2, $3, and $2 + $3
= 1005, and with the definition (13.7), then set $1←# 7654 3210 0000 0000.
• LDA $X, $Y, $Z (Load address): u($X)←A.

This instruction stores an address into a register, it is actually the same
as ADDU that is described later. Sometimes the word “load address” better
describes the purpose than the word “add number without symbol” does.
• STB $X, $Y, $Z (Store byte): s(M1[A])←s($X)
• STW $X, $Y, $Z (Store word): s(M2[A])←s($X)
• STT $X,$Y, $Z (Store double word): s(M4[A])←s($X)
• STO $X, $Y, $Z (Store four word): s(M8[A])←s($X)

These instructions go to the other direction, that is, they put the data
from registers to the memory. If the number in register (with sign) is outside
the extent of the numbers in memory, then overflow takes place. Suppose
that the register $1 contains number – 65536 = #ffff ffff ffff 0000, and if $2 =
1000, $3 = 0002, hence, the definition (13.7) holds.
• STB $1, $2, $3 sets M8[1000]←#fedc ba98 7654 3210 (and overflow takes

place)
• STW $1, $2, $3 sets M8[1000]←#fedc 0000 7654 3210 (and overflow takes

place)
• STT $1, $2, $3 sets M8[1000]←#ffff 0000 7654 3210

13.3 Target Machine MMIX 365

• STO $1, $2, $3 sets M8[1000]←#ffff ffff ffff 0000
• STBU $X, $Y, $Z (Store byte without sign): u(M1[A])←u($X) mod 28

• STWU $X, $Y, $Z (Store word without sign): u(M2[A])←u($X) mod 216

• STTU $X, $Y, $Z (Store double word without sign): u(M4[A])←u($X)
mod 232

• STOU $X, $Y, $Z (Store four word without sign): u(M8[A])←U($X)

These instructions have the same effects as the corresponding ones STB,
STW, STT and STO with sign, but they never overflow.
• STHT $X, $Y, $Z (Store high part of double word): u(M4[A])←)u($X)

232 *
The left half of register $X is stored in double word unit M4[A] of the

memory.
• STCO X, $Y, $Z (Store constant four word byte): u(M8[A])←X

The constant number between 0 and 255 is stored in four word unit M8

[A] of the memory.

13.3.5 Arithmetic Operations

Most of the operations of MMIX strictly perform between registers. We may
investigate the operations between registers through considering addition,
subtract, multiplication and division.
• ADD $X, $Y, $Z (addition) : s($X)← s($Y)+ s($Z)
• SUB $X, $Y, $Z (subtract): s($X)← s($Y) – s($Z)
• MUL $X, $Y, $Z (multiplication): s($X)← s($Y)×s($Z)
• DIV $X, $Y, $Z (division): s($X)←[s($Y)/s($Z)]{$Z �=0} and s(rR) ←

s($Y) mod s($Z)

Addition, subtract and multiplication need not further discussion. Divi-
sion instruction DIV form quotient and residue, and the residue enters the
special register rR. Through the instruction GET $X that is described later,
it may be observed from rR. If the divisor $Z is zero, DIV sets $X←0 and
rR←$Y, there also “integer division check” appearing.
• ADDU $X, $Y, $Z (addition of numbers without sign): u($X)←(u($Y)+

u($Z)) mod 264

• SUBU $X, $Y< $Z (subtract of numbers without sign): u($X)←(u($Y)−
u($Z)) mod 264

• MULU $X, $Y, $Z(multiplication of numbers without sign): u($X)←
(u($Y)×u($Z)) mod 264

• DIVU $X, $Y, $Z (division of numbers without sign): u($X)←)u(rD$Y)
u($Z) *,

u(rR)←u(rD$Y) mod u($Z), if u($Z)> u(rD); otherwise $X←rD, rR←$Y

The arithmetic operations of numbers without sign never cause overflow.
A complete multiplication between two 16 byte numbers is done by MULU
in which the upper half enters special purpose high mult register rH. For

366 Chapter 13 Generation of Object Code

example, the number without sign #9e3779b97f4a7c16 times itself, we get

rH← #61c8864680b583ea, $X←#1bb32095ccdd51e4. (13.8)

In this case, the value of rH is just the difference of subtracting the original
number #9e3779b97f4a7c16 from 264. This is not coincidence, the reason is
that, if we put the decimal point at the left of the number, it is golden ratio
φ−1 = φ− 1. After the exponent we get the approximation φ−2 = 1 − φ−1,
and the decimal point is placed at the left of rH.

The quotient of eight bytes and the residue obtained from the division
between dividend of 16 bytes and divisor of 8 bytes are obtained through the
instruction DIVU. The upper half of dividend appears in the special-purpose
register rD that is specially used for storing dividend. At the beginning of
the program, its initial value is zero. Through the instruction PUT rD, $Z
that will be described soon, the register can be assigned to any desired value.
If the value of rD is greater than that of divisor, then DIVU $X, $Y, $Z will
only set $X←rD and rR←$Y (when $Z is zero, the case always happens) But
DIVU never has an integer division check occurring.

According to Definition (13.7), instruction ADDU evaluates an address A
of the memory location. Therefore, sometimes we give the other name LDA
to it.

The following related instructions are helpful to address evaluation:
• 2ADDU $X, $Y, $Z (times two and addition of numbers without sign):

u($X)←(u($Y)×2+u($Z))mod 264

• 4ADDU $X, $Y, $Z (times four and addition of numbers without sign):
u($X)←(u($Y)×4+u($Z)) mod 264

• 8ADDU $X, $Y, $Z (times eight and addition of numbers without sign):
u($X)←(u(SY)×8+u($Z)) mod 264

• 16ADDU $X, $Y, $Z (times sixteen and addition of numbers without
sign): u($X)←(u($Y)×16+U($Z)) mod 264

If overflow is not a problem, then the execution of instruction 2ADDU
$X, $Y, $Z is faster than multiplication by 3, this is why we have 2ADDU
$X, $Y $Z in place of multiplication by 3. The result of execution of the
instruction is

$X←(u($Y)×2+u($Y) mod 264 = 3×u($Y) mod 264.

• NEG $X, $Y, $Z (takes negative): s($X)←Y– u($Z)
• NEGU $X, $Y, $Z (take negation without sign): u($X)←(Y−u($Z)) mod

262

In these instructions, Y is a constant number without sign, rather than a
register number (as in the instruction STCO, X is a constant without sign).
Usually, Y is a zero. In this case, we may simply write NEG $X, $Z, or NEGU
$X, $Z.

The following four instructions are shift instructions:
• SL $X, $Y, $Z (shift left): $X←s($Y)×2u($Z)

13.3 Target Machine MMIX 367

• SLU $X, $Y, $Z (shift left of number without sign): u($X)←(u($Y)×
2u($Z)) mod 264

• SR $X, $Y, $Z (shift right): s($X)←)s($Y)/2u($Z)*
• SRU $X, $Y, $Z (shift right of number without sign); u($X)←)u($Y)/

2u($Z)*
Both SL and SLU yield the same result in $X, but SL may overflow while

SLU never overflow. When shift right operation executes, SR expands the
sign bit while SRU moves 0 in from right hand side. Therefore, SR and SRU
yield the same result if and only if $Y is nonnegative and $Z is zero. SL
and SR run much faster than the execution of MUL and DIV to perform the
exponent operations with 2. SLU runs faster than using MULU to perform
exponent operations with 2, although SLU does not affect rH while MULU
affects rH. Instruction SRU runs much faster than using DIVU to perform the
exponent operation with 2, although it is not affected by rD. The notation
Y<< Z is used to represent the result of shifting Y to left for Z bits. Y>>Z
denotes the result of shifting Y to right for Z bits.

The following are two comparison instructions:
• CMP $X, $Y, $Z (comparison): s($X)←[s($Y)>s($Z)] – [s($Z)<s($Y)]

Where if s($Y)>s($Z), then [s($Y)>s($Z)] equals 1. Correspondingly,
[s($Z)- -s($y))] equals 0. Hence, when $Y is greater than $Z, the result is
1. When $Y < $Z the result is – 1. When they are the same, both two terms
equal 0 and the final result is also 0. In summary, depending whether $Y is
less than, or equal or greater than $Z, $X is set to – 1, 0 or 1. Similarly.
• CMPU $X, $Y, $Z (comparison without sign): s($X)←[u($Y)>u($Z)] –

[u($Z)<u($Y)]

13.3.6 Conditional Instructions

Many instructions determine their works according to whether the value in
a register is positive or negative, or zero.
• CSN $X, $Y, $Z (sets condition if negative): if s($Y)<0, then set $X←$Z
• CSZ $X, $Y, $Z (sets condition if zero): If s($Y) = 0, then set $X←$Z
• CSP $X, $Y, $Z (sets condition if positive): if s($Y)>0, then set $X←$Z
• CSOD $X,$Y, $Z (sets condition if odd): if s($Y) mod 2 = 1, then set

$X←$Z
• CSNN $X, $Y, $Z (sets condition if nonnegative): if ($Y)�0, then set

$X←$Z
• CSNZ $X, $Y, $Z (sets condition if nonzero): if s($Y)�=0, then set $X←$Z
• CSNP $X, $Y, $Z (sets condition if not positive): if s($Y)�0, then set

$X←$Z
• CSEV $X, $Y, $Z (sets condition if even): if s($Y) mod 2 = 0, then set

$X←$Z

368 Chapter 13 Generation of Object Code

If the register $Y meets the conditions above, then the register $Z is
copied to register $X, otherwise anything is not done. A register has negative
value if and only if its leading bit (its leftmost bit) is 1. A register has odd
value if and only if its end most (its right most) bit is 1.
• ZSN $X, $Y, $Z (sets or being zero if negative): $X←$Z [s($Y) < 0].
• ZSZ $X, $Y, $Z (sets or being zero if zero): $X←$Z[s($Y) = 0].
• ZSP $X, $Y, $Z (sets or being zero if positive): $X←$Z[s($Y)>0].
• ZSOD $X, $Y, $Z (sets or being zero if odd): $X←$Z[s($Y) mod 2 = 1].
• ZSNN $X, $Y, $Z (sets or being zero if non-negative): $X←$Z[s($Y)�0].
• CSNZ $X, $Y, $Z (sets or being zero if nonzero): $X←$Z[s($Y)�=0].
• ZSNP $X, $Y, $Z (sets or being zero if not positive): $X←$Z [s($Y)�0].
• ZSEV $X, $Y, $Z (sets or being zero if even number): $X←$Z [s($Y)

mod 2 = 0)].
If the register $Y meets the condition, then the value of $Z is copied to

$X, otherwise set $X to zero.

13.3.7 Bit Operations

We often discover that it is very useful to imagine a four word bytes as a
vector of 64 bits, and to perform operation on each component of the two
vectors.
• AND $X, $Y, $Z (bitwise AND): v($X)←v($Y)&v($Z)
• OR $X, $Y, $Z (bitwise OR):v($X)←v($Y)|v($Z)
• XOR $X, $Y, $Z (bitwise XOR): v($X)←v($Y)⊕v($Z)
• ANDN $X, $Y, $Z (bitwise and-not): v($X)←v($Y)&v̄($Z)
• ORN $X, $Y, $Z (bitwise or-not): v($X)←v($Y)|v̄($Z)
• NAND $X, $Y, $Z (bitwise not-and): v̄($X)←v($Y)&v($Z)
• NOR $X, $Y, $Z (bitwise not-or): v̄($X)←v($Y)|v($Z)
• NXOR $X, $Y $Z (bitwise not-xor): v̄($X)←v($Y)⊕v($Z)

Where v̄ denotes the inverse of v, it is obtained via changing 0 to 1 and
vice versa. The binary operation &, |, and ⊕ are defined as follows. They are
independently applied to each bit:

0&0 = 0 0|0 = 0 0⊕ 0 = 0
0&1 = 0 0|1 = 1 0⊕ 1 = 1
1&0 = 0 1|0 = 1 1⊕ 0 = 1
1&1 = 1 1|1 = 1 1⊕ 1 = 0

(13.9)

AND operation and minimum operation are the same in taking the min-
imal value, while OR operation and maximum operation are the same in
taking maximal value. XOR operation and addition mod 2 are the same in
terms of the result.
• MUX $X, $Y, $Z (bitwise multiplex): v($X)←v($Y)∧v(rM)|(v($Z)∧

v̄(rM))

13.3 Target Machine MMIX 369

MUX operation selects the those $Y bits that correspond to 1 in rM
and selects those $Z bits that correspond to 0 in $Z through observing the
special-purpose multiplex mask register rM and then combining the two bit
vectors.
• SADD $X, $Y, $Z. $X←s(Σ(v($Y)&v̄($Z)))

The SADD operation counts the number of those $Y bits that are 1 and
those $Z bits that are 0.

13.3.8 Byte Operations

Similarly, we may take four word x as vector b(x) with 8 bytes where each
byte is an integer between 0 and 255; or we can take it as a vector w(x) with
4 words, or we take it as a double word vector t(x). The following operations
handle all the components once.
• BDIF $X, $Y, $Z (byte difference): b($X)←b($Y)-.-b($Z)
• WDIF $X, $Y, $Z (word difference) w($X)←w($Y)-.-w($Z)
• TDIF $X, $Y, $Z (double word difference) T ($X)←T($Y)-.-T($Z)
• ODIF $X, $Y, $Z (four word difference): O($X)←O($Y)-.-O($Z)

Where the operation -.- is a saturated subtract (or “dot subtract”) oper-
ation:

y-.-z = max(0, y− z).

These operations have important applications in computer graphics (when
bytes or words represent the values of graph elements) and text processing.

We can also take a four word bytes as an 8×8 boolean matrix, i.e., as a
8×8 array of 0’s and 1’s. Let m(x) represent such a matrix of which the rows
from top to bottom represent the bytes of x from left to right, and let mT(x)
be the transposed matrix, whose columns are the bytes of x. For example, if
x = #9e3779b97f4a7c16, then

m(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 1 1 1 0
0 0 1 1 0 1 1 1
0 1 1 1 1 0 0 1
1 0 1 1 1 0 0 1
0 1 1 1 1 1 1 1
0 1 0 0 1 0 1 0
0 1 1 1 1 1 0 0
0 0 0 1 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, mT(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 0 0
0 0 1 0 1 1 1 0
0 1 1 1 1 0 1 0
1 1 1 1 1 0 1 1
1 0 1 1 1 1 1 0
1 1 0 0 1 0 1 1
1 1 0 0 1 1 0 1
0 1 1 1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(13.10)

370 Chapter 13 Generation of Object Code

The explanation of the four word bytes suggests two operations to be very
similar to that of mathematics. But now we define them from very beginning.

If A is an m×n matrix, and B is an n×s matrix. If ◦ and · are binary
operations, then the extended matrix multiplication A · ◦B is defined as

Cij = (Ai1 ·B1j)◦(Ai2 ·B2j)◦. . .◦(Ain ·Bnj), (13.11)

where 1 � i � m, 1 � j � s and C is an m×s matrix [4]. We assume that ◦ is
associative. A common matrix multiplication is just one taking ◦ as ⊕ while
taking · as ×.

However, if we let ◦ be | or ⊕, then we obtain the important operations
on Boolean matrices:

(A| ×B)ij = Ai1B1j|Ai2B2j|. . .|AinBnj, (13.12)
(A⊕×B)ij = Ai1B1j ⊕Ai2B2j ⊕ . . .⊕AinBnj. (13.13)

Notice that if each row of A at most contains one 1, then in the Expres-
sions (13.12) or (13.13) there is at most one non-zero entry. If every column
of B at most contains one 1, the same fact also holds. Therefore, In these
situations, the results of A|×B and A⊕×B are the same as the usual matrix
multiplication A+×B=AB.
• MOR $X, $Y, $Z (multiple OR’s) : mT($X)←mT($Y)|×mT($Z); equiv-

alently, m($X)←m($Z)|×m($Y)
• MXOR $X, $Y, $Z(multiple XOR’s): mT($X)←mT($Z)⊕×m($Y); equiv-

alently, m($X)←m($Y)⊕×m($Z)

These instructions observe the corresponding bytes of $Z and use their
bytes to select the bytes of $Y. Actually these operations set up the bytes
of $X. Then the bytes selected are combined together by OR or XOR. For
example, if we have

$Z = # 0102 0408 1020 4080.
It can be written as the following matrix

M(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13.14)

Therefore, Both MOR and MXOR instructions would reverse the bytes of $Y:
The kth byte of $X from left is set to kth byte of $Y from right, 1 � k � 8.

13.3 Target Machine MMIX 371

On the other hand, if

$Z = #00000000000000ff,

both MOR and MXOR will set all the bytes of $X to zero’s with right most
byte as an exception that is the OR or XOR of all eight bytes of $Y.

Float point operations. MMIX contains complete implementations of stan-
dard 754 on float arithmetic. It is famous IEEE/ANSI (Institute for Electrical
and Electronic Engineers/ American national standard Institute) standard.

Every four word byte x represents a float binary number that determines
the floating binary f(x), the leftmost of x is the sign (0 = ‘+’, 1 = ‘–’),
the next 11 bits are the exponent E, the rest 52 bits are fraction (decimal
number) F. The value it represents is:
• ± 0.0, if E = F = 0 (zero)
• ± 2−1047F, if E = 0 and F �= 0 (abnormal)
• ± 2E−1023(1+F/252), if 0<E<2047 (normal)
• ± ∝, if E = 2047, and F = 0 (infinite)
• ± NaN (Non a Number) (F/252), if E = 2047 and F �= 0 (it is not a

number)
The “short” float number f(t) that is represented by a double word bytes

is similar, but its exponential part consists only of 8 bits while its fraction
part consists only of 23 bits. The normal case of a float number (0<E<255)
represents +–2E−1127(1+f/223).
• FADD $X, $Y, $Z (float add): f($X)←f($Y)+f($Z)
• FSUB $X, $Y, $Z (float subtract) f($X)←f($Y)–f($Z)
• FMUL $X, $Y, $Z (float multiplication): f($X)←f($Y)×f($Z)
• FDIV $X, $Y, $Z (float division): f($X)←f($Y)/f($Z)
• FREM $X, $Y, $Z (float remainder): f($X)←remainder of f($Y)/f($Z)
• FSQRT $X,$Z or FSQRT $X, $Y, $Z (float square root): f($X)←f($Z)1/2

• FINT $X, $Z or FINT $X, $Y, $Z (float integer): f($X)←int f($Z)
• FCMP $X, $Y, $Z (float comparison): s($X)←[f($Y)>f($Z)]-[f($Y)<

f($Z)]
• FEQL $X, $Y, $Z (float equality): s($X)←[f($Y) = f($Z)]
• FUN $X, $Y, $Z (float disorder): s($X)←[f($Y)||f($Z)]
• FCMPE $X, $Y, $Z (float comparison with respect to ∈): s($X)←[f($Y)>

f($Z)f(rE)]–[f($Y)<f($Z)(f(rE))]
• FEQLE $X, $Y, $Z (float equality with respect to ∈): s($X)←[f($Y)≈

f($Z)(f(rE))]
• FUNE $X, $Y, $Z (float disorder with respect to ∈): s($X)←[f($Y)||

f($Z)(f(rE))]
• FIX $X, $Z or FIX $X, $Y, $Z (float number is transformed to fixed point

number): s($X)←int f($Z)
• FIXU $X, $Z or FIXU $X, $Y, $Z (float number is transformed to fixed

point number without sign): u($X)←(int f($Z)mod264)
• FLOT $X, $Y, $Z or FLOT $X, $Y, $Z (fixed point number is transformed

to float number): f($X)←s($Z)

372 Chapter 13 Generation of Object Code

• FLOTU $X, $Z or FLOTU $X, $Y, $Z (fixed point number is transformed
to float number without sign): f($X)←u($Z)

• SFLOT $X, $Z or AFLOT $X, $Y, $Z (fixed point number is transformed
to short float number): f($X)←f(T)←u($Z)

• SFLOTU $X, $Z or SFLOTU $X, $Y, $Z (fixed point number is trans-
formed to short float number): f($X)←f(T)←u($Z)

• LDSF $X, $Y, $Z or LDSF $X, A(short float number is loaded): f(X)←
f(M4[A])

• STSF $X, $Y, $Z or STSF $X, A (store short float): f($ X)←f(M4(A))
When precise assignment cannot be carried out, the assignment of a float

quantity may be done with current round methods to determine proper value.
We support four modes: (1) ROUND-OFF; (2) ROUND-UP;
(3) ROUND-DOWN; (4) ROUND-NEAR. For the Y field of instructions
FSQRT, FINT, FIX, FIXU, FLOT, FLOTU, SFLOT, and SFLOTU, a dif-
ferent round method from given method may be used if desired. For example
FIX $X, ROUND-UP, $Z sets s($X)←.f($Z)/. The operations SFLOT and
SFLOTU first round the number as if storing an anonymous double word T,
and then they transform the number to four word form.

“int” operation rounds up the number to integer. Operation y rem z is
defined as y – nz, where n is an integer close to y/z, or an even integer in the
case of equality. When the operand is infinite or NAN (not a number), and
any special convention that dominates the result of zero, special rules apply.
The values +0.0 and – 0.0 may have different float representations, but FEQL
takes them as the same.

Instant constants. Programs often need to handle small constants. For
example, we may need to increase or decrease a register, or we need to move
32 bits, etc. in these cases, loading a small constant from memories to registers
is cumbersome. MMIX provides a general rule by which an instruction itself
may obtain such a constant. Each instruction we discuss so far has its version,
where $Z is replaced by Z, except that the instruction takes $Z as a float
number.

For example, “ADD $X, $Y, $Z” has its corresponding peer “ADD $X,
$Y, Z” with meaning that s($X)←s($Y)+Z. The corresponding peer of “SRU
$X, $Y, $Z” is “SRU $X, $Y, Z” with the meaning that u($X)←)*u($Y)/2Z.
“FLOT $X, $Y, $Z” has the peer “FLOT $X, Z” with the meaning that
f($X)←Z. But “FADD $X, $Y, $Z” has no direct corresponding peer.

The operation code of “ADD $X, $Y, $Z” is #20, while the operation
code of “ADD $X, $Y, Z” is #21. For simplicity, we use ADD in both cases.
Generally, the operation code of the direct version for an instruction with
register mode is one bigger than the original version.

There are several instructions that characterize direct constants ranging
from #0000 = 0 till #ffff = 65535. The constants that appear on YZ bytes
may be moved to the high position, middle-high, middle-low position and low
position of four word bytes.
• SETH $X, YZ (sets high position): u($X)←YZ×248

13.3 Target Machine MMIX 373

• SETMH $X, YZ (sets mid-high position): u($X)←YZ×232

• SETML $X, YZ (sets mid-low position): u($X)←yz×216

• SETL $X, YZ (sets low position): u($X)←YZ
• INCH $X, YZ (increases the value of high position): u($X)←(u($X)+YZ×

248) mod 264

• INCMH $X, YZ (increases the value of high-mid part): u($X)←(u($X)+
YZ×232) mod 64

• INCML $X, YZ (increases the value of mid-low position): u($X)←(u(SX)
+YZ×16) mod 264

• INCL $X, YZ (increases the value of low byte): u($x)←(u($X)+YZ×216)
mod 264

• ORH $X, YZ (bit wise OR operation is carried to high position): v($x)←
(v($X))|(YZ<<48)

• ORMH $X, YZ (bit wise OR operation is carried out to mid-high posi-
tion): v($X)←(v($X))|(YZ<<32)

• ORML $X, YZ (bit wise OR operation is carried out to mid-low position):
v($X)←(v($X))|YZ<<16)

• ORL $X, YZ (bit wise OR operation is carried out to low position):
v($X)←(($X))|v(YZ))

• ANDNH $X, YZ (bit wise Not-AND operation is carried to high position):
v($X)←(v($X))&v(YZ<<48)

• ANDNMH $X, YZ (bit wise Not-AND operation is carried to mid – high
position): v($X)←(v($X))&v(YZ<<32)

• ANDNML $X, YZ (bit wise Not-AND operation is carried to mid-low
position): v($X)←(v($X))&v(YZ<<16)

• ANDNH $X, Y Z (bit wise Not-AND operation is carried to low position):
v($X)←(v($X))&v(YZ)
We can obtain any desired four word bytes in a register without loading

anything from memory, just through using at most four instructions afore-
mentioned. For example, instruction SETH $0, #0123; INCMH $0, #4567:
INCML $0, #89ab; INCL $0, #cdef put #123456789abcdef into register $).

MMIX assembly language allows us to use SET to represent the simplifi-
cation of SEET and we use SET $X, $Y to simplify the common instruction
OR $X, $Y, 0.

13.3.9 Jumps and Branches

Usually, instructions are executed sequentially in the order they appear. In
other words, the commands that is performed after MMIX obeyed the tetra-
byte in memory location @ is normally the tetrabyte found in memory loca-
tion @+4 (The symbol @ denotes the position where MMIX currently stays).
However, jump and branch instructions allow us to break the order.

374 Chapter 13 Generation of Object Code

• JMP RA: @←RA

Here RA represents a relative address with three bytes that may be more
specifically written as @+4*XYZ, that is, double word XYZ is added to the
current position @. For example, “JMP @+ 4*Z” may be in the symbol form
#f00000Z. If this instruction appears in location #1000, the next instruction
that will be executed is in location #1008. In fact, we may write “JMP
#1008”, but the value of XYZ will depend on the position from where the
instruction jumps out.

The relative address may have negative value. In this case, the operator
increases one, and the XYZ is the offset plus 224. For example, “JMP @–4*Z”
is double word byte #f1ff fffe. The operator #f0 tells the computer to “jump
ahead”, while the operator #f1 tells the computer to “jump backward”. But
we may write both as JMP. Actually, when we want to jump to the location
Addr, we just need to write “JMP Addr”, and MMIX assembler will figure
out the proper operator and proper value of XYZ. Such jump or branch is
possible unless the offset exceeds current position for more than 67 million
bytes.
• GO $X,$Y, $Z : u($X)←@+4, then @←A

The instruction GO allows us to go to absolute address in any location of
he memory. From Formula (13.4), the address A is evaluated, it is the same
as in load and store instructions. Before go to a special address, usually the
next instruction to appear is located in the register $X. Therefore by, say,
the instruction “Go $X, $X, 0”, that is, taking Z = 0 as the instant constant,
we may return to that address later.
• BN $X, RA (branch if negative): If s($X)<0, then set @←RA
• BZ $X, RA (branch if zero): if s($x) = 0, then set @←RA
• BP $X, RA(branch if positive): If S($X)>0, then set @←RA
• BOD $X, RA (branch if odd): if s($X)mod 2 = 1, then set @←RA
• BNN $X, RA (branch if non negative): if s($X)�0, then set @←RA
• BNZ $X, RA (branch if non zero): if s($X)�=0, then set @←RA
• BNP $X, RA (branch if non positive): if s($X)�0, then set @←RA
• BEV $X, RA (branch if even): if s($X) mod 2 = 0, then set @←RA

A branch instruction is a conditional jump depending on the content
of the register $X. The extent of the destination address RA is limited in
comparison with that of JMP instruction, because there are only two bytes
that may be used to express the relative offset. Nevertheless, we still may
jump to any double word bytes between @–218 and @+218–4.
• PBN $X, RA (possibly branch if negative): if s($X) <0, then set @←RA
• PBZ $X, RA (possibly branch if zero): if s($X) = 0 then set @←RA
• PBP $X, RA (possibly branch if positive): if s($X)>0 then set @←RA
• PBOD $X, RA (possibly branch if odd): if s($X) mod 2 = 1, then set

@←RA
• PBNN $X, RA (possibly branch if non negative): if s($X)�0, then set

@←RA

13.3 Target Machine MMIX 375

• PBNZ $X, RA (possibly branch if non zero): if s($X)�=0 then set @←RA
• PBNP $X, RA (possibly branch if non positive): if s($X)�0 then set

@←RA
• PBEV $X,RA (possibly branch if even): if s($X) mod 2 = 0 then set

@←RA

If high speed computer can predict when will it handle a branch instruc-
tion, then usually it works fastest because the previous knowledge will help it
look forward, and prepare well for handling instructions in the future. There-
fore, MMIX encourages the programmer to provide the indication whether
a branch instruction is possible. Whenever there is more than half of chance
that a branch instruction will appear, then the programmer may use the
possible branch instructions, rather than the branch instructions.

13.3.10 Subprogram Calls

MMIX also provides many instructions that facilitate effective communica-
tions between subprograms through a register stack. But its details are rather
technical, we just present an informal description here. For short programs,
it need not use these characteristics.
• PUSHJ $X, RA(push to register and jump): PUSH(x),and set rJ←@+4,

then set @←RA
• PUSHGO $X, $Y, $Z (push to register and jump):PUSH(x),and set rJ←

@+4, then set @←RA

The special-purpose return-jump register rJ is set to the address of double
word following instruction PUSH(X). Roughly speaking, the action of PUSH
(x) means that the local register $0 and $X are kept and made them unac-
cessible temporarily. The original $(x+1) now becomes $0, $(x+2) becomes
$1, etc. But for all the registers $k where k�rG, they remain unchanged. rG
is a special-purpose global threshold register, its value is always between 32
and 255 (inclusive).

If k�rG, then the register $k is called global; if k�rL, then it is called local.
Where rL denotes special- purpose threshold register that tells currently how
many local registers are there active. Otherwise, if rL�k�rG, then register $k
is called boundary, and whenever it is used in an instruction as an operand,
$k is equal to 0. If a boundary register $k is used as source operand in
an instruction, then $k is equal to 0; if a boundary register $k is used as
target register in an instruction, then before the instruction is executed, rL
automatically increases to k+1, so that $k becomes a local one.
• POP X, YZ (pop out from register and return): POP (X),then set @←rJ+

4*YZ

Roughly speaking, “POP (X)” indicates that apart from X, all the local
registers become boundary ones. And then the most recent “PUSH (X)”

376 Chapter 13 Generation of Object Code

hides the local register that hasn’t been popped and restores its original
value.
• SAVE $X,0 (save process state): u($X)←contents
• UNSAVE $X (restore process state) : contents←u($X)

The instruction SAVE stores all the current registers to the top of register
stack in memory, and push the top four word’s address to stack u($X). The
register $X must be global, and X must be greater than or equal to rG. All
the current local registers and global registers must be stored, along with
rA, rD, rG, rH, rM, rR, and several registers which we have not discussed
so far. The instruction UNSAVE takes such a top four word bytes address
and restores the relevant contents. Actually, it undoes what a previous SAVE
instruction did. The value of rL is set to zero by SAVE instruction, and then
UNSAVE restores it.

MMIX has special registers called stack offset register (rO) and stack
pointer register (rS), they control the operations of PUSH, POP, and UN-
SAVE.

So far, we have introduced main instructions of MMIX with target reg-
isters. In the target code generated by compiler these instructions will ap-
pear. But for completeness, we will also list those instructions which MMIX
attempts to use in super speed and parallel operations and the instructions
that are used for handling interruptions.

System considerations. Here we list the instructions which high-level users
may be interested in using for super speed and parallel operations of MMIX
structure. In the sense that these operations provide the machine with how
to plan in advance to realize maximal efficiency, the relevant operations are
similar to the “possible branch” instructions. Apart from probably using
instruction SYNCID, most of the programmers do not need to use these
instructions.
• LDUNC $X, $Y, $Z (load four word that are not in adjusted buffer):

S($X)←S(M8[A])
• STUNC $X, $Y, $Z (store four word that are not in adjusted buffer):

S(M8[A])←S($X)
These instructions implement the same operations as LDO and STO did,

but they also inform the machine that the loaded and stored four word bytes
and their adjacent words will be read or written in the nearest future.
• PRELD X, $Y, $Z (preload data).

It states that many bytes from M[A] till M[A+X] will be loaded or stored
in the nearest future.
• PREST X, $Y, $Z (prestore data)

It states that many bytes from M[A] till M[A+X] will definitely be written
(stored) before next time they are read (loaded).
• PREGO X, $Y, $Z (pretake to branch)
It states that many bytes from M[A] till M[A+X] will probably be used for
instructions in the future.
• SYNCID X, $Y, $Z (synchronized instructions and data)

13.3 Target Machine MMIX 377

It states that all of bytes M[A] through M[A+X] must be fetched again
before being interpreted as instructions. MMIX is allowed to assume that a
program’s instructions do not change after the program has begun, unless
the instructions have been prepared by SYNCID.
• SYNCD X, $Y, $Z (synchronize data)

It states that all of bytes M[A] through M[A+X] must be brought up
to date in the physical memory, so that other computer and input/output
devices can read them.
• SYNC XYZ (synchronization)

Different processors can reliably cooperate together through confining the
parallel activities.
• CSWAP $X, $Y, $Z (compare and exchange four word bytes)

If u(M8[A]) = u(rP), where rP is a special prediction register, set u(M8)
←u($X) and u($X)←1,otherwise set u(rP)←u(M8[A]) and u($X)←0. This is
an atomic operation (indivisible) that it is used when a number of computers
share a common memory.
• LDVTS $X, $Y, $Z (load a pseudo translation state)

This instruction is only provided for operating system, and the details are
omitted.

13.3.11 Interruptions

The usual activities from a double word byte to the next instruction, not
only may be changed by jump and branch instructions but also by unpre-
dictable events such as overflow or output signals. The real world computers
also need to cope with the matters like violations of the security regulations
and hardware failures. MMIX distinguishes two kinds of interruptions: Trips
and traps. A trip sends control to the trip handler that is a part of the user
program; a trap sends control to trap handler that is a part of the operat-
ing system. When MMIX is doing arithmetic operation, there may be eight
unexpected conditions, they are: integer division check (D), integer overflow
(V), flow to fix-point overflow (W), incorrect float operations (I), float over-
flow (O), float underflow (U), float division by zero divisor (Z), and float
incorrect (X). Special arithmetic state register rA maintains current infor-
mation of these unexpected situations. Its 8 bits of the right most byte are
called its event bits. They are in the order of DVWIOUZX, and is called
D BIT(#80), U BIT(#40), . . . , X BIT(#01). The left 8 bits of the event
binary bits in rA are called enable bits. They also appear in the same or-
der as DVWIOUZX. When some arithmetic operation is executed and some
condition occurs, before MMIX proceeds to the next instruction, it searches
for the relevant enable bit. If the enable bit is 0, then the corresponding
event is set to 1; otherwise machine will go through trip to location #10

378 Chapter 13 Generation of Object Code

and handle unexpected event D, to location #20 to handle unexpected event
V, . . . , to location #01 to handle unexpected event X, invoking a trip handler.
Thus the event binary bits of rA record the unexpected events that have not
caused the trips occurring (if there are more than one enable bits occurring,
then the left most bit is handled first. For example, if both O and X occur
simultaneously, then O is handled first). On the left most enable bits in rA,
two binary bits maintain round off mode 4, the other 46 bits of rA should
keep 0’s. By using the PUT instruction to be discussed below, a program
may change the setting of rA at any time.
• TRIP X, Y, Z, or TRIP X, YZ, or TRIP XYZ (trip)

This instruction forces a trip to jump to the trip handler starting at
location #00.

Whenever a trip occurs, MMIX uses 5 special-purpose registers to record
current states: bootstrapping register rB, where does interrupt occur register
rW, execution register rX, Y operand register rY and Z operand register rZ.
At first, rB is set to $255. Then rJ is also set to $235, and rW is set to
@+4. The left part of rX is set to #80000000, the right half is set to trip
instruction. If the interrupted instruction is not a store instruction, then the
left part of rY is set to $Y and rZ is set to $Z (or under the situation of
instant constant it is set to Z). Otherwise rY is set to A (the store address of
a store instruction), and rZ is set $X (the number to be stored). Finally the
control is transferred to the handler through setting @ as the handler address
(#00 or #10 or. . . or #80).
• TRAP X, Y,Z or TRAP X, YZ or TRAP XYZ (trap).

This instruction is similar to TRIP, but it forces a trap to jump to the
operating system. The special-purpose registers rBB, rWW, rXX, rYY and
rZZ replace rB, rW, rX, rY, and rZ. Special trap register rT provides the
address of trap handler. To finish a program, the usual method is to have
“Trap 0” of which the double word bytes are #00000000. Hence, a program
may fall to trap due to mistake.
• RESUME 0(continue after interruption)

If s(rX) is negative, MMIX simply sets @←rW–4 and executes the instruc-
tion at left half of rX as if it occurs there (even if there is no interruption
happening, the characteristics may also be used, but the instruction that is
inserted cannot be RESUME).

The complete instruction set. Table 13.1 shows all the names of 256
operators that are sorted in the hexadecimal number order. For example,
ADD occurs on the upper half of the rows labeled #2x and the top of the
columns labeled #0. Therefore, the operator of ADD is #20. ORL occurs
on the lower half of the rows labeled #EX and the bottom of the columns
labeled #B, so the operator of ORL is #EB.

We have now discussed almost all the operators of MMIX, there are two
more as follows:
• GET $X,Z (Flow in from special register): u($X)←u(g[Z])where 0�Z<32

13.3 Target Machine MMIX 379

• PUT X, $Z (Write to special register): u(g[x])←u($Z) where 0�X<32
Every special register has a number between 0 and 31. That we say reg-

isters rA, rB, . . . , is for easier understanding of human being. But from the
point of view of computer, actually rA is g[21], and rB is g[0], etc. Table 13.2
shows these numbers.

Get instruction has no constraint, but for PUT instruction there are some
things that are not feasible: In rG it is not allowed to put any number greater
than 255 or less than 32, it cannot store any number that is less than the
current setting value of rL. In rA, it is not allowed to put any number greater
than #3ffff. If a program attempts to use PUT instruction to increase the
value of rL, the value of rL will keep unchanged. Moreover, a program cannot
use PUT instruction to put any value to rC, rN, rO, rS, rI, rT, TT, rK, rQ,
rU, or rV. These “extra special” registers have the numbers in the extent of
8–18.

380 Chapter 13 Generation of Object Code

Table 13.2 The special-purpose registers of MMIX

Name Meaning Number Store Output

rA arithmetic register 21
√ √

rB bootstrap register 0
√ √

rC loop counter 8

rD dividend 1
√ √

rE ∈ register 2
√ √

rF failure location register 22
√

rG global threshold register 19
√ √

rH high multiplication register 3
√ √

rI duration register 12

rJ return- jump register 4
√ √

rK interruption register 15

rL local threshold register 20
√ √

rM multiplex mask register 5
√ √

rN serial number 9

rO register stack offset register 10

rP prediction register 23
√ √

rQ interruption request register 16

rR remainder register 6
√ √

rS register stack pointer 11

rT trap location register 13

rU usage counter 17

rV virtual translation register 18

rW where is interruption register (trip) 24
√ √

rX execution register 25
√ √

rY Y operand (trip) 26
√ √

rZ Z operand (trip) 27
√ √

rBB bootstrap register (trap) 7
√

rTT dynamic trap location register (trap) 14

rWW where is interruption register (trap) 28
√

rXX execution register (trap) 29
√

rYY Y operand (trap) 30
√

rZZ Z operand (trap) 30
√

Relating to some special instructions, we have mentioned most of the
special-purpose registers. But MMIX has also a“time register” or loop counter
rC that keeps going on; a failure register rF that assists the detection of hard-
ware failures; a duration counter that keeps backward, and when it reaches
value 0, it requests an interruption. A serial number register rN that as-
signs a unique number to every MMIX machine. A usage counter rU that
increases one whenever a special operator is executed. There is a virtual trans-

13.3 Target Machine MMIX 381

lation register rV that defines mapping from “virtual” 64 bit address to the
“real physical location that is installed in the memory. These special regis-
ters assist MMIX to be a completely feasible machine that can be realistically
constructed.
• GETA $X, RA (gets address) u($X)←RA

This instruction uses the same convention as the branch instructions that
puts a relative address into register $X. For example, “GETA $0, @” puts $0
to be the address of the instruction itself.
• SWYM X, Y, Z or SWYM x, YZ or SWYM XYZ (SWYM means “sym-

pathize with your machinery”)
This is the last of the 256 instructions. Fortunately it is simplest. Actu-

ally, it is usually called empty operation, because it does not do anything.
However, it makes the machine running smoothly. Here, X, Y, Z are omitted.

Timing

We have mentioned that, in the generation of the target code, we need to
compare different generation schemas, to specify which one is better. Apart
from the comparison of the memory volumes which they used, the another
index is the time they consumed. In other words, we may compare those
target programs that all solve the same problem or were generated for the
same problem, to see which one runs faster. However, generally speaking,
such comparisons are not easy to carry out as the architecture of MMIX can
be implemented in many different modes. The running time of a program
not only depends on the timing progress, but also depends on the dynamic
energetic units that can be synchronously active as well as the degree by
which they form the stream line. It depends on the size of randomly access
memory that offers the illusion of 264 virtual bytes. It also depends on the
adjustment strategy of buffer and other areas, the sizes of these areas, and
allocation strategy, etc.

In order to be pragmatic, the measurement of the running time of a MMIX
program may often be based on the running time which a high performance
machine with large volume of main memory can achieve. For every operation,
an overhead is assigned to it. By this way, the satisfactory estimation may
be given. Suppose that every operation takes an integer v that represents a
unit of the time loop that a streamline uses. Even though as the development
of science and technology the value of v is decreasing, we can always keep
the newest value instead of using ns to measure. In our estimation, we will
also assume that the running time depends on the quantity of memory mems
which a program accesses. This is the number of instructions that are loaded
and stored. For example, we will assume that, every LDO (load four words)
instruction takes μ+v, where μ represents the average overhead of a memory
access. The whole running time of a program may be reported 35μ+1000v,
meaning that it has 35 memory accesses plus 1000 time units loops. For many
years, the value μ/v gradually increases no one knows whether the trend will
continue or not. But the experience has proved that, the values of μ and v

382 Chapter 13 Generation of Object Code

deserve independent consideration.
Table 13.1 has demonstrated the assuming running time of each operation.

Notice that, most of the instructions just spent 1v of the running time, while
load and store operations spent μ+v. If the prediction is done correctly, a
branch or a possible branch take also 1v time. But if the prediction is not
done correctly, it will take 3v time. The float operations usually take 4v time,
although FDIV and FSQRT spend 40 v time. Integer multiplication takes 10v
while integer division takes 60 v.

Though we usually use the assumptions of Table 13.1 to make the esti-
mation of the running time, we must keep in mind that the real running time
may be very sensitive to the order of the instructions. For example, if we
can discover that between the time we issue our instructions and the time
we need, there are 60 pieces of other works that have to handle, the integer
division maybe only take one period. Several LDB (load bytes) instruction
maybe only needs one access to memory if their accesses are to the same
four word bytes. However, the result of one load instruction usually does not
provide preparations for uses of the following instructions. The experience
has shown that some algorithms are good in adjusting the buffer, but other
algorithms are not. Therefore, μ is not a constant. Even the addresses of the
instructions in memory would have important effect to performance, because
some instructions may be taken along with other instructions.

Therefore, the software package MMIXware provided by MMIX not only
contains a simple simulation program, but also contains a meta modulation
program. It runs MMIX program under extensive different technical assump-
tions. The user of meta modulation program may determine the character-
istics of memory general bus, as well as other parameters such as adjusted
buffer of instruction and data, virtual address translation, stream line and
simultaneous issue of instructions, branch prediction, etc. Given a configu-
ration file and a program file, meta modulation program may precisely de-
termine how long will the specific hardware run the program. In fact, only
the meta modulation program may be trusted that it may provide reliable
information about the real behavior of a program. But this kind of result
is hard to interpret because there may be infinite configurations. Hence, we
usually present rather simple estimation by means of Table 13.1.

So far, we provide rather complete introduction to target machine. Se-
quentially, we may consider the issues of the generation of target code direct-
ing at the machine.

13.4 Assembly Language of MMIX

When generating target code, of course we may directly generate the in-
structions of MMIX. But in this way many details introduced above must be
involved and it will be easily prone to inevitable errors. Therefore, we have

13.4 Assembly Language of MMIX 383

stronger trend in using the symbol language which it provides, i.e., the assem-
bly language called MNIXAL. It is the extension of the mnemonic notation
of the instruction. By using it, the MMIX programs can be written and read
easier, the programmer does not need to worry about the tedious details that
often lead to errors. Its main characteristics are that it selectively uses the
mnemonic symbols to represent numbers, uses a label field to associate the
name, memory cell, and number of registers.

We may introduce it by giving each convention of MMIXAL. But if we
really do so, we would still do not know how to use it. Therefore we would
rather use a simple example instead. In this example, various symbols in
MMIXAL will occur. The following code is a part of a bigger program that
is used to find out the maximum of n elements x[1], . . . , x[n]. The idea of the
algorithm of the subprogram is that, suppose that the maximal element is the
last element. We put this element into a special location. Then we compare
it with the elements in its left hand side in turn. If it is greater than any of
these elements, it still stays in the location. But if it is less than anyone, the
winner of the competitors will take its place over and becomes the new host
of the location. When all the n elements have finished the battle, the one now
staying in the location is the maximal value.

Program M (find maximal). At the beginning, n is in register $0,
and the address of x[0] is the register x0(a global register that is defined in
somewhere else).

Assembly code Row Label Operator Expression Times Note

number number
01 j IS $0 j

02 m IS $1 m

03 kk IS $2 8k

04 xk IS $3 X[k]

05 t IS $255 temporary storage

06 LOC #100

#100: #39 02 00 03 07 Maximum SL kk,$0, 3 1 M1. Initialization.

k←n,j←n

#104: #8c 01 fe 02 08 LDO m,x0, kk 1 m←X[n]

#108: #f0 00 00 06 09 JMP DecrK 1 goto M2 with k←n−1

#10c: #8c 03 fe 02 10 Loop LDO xk,x0,kk n-1 M3. Comparison

#110: #30 ff 03 01 11 CMP t,xk,m n-1 t←[X[k]>m]- X[k]<m]

#114: #5c ff 00 03 12 PBMP t, DecrK n-1 if X[k]�m, then goto M5

#118: #c1 01 03 00 13 ChangeM SET m,xk A M4 Change m. m←X[k]

#11c: #3d 00 02 03 14 SR j, kk,3 A j←k

#120: #25 02 02 08 15 DecrK SUB kk,kk,8 n M5. Decrease k, k←k−1

#124: #5502 ff fa 16 PBP kk, Loop n M2. Test all? If k>0,

then return to M3

#128: #f802 00 00 17 POP 2,0 1 return to main program

This program also shows the usage of the relevant symbols of MMIXAL.
1) The columns “label“, “operator”, and “expression” are more interesting

as they contain the program written in MMIXAL machine language.
2) The column “assembly code” lists the real numerical machine language

that corresponds to MMIXAL program. The translation usually is done by
the so-called assembler or another versions of the assembler that is another

384 Chapter 13 Generation of Object Code

computer programs. Therefore, the programmer may use MMIXAL to write
all programs and need not take the troubles to write the equivalent numerical
program by hand.

3) The column “row number” actually is not a part of MMIXAL program.
We add it just for the convenience of references.

4) The column “note” presents the explanation information.
5) The column “time” represents the profile, i.e., in the process of the

execution of the program, how many times does the statement on the line
execute. Therefore, the instruction on line 10 will be executed n–1 times,
etc. From this information, we may determine how long does the program
take, it is n−1 times, etc. From this information, we may determine how long
does the program take, it is nμ + (5n+4A+5)v, where A is the quantity that
was analyzed by D. E. Knuth in his book. Now we may specifically discuss
Program M of the MMIXAL part. The line 01 “ j IS $0” states that symbol j
represents the register $0. The line 02 to 05 are analogous. The effects of lines
01 and 03 can be seen from line 14 where the numerical value of instruction
“SR j kk 3” appears as # 3d 00 02 03, that is, “$R $0, $2, 3”.

The line 06 states that, from #100, the successive addresses should be
sequentially determined. Therefore, the symbol Maximum that appears in
the label Field of line 07 becomes equivalent number #100; in line 10, the
symbol Loop is the consecutive three double word bytes, hence it is equivalent
to #10c.

The operators on lines 07 to 17 contain the symbol names SL, LDO etc.
of MMIX instructions. They are different from that appear on lines 01 to 06.
IS and LOC are called pseudo operators as they are operators of MMIXAL
rather than that of MMIX. Pseudo operators provide special information
on symbolic programs but they are not the instructions of the programs.
Therefore the line “j IS $0” only involves program M, it does not mean that
when the program runs, any variable will be set to equal to the content of
the register $0. As they are pseudo operators, there is no instruction in lines
01 to 06 that will be assembled.

The line 07 is a shift left instruction that sets k←n via setting kk←8n.
That program works based on the value of 8k, rather than k, as the four word
bytes on line 08 and 10 need 8k.

The line 09 makes the control jumping to line 15. As the assembler knows
that the jump instruction is in the location #108 while DecrK is equivalent to
#120, it computes the relative offset (#120–108)/4 = 6. The relative address
is also computed for the jump instructions in lines 12 and 16.

The rest of symbolic code is self-explained. As early pointed that program
M is intended to be part of a larger program, elsewhere the sequence

SET $2, 100
PUSHJ $1, Maximum
STO $1, Max

would, for example, jump to program M through setting n to be 100. Program
M will search the maximal of elements x[1], . . . , x[100]. And by storing

13.4 Assembly Language of MMIX 385

the maximal value into $1 and storing its address into $2, it will return to
instruction “STO $1, Max”.

Now we have a look at the complete program once again, instead of only
the subprogram. We call the following program “hello world” because the
message it prints is “Hello world”, then it stops.

Program (Hello)
Assembly code Row Label Operator Expression Note

number number
01 argv IS $1 argument vector

02 LOC #100

#100:#8fff0100 03 Main LDOU $255, argv, 0 $255←the name of program

#104:#00000701 04 TRAP 0,Fputs, StdOut print the name

#108:#f4ff0003 05 GETA $255,String $255←the address of ‘‘world’’

#10c:#00000701 06 TRAP 0, StdOut print the sstring

#110:#00000000 07 TRAP 0,Halt,0 stop

#114:#2c20776f 08 String BYTE ‘‘, Hello’’, #a,0 The string with line feed and
end symbol

#118:#726c6490 09

1#11c:#00 10

It needs to explain that in order to execute the program, a concise com-
puter document that contains LABEL, OP, and EXPR should be prepared
first, the document is called “Hello.mms”. And it is assembled through, say,
“mmixal Hello.mms”. The assembler will generate a document called “Hello.
mmo”, the postfix of which .mms indicates that it is “MMIX symbolic”,
and .mmo implies “MMIX target”. Now the simulation program is called via
saying “mmix Hello”.

The MMIX simulator implemented some simplest characteristics of an
assumed operating system called NNIX. If there exists a target called, say,
foo.mmo, then when an instruction line is given, for example, it is

foo.bar xyzzy
then NNIX will initiates. The simulation program is called using instruction
line “mmix <option> foo bar xyzzy”, where <option> is a sequence of 0
or more special requests from which corresponding feature may be obtained.
For example, after NNIX stopped, an option P will print a profile of the print
program.

A MMIX program always starts with a symbol unit Main. At the time,
the register $0 contains the number of arguments in the instruction line, that
is the number of the words in the instruction line. The register $1 contains
the address of the storage of the first such argument that is always the name
of the program. The operating system has put all arguments into consecutive
four word bytes, and starts with the address in $1 and ends with an all zero’s
four word bytes. Every argument will be represented as a string, meaning
that it is the address in memory of a sequence of zero or more nonzero bytes
followed by a zero byte. The nonzero bytes are characters of the string.

For example, the instruction line (1) will cause $0 being 3 initially. We
may have:

386 Chapter 13 Generation of Object Code

$1=#4000000000000008 the pointer of the first string

M8[#4000000000000008]=#4000000000000028 the first argument, string foo’’

M8[#4000000000000010]=#4000000000000030 the second argument, string "bar"

M8[#4000000000000018]=#4000000000000038 the third argument, string "xyzzy"

M8[#4000000000000020]=#4000000000000000 the empty pointer after the last
argument

M8[#4000000000000028]=#666f6f0000000000 ‘f’‘o’‘o’ 0, 0, 0, 0, 0

M8[#4000000000000030]=#6261720000000000 ‘b’‘a’‘r’, 0, 0, 0, 0, 0

M8[#4000000000000038]=#787977a7a79000000 ‘x’‘y’‘z’‘z’‘y’, 0, 0, 0

NNIX establishes the string of every argument so that its character starts
at the boundary of four word bytes. However, in general, string may start at
any location in the four word bytes.

In line 03, the first instruction of program H puts the string pointer M8[$1]
into the register $255. The string is the name of the program “Hello”. Line
04 is a special instruction Trap that requires that the operating system put
the string $255 into the standard output document. Similarly, lines 05 and 06
require that NNIX contribute “world” and a line feed to the standard output.
The symbol Fputs is prearranged to be 7 while symbol stdOut is predefined
to be1. The line “TRAP 0, Halt, 0” is a usual way to end a program. This
belongs to a special trap instruction.

The string output characters of lines 05 and 06 are generated by BYTE
instruction in line 08. BYTE is a pseudo operator of MMIXAL, rather than
an operator of MMIX. But BYTE is different from the virtual operators like
IS and LOC in that it does assemble the data to storage. Generally speak-
ing, BYTE assembles a series of expression to a constant of one byte. The
construction of line 08 “world” is the abbreviation of seven single characters

"," "," "w", "o", "r", "l", "d"

The constant #a on line 08 is the symbol line feed in ASCII. If it appears in
a file in printing, it will cause the action of line feed. The final “0” on line 08
is used to end the string. Therefore line 08 is a table of nine expressions and
it causes the showing of nine bytes on the left sides of lines 08–10.

The summary of the language. Now that we have seen three examples
that demonstrate what can we do in MMIXAL, it is the time to carefully
discuss several rules, especially we have to investigate what cannot be done
in the language. The following are few rules that define the language.

1) A symbol is a string that starts with a letter and followed by let-
ters/numbers. As the purpose of the definition, underline “ ” is regarded as
a letter, and all the Unite codes with value more than 126 are also letters.
For example, PRIME1, Data-Segment, Main, , pâté.

Special constructions dH, dF, and dB, where d is a single number. Accord-
ing to the convention of “local symbols” explained above, it is substituted
effectively by unique symbol.

2) A constant is:
(1) A decimal constant. It consists of one or more digits of decimal num-

13.4 Assembly Language of MMIX 387

bers {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} that represent a four word bytes without sign
in decimal notation.

(2) A hexadecimal constant. It starts with a # and followed by one or
more digits of hexadecimal numbers {01, 2, 3, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e,
f} that represent a four word bytes without sign in the hexadecimal notation.

(3) A symbolic character. It starts with a quotation mark “ ‘ ”, followed
by any characters that are different from line feed, then followed again by
another quotation mark “ ’ ”. This represents a quoted ASCII code or Unite
Code value. For example:

‘65’, ‘#41’, ‘a’, ‘39’, ‘#27’, ‘31639’, ‘#7B97’, ‘�’

A string constant starts with a double quote “ “ ”, followed by one or more
characters that are different from line feed and double quote mark, followed
again by another double quote “ ” ” This construction is equivalent to a series
of character constant of individual characters that are separated by commas.

3) We say that in a MMIXAL program, the every appearance of a charac-
ter is either a “defined symbol” or a “future reference”. A defined symbol is
a symbol that already occurred in the label field of some line in the previous
MMIXAL program. A future reference is a symbol that hasn’t been defined
in this way.

The symbols such as rR, ROUND NEAR, and V BIT, as well as W Handler
and Fputs are predefined as they are the constants that are related to refer
to MMIX hardware or its basic operating system. These symbols may also
be redefined as MMIX does not assume that every programmer knows their
names, but there is no any symbol that can be used for a label for more than
once.

Every defined symbol has its equivalent value, it is either pure bytes(an
unsigned octabyte) or a register number ($0 or $1 or . . . or $255).

4) A main symbol is:
(1) a symbol; or
(2) a constant; or
(3) character @; or
(4) an expression included in a pair of parentheses;
(5) an unary operator followed by a main symbol.
Unary operator is +(determined, and it does not do anything), – (nega-

tive, it is reduced from zero), ∼ (negate, it changes all 64 binary bits) and $
(registerization, it transforms a value to be the number of a register.)

5) A term is a series of one or more than one main term divided by a
strong binary operator; an expression is a series of one or more terms divided
by a weak binary operator. The strong operators are * (multiplication), /
(division), // (fractional division), % (remainder), << (shift left), >>(shift
right), and & (bitwise and). Weak binary symbols are + (addition), – (sub-
tract), | (bit wise or) and ∪+ (bit wise not or). These operations are carried
out to octal bytes without sign. If x<y, x//y represents)264x/y *, and if
x�y then it is not defined. The binary operators with the same strength are

388 Chapter 13 Generation of Object Code

carried out from left to right, hence a/b/c is (a/b)/c while a-b+c is (a-b)+c.
Example [5]: #ab<<32+k&∼(k–1) is an expression. It is the addition of

term #ab<<32 and term k&∼(k–1), and the later term is the bitwise and of
main terms k and ∼ (k–1).The later main term is the complement of (k–1)
that is the complement of an expression included in parentheses that is the
difference of term k and term 1. 1 is also main term, actually it is a constant
of decimal system. If the symbol k, say, to be equivalent to #cdef00, then the
whole expression #ab<<32+k& ∼ (k–1) is equivalent to #ab000001000.

The binary operations are only allowed to perform on the pure numbers,
except for the exceptional cases like $1+2 = $3 and $3–$1 = 2. The future
reference cannot be combined with anything else, the expression such as 2F+1
is always illegal, because 2F never corresponds to any defined symbol.

6) An instruction consists of three fields:
(1) LABEL field. It is either blank, or is a symbol.
(2) OP field. It is either an MMIX operator or a virtual operator of

MMIXAL.
(3) EXPR field. It is a list of one or more expressions, separated by

commas in between. The EXPR field may also be blank, in which case it is
equivalent to the expression 0.

7) The assemble of an instruction is carried out in the following three
steps:

(1) If it is needed, the current location @ can be aligned through adding
to it the multiples of

8, if the operator is OCTA;
4, if the operator is TETRA or an operator of MMIX;
2, if the operator is WYDE.

(2) If the symbol in LABEL exists, it is defined as @, unless OP = IS or
OP = GREG.

(3) If OP is a virtual operator, please refer to rule 8, otherwise OP is an
instruction of MMIX and it is as explained in Section 13.2, OP and EXPR
fields define a tetra (double word) bytes, hence @ should be added 4. Some
instructions of MMIX have three operands in the EXPR field, while others
have two, there are some that have one operand only.

If OP is, say, ADD. MMIXAL may predict that there are three operands,
then it will check if the first and the second operands are register numbers.
If the third operand is a pure number, MMIXAL will change the operator
from #20 (add) to #21 (prompt add) and it will check if the prompt value is
less than 256.

If the OP is SETH, then MMIX will expect that there are two operands.
The first operand should be a register number, and the second should be a
number less than 65536.

An OP like BNZ takes two operands: a register number and a pure num-
ber. The pure number should be expressed as a relative address. In other
words, its value should be able to express as @+4k where –65535� k �65536.

Accessing memory. The OP like LDB or GO has two forms: either two

13.5 Generation of MMIXAL Target Codes 389

operands $X, A or three operands $X, $Y, $Z or $X, $Y, Z. When the memory
A may be expressed as the sum of a base address and a byte Z: $Y+Z, the
option of two operands may be used.

8) MMIXAL contains the following virtual operations:
(1) OP = IS. The EXPR should be a single expression; If there exists a

symbol in LABEL, it is regarded to be equivalent to the value of the expres-
sion.

(2) OP = GREG. The expression is a single expression with a pure equiva-
lent value x. If the symbol in LABEL exists, it is taken to be equivalent to the
maximal register number that has not been allocated. Moreover, when the
program starts, this global register will contain x. If x�=0, then x is regarded
as the base address, and the program will not change the global register.

(3) OP = LOC. EXPR should be an expression with a pure equivalent
value x. The value of@ is set to x. For example, the instruction “T LOC
@+ 1000” defines T as the start address of the series of 1000 bytes, the @ is
advanced to the byte after the series.

(4) OP = BYTE,WYDE, TETRA, or OCTA. The EXPR field should be
a list of pure expressions each of which may load in 1, 2, 4, or 8 bytes.

9) MMIXAL confines the future reference so that the process of assemble
may be completed in one pass scanning of the program. The future reference
is allowed only when it is the following case:

(1) In a relative address, like the operand of JMP, or the second operand
of branch instructions, possible branches, PUSH, or GETA.

(2) In an expression that is assembled by OCTA.
MMIXAL has also some additional characteristics that are related to sys-

tem programming [6], we do not introduce them here. For a complete descrip-
tion of the details of the language, they appear in the file <MMIX ware>,
along with a complete procedure of working assembler.

13.5 Generation of MMIXAL Target Codes

Having the language of target codes, our next task is to discuss how to trans-
late various kinds of intermediate code to target codes [7]. The intermediate
codes we have introduced include reversed polish form, triple form, quadruple
form and syntax tree form. No matter which one is adopted, what we need
to translate are expressions and statements, including sequential statements,
conditional statements and loop statements.

No matter which intermediate code is used, the algorithm that is used to
translate them into target code is to put the intermediate code that needs to
handle into stack, then take them out one by one to translate. In this process
of analysis, the corresponding target will come out.

In the following, we take reversed Polish form to express expressions to
show the translation procedure and further explain our algorithm. In this

390 Chapter 13 Generation of Object Code

way, we do not need to make any explanation regarding the problem later.

13.5.1 Translation of Expressions in Reversed Polish Form

In order to generate the target code of the expressions in the reversed Polish
form, we need to use a stack. The stack is called component stack that stores
each intermediate syntax tokens that constitute the expressions, each element
is denoted s[i]. The rough translation procedure is that, from the reversed
Polish form area the tokens of the token string are taken, and put them into
the stack. If the one that is scanned is a variable, then at the same time as
it is put into the stack, it is also put into register in order to perform the
operation. If the one that is scanned is an operator, then it needs to check
which type of operator is it? If it is a unary operator, then it only needs to
perform the operation on the operand preceding the operator. If it is binary
operator, then the corresponding operation should be performed over the two
operands before the operator. Similarly, if it is an n-ary operator, then the
operation will be performed over the preceding n components. But so far
we have not met n-ary operator. Hence for the translation of expressions in
the reversed Polish form, the most important thing is to put variables into
registers. Thus when operator is met, the corresponding instructions will
directly come out.

For example, suppose that the expression is (x ∗ y + w ∗ z) ∗ x−−y/z,
then its reversed Polish form is

xy ∗ wz ∗+x ∗ yz/− .

According to the algorithm above we may generate the MMIXAL code:

LDW $1, $2, $3 set s($1)←x
LDW $2,$4, $5 set S($2)←y
MUL $3, $1, $2 set s($3)←s($1)*s($2)=x*y
LDW $4, $6, $7 set s($4)←w
LDW $5, $8, $9 set s($5)←z
MUL $6, $4, $5 set s($6)←s($4)*s($5)=w*z
ADD $7, $3, $6 set s($7)←s($3)+s($6)=x*y+w*z
MUL $8, $1, $7 set s($8)←s($1)*s($7)=(x*y+w*z)*x
DIV $9, $2, $5 set s($9)←s($2)/s($5)=y/z
SUB $10, $8, $9 set s($10)←s($8)-s($9)=(x*y+w*z)*x-y/z

13.5.2 Translation of Triple Expressions

Suppose that there is an expression

((x ∗ y + u)− w ∗ y)/x.

13.5 Generation of MMIXAL Target Codes 391

Its triple expression is as follows:
1) (*, x, y);
2) (+, �, u);
3) (*, w, y);
4) (–, �, �);
5) (/, �, x).

Therefore, its target code in MMIXAL is as follows:

LDW $1, $2, $3 set s($1)←x
LDW $4, $5, $6 set s($4)←y
MUL $7, $1, $4 set s($7)←s($1)×s($4)=x*y
LDW $8, $2, $3 set s($8)←u
ADD $5, $7, $8 set s($5)←s($7)+s($8)=x*y+u
LDW $6, $2, $4 set s($6)←w
MUL $7, $6, $4 set s($7)←w*y
SUB $8, $5, $7 set s($8)←(x*y+u)-w*y
DIV $8, $8, $1 set s($8)←s($8)/s($1)=((x*y+u)-w*y)/x

Notice that in the two examples above, we used load instructions, e.g.,
LDW $1, $2, $3 is used to load variables x, and y into register. The load in
addresses are formed by the two registers in the instruction. For example, if
we have instruction LDW $X, $Y, $Z, then the load in address is given by

A = (u($Y) + u($Z)) mod 264.

Therefore, we assume here that in registers 2 and 3, the numbers that
form the addresses are stored. If they were not set in advance, then it is
necessary to use some instructions to set up the numbers.

13.5.3 Translation of Expression Quadruples

The instructions of MMIXAL are closest to quadruples. Therefore, it is most
convenient to translate quadruple form into MMIXAL target code.

Suppose that there is an expression

x ∗ (y + u ∗ v − y/w).

Then the corresponding quadruples are:
1) (*,u,v,T1);
2) (+, y,T1,T2);
3) (/,y,w,T3);
4) (–,T2,T3,T4);
5) (,*,x,T4,T5).

And its MMIXAL target code is as follows:

LDW $1, $2, $3 set s($1)←u
LDW $4,$5, $6 set s($4)←v
MUL $1, $1, $4 set s($1)←s($1)*s($4)=u*v

392 Chapter 13 Generation of Object Code

LDW $7, $8, $9 set s($7)←y
ADD $2, $7, $1 set s($2)←s($ 7)+s($1)=y+u+v
LDW $10,$5, $6 set s($10)←w
DIV $7,$7,$10 set s($7)←s($7)/s($10)=y/w
SUB $2, $2, $3 set s($2)←s($2)-s($3)=y+u*v-y/w
LDW $5,$11,$12 set s($5)←x
MUL $5,$5, $2 set s($5)←s($5)*s($2)=x*(y+u*v-y/w)

13.5.4 Translation of Expressions

Through the introduction given above, we have known how to translate
expressions. In simple cases, we can even directly translate them without
through intermediate code form.

For example, suppose that there is expression
x/(x ∗ y− u ∗ w)− z

then it target code in MMIXAL is as follows:

LDW $1, $2, $3 set s($1)←x
LDW $4, $5, $6 set s($4)←y
MUL $4, $1, $4 set $($4)←s($1)*s($4)=x*y
LDW $7, $8, $9 set s($7)←u
LDW $10, $11, $12 set s($10)←w
MUL $5,$7, $10 set s($5)←s($7)*s($10)=u*v
SUB $6, $4, $5 set s($6)←s($4)-s($5)=x*y-u*w
DIV $8, $1, $6 set s($8)←s($1)/s($6)=x*(x*y-u*w)
LDW $9, $11, $12 set s($9)←z
SUB $8, $8, $9 set s($8)←s($8)-s($9)=x/(x*y-u*w)-z

As for boolean expressions, as it has the same structure of the target code
as arithmetic expressions, meanwhile, MMIXAL has the instructions that
handle boolean operations, therefore to generate the target code of boolean
expressions in MMIXAL is not difficult either.

Suppose that there are following boolean expressions:
1) x ∨ y ∧ (u ∨ w);
2) x[] ∨ (B ∧ y[]);
3) x[] ∧ (y[] ∨ z ∧ x[]).

In the expressions above, the form x[] represents the array. Meanwhile,
one should notice that, the boolean operations in MMIXAL are carried out
for four word bytes (i.e., sixty-four bits). Therefore, it is different from the
arithmetic variables, we have to imagine that the variables here are 64 bits.
We get the target code in MMIXAL as follows:

1) LDO $1, $2, $3 set s($1)←x

LDO $4,$5, $6 set s($4)←y

LDO $7, $8, $9 set s($7)←u

LDO $10, $11, $12 set s($10)←w

13.5 Generation of MMIXAL Target Codes 393

OR $7, $7, $10 set v($7)←v($7)|v($10)=u∨w

AND $4,$4,$7 set v($4)←v($4)&v($7)=y∧(u∨w)

OR $1, $1, $4 set v($1)←v($1)|v($4)=x∨y∧(u∨w)

2) LDO $1, $2, $3 set s($1)←x[]

LDO $4, $5, $6 set s($4)←B

LDO $7, $8, $9 set s($7)←y[]

AND $4,$4,$7 set v($4)←v($4)&v($7)=B∧y[]

OR $1, $1, $4 set s($1)←v($1)|v($4)=x∨(B∧y[])

3) LDO $1, $2, $3 set s($1)←x[]

LDO $4, $5, $6 set s($4)←y[]

LDO $4,$5,$6 set s($7)←z

AND $7, $7, $1 set v($7)←v($7)&v($1)=z∧x[]

OR $4,$4, $7 set v($4)←v($4)|v($7)=y[]∨z∧x[]

AND $1,$1,$4 set v($1)←v($1)∧v($4)=x∧y[]∨z∧x

13.5.5 Translation of Syntax Tree Form of Expressions

The other form of intermediate code is syntax trees which we have introduced
in preceding sections [8]. Not only expressions can be represented in syntax
trees, but also various statements can be represented in syntax tree form. In
order to translate expressions in syntax trees to the target code in MMIXAL,
either we can transform the syntax trees to the reversed Polish form (actually
it is only the post order visit to the syntax trees), or we transform the syntax
trees into triples or quadruples. Then we use the methods introduced above
to translate the triples and quadruples into the target code in MMIXAL.
Besides, we can also directly translate the syntax trees to the target code
required. Notice that we use the visit rules for post order visit. For example,
given a syntax tree as shown in Fig. 13.2, its target code in MMIXAL is as
follows:

Fig. 13.2 Syntax tree of b ∗ (−c) + d ∗ (−e).

394 Chapter 13 Generation of Object Code

LDW $1, $2, $3 set s($1)←b

LDW $4, $5, $6 set s($4)←c

NEG $4, $4 set s($4)←–s($4)=–c

MUL $1, $1, $4 set s($1)←s($1)×s($4)=b*(–c)

LDW $7, $8, $9 set s($7)←d

LDW $10, $11, $12 set s($10)←e

NEG $10, $10 set s($10)←-s($10)=–e

MUL $7, $7, $10 set s($7)←s($7)×s($10)=d*(–e)

ADD $1, $1, $7 set s($1)←s($1)+s($7)=b*(–c)+d*(–e),

13.5.6 Translation of Various Statements

1) The translation of assignments
Assignment statements may have several forms:
(1) X := E;
(2) a[] := E;
(3) f := E.
The first form indicates that the value of the expression on the right

hand side is assigned to the variable on the left hand side; The second form
indicates that the value of the expression on the right hand side is assigned to
an element of array; The third form indicates that the value of the expression
on right hand side is assigned to a function. In MMIXAL, for these statement
what we need to do is to put the data from registers to memory as al the
operations are carried out on registers. If we have put the value of expression
E into $X, while all the memory addresses of x, a[] or f are in A. A is

A = (u($y)+u($Z))mod 264

then the translation statement is only
STW $X, $Y, $Z

2) Branch statements
In programming languages, the branch statements generally have two

forms:
(1) goto L,
(2) goto S(E),

where L is a label. During the compilation, we may determine its specific
value. As for the form S(E), at first the value of the expression E is evaluated,
then it is added to the address in the name cell <S>, and it determines the
final value. Therefore, through the instruction GO of MMIXAL,

GO $X, $Y, $Z
is realized as

U($X)←@+4

Problems 395

and the evaluation of A is realized via
A = (u($y)+u($z)) mod 264

3) Loop statements
For the loop statement with the form

for (i = 1; i�n: i+1)
we only need to set up constants 1 and n in the target code.

01 i0 IS 1
02 SET jj, i0 jj←1
03 SET �� n ��←n
04 1H
Loop body

INCL jj, 1 jj←jj+1
k CMP jj, �� compare jj and ��
k+1 BNP jj, 1H if jj�0, i.e., jj�n, then goto 1H.

Regarding conditional branches, there are more instructions available. The
execution procedure is always to perform a comparison operation first, then
the result of the comparison will be shown on a Pertinent registers. According
to the result shown, the instruction is executed. These instructions contain:
• BN $X, RA Branch if negative, i.e., if s($X) <0, then @←RA
• BZ $X, RA Branch if zero, i.e., if s($X) = 0, then @←RA
• BP $X, RA Branch if positive, i.e., if s($X)>0, then @←RA
• BOD $X,RA Branch if odd, i.e., if s($X)mod 2 = 1, then @←RA
• BNN $X, RA Branch if not negative, i.e., if s($X0�0, then @←RA
• BNZ $X, RA Branch if non zero, i.e., if s($X)�=0, then @←RA
• BNP $X, RA Branch if not positive, i.e., if s($X)�0, then @←RA
• BEV $X, RA Branch if even, i.e., if s($Z) mod 2 = 0, then @←RA

Besides, there are some branch instructions that provide even faster
branch, the condition is that the situation of future is foreseen.

We have introduced the relevant contents regarding the generation of
target code in MMIXAL. Based on these principles, we believe that the reader
will be able to solve them via self analytical ability and knowledge when some
details are provided.

Problems

Problem 13.1 Translate the following inverse Polish expression into
MMIXAL target code:

ab*ed/+ac*-

Problem 13.2 Translate the following intermediate code in triple form into
MMIXAL target codes:

1) (/,x,y)
2) (-,x,y)

396 Chapter 13 Generation of Object Code

3) (*,u,(2))
4) (+,(1),(3))
5) (*,(4),x)

Problem 13.3 Translate the following intermediate code in quadruple form
into MMIXAL target code:

1) (+,x,y,T1)
2) (*,x,y,T2)
3) (/,T2,u,T3)
4) (+,T1,T3,T4)
5) (*,T4,X,T5)

Problem 13.4 Write down the corresponding MMIXAL target code of the
Following expression:

(x*y+w*(x+y)-u*y/x)*y

Problem 13.5 Write down the corresponding MMIXAL target code of the
following statement:

if x<5 the x := x+1 else x := x−8
Problem 13.6 Write down the MMIXAL target code that realizes the fol-

lowing function:

S =

{
x + 3x2 + 5x3 x < 0

x + 4x2 + 6x3 x � 0

Problem 13.7 Write down the MMIXAL target program that realizes the
following statement:

while i� 100 do s := s+3

Problem 13.8 Given the following program

void f (x,a,y)
float x[] [4],a[][4],y[]{

int i,j;
float s;
for(i=0;i<3;i++){

s=0;
For(j=0;j<4:j++)
{s=s+x[i][j]
a[i][j]=x[i][j]*x[i][j];}

y[i]=s;
}

}
Translate it into MMIXAL target code.

Problem 13.9 Write down the corresponding MMIXAL target code of the
following relation expression:

References 397

a� b V a > 0 ∨ b � 0 ∧ (c � d)
Problem 13.10 Write down the corresponding MMIXAL target code of

the following expression:
a∧b ∨ c ∧ (b ∧ y = 3.14 ∧ a = 2.18)

References

[1] Chow F, Hennessy J L (1984) Register allocation by priority-based coloring.
ACM SIGPLAN Notices 19(6): 222 – 232

[2] Knuth D E (2005) The art of computer Programming, NO.1, volume 1.
Addison–Wesley, Reading, Mass

[3] Knuth D E (1984) The TEXbook. Addison-Wesley, Reading, Mass.

[4] Tjiang S W K (1986) Twig language manual. Computing Science Technical
rReport 120, AT&T Bell Laboratories, Murray Hill, New York

[5] Knuth D E (1984) Literate programming. Computer J. 28(2): 97 – 111

[6] Knuth D E (1977) A generalization of Dijkstra’s algorithm. Information Pro-
cessing Letters 6, pages 1 – 6

[7] Henry P R (1984) Graham-Glanville Code Generators. Ph. D. Thesis, Uni-
versity of California, Berkeley

[8] Aho A V, Ganapathi (1985) Efficient tree pattern matching: an aid to code
generation. Twelfth Annual ACM Symposium on Principles of Programming
Languages, pp 334 – 340

Chapter 14 Compilation of Object-oriented
Languages

In the absence of meaningful standards, a new industry
like software comes to depend instead on folklore.

Tom DeMarco

14.1 Motivation of the Chapter

In the previous chapters, the grammars, lexical analysis, syntactical analysis,
context processing, intermediate code generation, target code generation, de-
bugging, optimization of programs in programming languages are explored.
The management of memory for the execution of compiler and the target code
is also involved. The contents are directed at a variety of programming lan-
guages instead of any specific language. However, we should also admit that
they are more suitable to the so-called procedural languages or imperative
languages.

From 1980s, due to the software crisis, a new programming paradigm
gradually demonstrates itself, and it tends to replace the old programming
style at least in the area where it has dominated the status. Besides ob-
ject – oriented programming, there are function programming, logical pro-
gramming, etc. The compilation of the programs written in these program-
ming languages must be somehow different from the methods we introduced
so far for the traditional languages. The main differences between them are
that the structures of the source programs different, causing the difference
in handling of the analysis and synthesis. Consequently, the target codes for
these paradigms are different too.

The compilers of most (but not all) imperative and object-oriented lan-
guages generate assembly programs or even lower-level of target codes. While
many (not all either) functional programming, logical programming, parallel,
and distributed programming languages generate C or C++ programs as the
target codes. In comparison with functional and logical programming lan-
guages, the object-oriented programming languages are now becoming more
popular. Among those paradigms that take C or C++ as the target code, the

400 Chapter 14 Compilation of Object-oriented Languages

parallel and distributed languages are more important than functional and
logical programming languages. Therefore, as one of frontiers in the field of
principles of compilers, we will discuss the compilation of object-oriented lan-
guages first, and sequentially we will discuss what we regard as also frontiers.
For example, Chapter 16, we will introduce briefly the newest technique —
grid computing and the compilation of the language (if any) that writes
programs to implement grid computing.

Object-oriented languages and procedure-oriented (or imperative) lan-
guages are similar in many aspects apart from that the target code they
generate may have different levels. The former ones tend to generate lower
level while the latter ones tend to generate assembly target code. Therefore,
in this chapter we will introduce the special characteristics of object-oriented
languages and the corresponding special handling techniques in compilers.

14.2 Objects and Compilation

If one enquires the most fundamental difference between object-oriented lan-
guages and traditional languages, the prompt answer obviously is objects.

How is an object-oriented language? Why is a method considered to be
object-oriented? What is an object? As object-oriented gained widespread
adherents during the 1980s and 1990s, there were many different opinions
(e.g., [1 – 4]) about the correct answers to these questions. Today, a coherent
view of object-oriented has emerged.

Object actually means anything in the nature, including concrete phys-
ical things and abstract concepts. Therefore, it is analogous to variables in
languages. The variables may have attributes and their corresponding val-
ues. The so-called attributes are a collection of data values that describe
an object. For example, if we consider a person as an object, then the at-
tributes that may be used to describe the person include name, gender, ages,
height, weight, nation, birth-place, occupation, and living address, etc. These
attributes can be represented as values.

As a variable, an object will be put in operations in the process of pro-
gramming, viz., it will play a role in solving problem. Therefore, it should be
able to participate operations as the operand.

For example, a number should be able to participate in various opera-
tions depending on which number is it. That means that objects need to be
grouped. And this is where the concept of class comes from. A class is a gen-
eralized description (e.g., a template, pattern, or blueprint) that describes a
collection of similar objects.

The intent of object-oriented programming is to solve problems through
taking components of problem as objects. Therefore, it has to define all
classes concerned (and the relationships and behavior associated with them).
To accomplish this, a number of tasks must occur:

14.2 Objects and Compilation 401

Instead of examining a problem using a more conventional input-process-
ing-output (information flow) model or model derived exclusively from hier-
archical information structures, object-oriented programming builds a class-
oriented model that relies on an understanding of object-oriented concepts.

1) Classes must be identified (i.e., attributes and methods are defined),
The so-called methods here, as well as services, provide representation of one
of the behaviors of a class.

2) A class hierarchy is defined.
3) Object-to-object relationships (object connections) should be repre-

sented.
4) Object behavior must be modeled.
5) Tasks 1 – 4 are reapplied iteratively until the model is complete or the

problem is solved.
The distinguished feature of object-oriented programming is that the class

encapsulates the data and procedural abstractions required to describe the
content and behavior of some real world entity.

In addition, we define some other concepts. At first, inheritance, it means
receiving some properties from the ancestors. So, as instances of a specific
class, objects inherit a class’ attributes and operations (methods and ser-
vices). The second concept is subclass, it is a specialization of the superclass.
A subclass can inherit both attributes and operations from a superclass. Now
superclass is also called a base class, is a generalization of a set of classes that
are related to it.

In the languages, objects and abstract data types are similar. The differ-
ence is that for object, only its methods (or operations) are externally avail-
able, this is because of the encapsulation technique — as we have mentioned
that encapsulates the objects that belong to a class and the operations. From
outside, the objects can only be access and operated through the methods.

The basic operations on objects are “fields (object attributes) selection”,
“copy” and “method invoking” or “method calling”. Though many object-
oriented languages do not allow directly access to the fields of objects, the
operations of accessing to the fields of objects through internal methods are
essential. The operation of copy is simple, and the compilation of it is only to
make copy. Therefore, the important thing is to realize the method calling
or method invoking. The first problem regarding the method calling is which
method needs to be called. Only after it is correctly identified then can it
be called. The method calling, in essence, is the routine calling. Therefore,
the object calling methods, and the method calling related to the control
stream, as well as the effect of the calling and that of the routine calling
are consistent. But there are also differences between method calling and
routine calling. One difference is that, routine callings are basically statically
determined while method callings can only be determined through deliver
table during running time. The second difference is that method can directly
access to the fields of objects. This kind of accesses is realized through passing
pointer as additional parameter to object. This parameter is called extra

402 Chapter 14 Compilation of Object-oriented Languages

hidden parameter.
1) Method identification. Before the translation of the calling of the

object methods, it is necessary to identify which one needs to be called. For
the routine calls, of course there is also the problem of the identification
though it is rather simpler. Moreover, it can be solved through semantics
check. But for objects, in many cases it needs to find out the method to be
called through looking up the deliver table during running time.

2) Message Passing. Many people depict object-oriented programming
as objects plus message passing as the object-oriented programming is based
data-centralization. The basic units for activities are objects. All the activities
of objects are message-driven. Therefore, message passing is the unique means
for object communications.

Methods, as we have said, are the operations upon objects. They are just
implemented via message passing. Therefore, so called identification method
actually is message identification. Because when some operation needs to im-
plement upon the object, the message is sent to the object. Upon receiving
message and deciding the operation required by the message, the correspond-
ing operation is called and it is performed to completion. When the point is
reached, it has no difference again with the routine calling.

In most object-oriented languages objects have also constructive func-
tions and structured functions. They are called when objects are created
and released, respectively. Their calls and the calls in other methods are not
different in principles.

Suppose that our objects are just like what we said. Then the compilation
of objects is very simple. Suppose that we have an object A that has method
m1 and m2, as well as fields a1 and a2. Then the running table of object class
A consists of fields a1 and a2, as shown in Fig. 14.1.

Besides, the compiler maintains the method table on compilation of class
A as shown in Fig. 14.2.

Fig. 14.1 The fields of object. Fig. 14.2 The method table of object.

In Fig. 14.2, we add a postfix on the method names, representing that
they are the operations upon class A. In this simple module, the selection of
fields may be realized just like the selection of fields in records. Moreover, the
copy of objects is also just like that of in records. The selection of methods
is implemented by identification process in the compiler.

By an additional parameter, that is a pointer that points to the object,
the method can be realized as the realization of the routines. Therefore, the
methods m1 A and m2 A can be translated to be the routines of C language.
For example, for method m1 A it may be implemented as follows:

14.3 Characteristics of Objects 403

Void m1 A (class A.*this,int i){
Program body of method m1 A, by this → x visit any object
field x

}
Suppose that m1 A has a parameter with type integer and without return
value, and class A is the language type name of class A in C, then the method
calling a.m1(3) may be translated to m1 A(&a.3).

14.3 Characteristics of Objects

There are innumerable objects in the world. Each object has its own charac-
teristics. If we want to investigate them individually, it will not be possible.
Fortunately, many objects have common characteristics, apart from peculiar-
ities. Through the common characteristics, we may group those objects with
the same common points. Then we concentrate to investigate these classes so
that our research can be given great convenience.

We take the division of books as an example. Fig. 14.3 shows the division
of books.

Fig. 14.3 Classification of books.

In the hierarchical structure of classes, the lower nodes all have the char-
acteristics of upper nodes. But in comparison with the upper nodes, the lower
nodes have their own new characteristics. The lower nodes hold the charac-
teristics of the upper nodes, this is called inheritance. Inheritance is one of
the most important characteristics of objects.

14.3.1 Inheritance

Inheritance exists in all object-oriented languages. It allows programmer to
create class B based on class A. Hence class B possesses its own fields and
methods, and it also inherits the fields and methods of class A. This feature

404 Chapter 14 Compilation of Object-oriented Languages

is also called type extension. Class B can extend the class A through zero or
more fields and methods of class A. Class A is called the parent of class B and
class B is called the child class of A. Now suppose that class B complements
class A with method m3 and field b1, then the representation of class B
during running time is shown in Fig. 14.4. In addition, Fig. 14.5 shows the
methods of class B on compilation time.

Fig. 14.4 Fields of class B. Fig. 14.5 Method table of class B.

14.3.2 Method Overload

When class B extends class A, it may redefines one or more methods of
class A. This characteristics is called method overload. This implies that if
class A has defined a method, then in all the classes that are the direct and
indirect inheritances of A may also have the method. But when the method is
redefined (overload), the implementation of the method in the sub-class may
be different from the original one. More specifically speaking, the method that
is defined in the declaration of class A may be redefined in any sub-classes
of A. These two definitions may be different. Here we use two statements to
depict them: “the declaration in class A” and “definition in A”. The former
one indicates where the statement exists and the latter one indicates what
does it depict.

Now suppose that in the example above class B redefines method m2,
while the method has been defined in class A. Therefore the definition of
method m2 in class A is its unique declaration, it is also its first definition.
The definition in class B is its redefinition. In some languages, e.g., C++ and
Java, they allow the existence of declaration of undefined methods. This kind
of methods is called virtual methods. At least, there exists a class of virtual
methods that is an abstract class. The practical method must be defined in
the inheritance class of abstract class.

We will change the mode of naming of methods so that the names of
methods not only reflect the class in which it is declared, but also reflect the
class that defines it. We use three parts to name methods: method name,
name of the class that declares the method, name of the class that defines
the method. The underline is used to partition various parts. Therefore the
method m2 that is declared in class A, and is defined in class B has the name
m2 A B.

14.3 Characteristics of Objects 405

Method overload will affect the compilation time. According to the as-
sumption above, class B redefines method m2, while the method has been
declared and defined in class A. Hence the method table of class A is shown
in Fig. 14.6, and the method table of class B is shown in Fig. 14.7.

Fig. 14.6 Method table of class A. Fig. 14.7 Method table of class B.

Now suppose that a is an object of class A, and b is an object of class
B. the method call a.m2(. . .) will be translated to calling method m2 A A,
and method call b.m2(. . .) will be translated to calling method m2 A B. The
difference between these two is explicit, as m2 A A is declared and defined in
class A, while m2 A B is declared in class A, and is defined in class B. The
translation form of m2 A A is

void m2 A A (class A*this,int i);
and the translation form of m2 A B is:

void m2 A B (class B *this,int i);

14.3.3 Polymorphic

Polymorphic is an important characteristics that is intimately related to in-
heritance. In the levels of hierarchical class, the parent class may derive many
child classes. It may also say that from parent class a variety of child classes
may be derived that they have different behaviors but they possess the meth-
ods with the same method names. More specifically, the same method name
(possesses the same operation) may operate on different method code on the
class chain, and may gain different results. This kind of mechanism is called
polymorphic. Fig. 14.8 shows an example of polymorphic.

Fig. 14.8 Polymorphic.

The polymorphic also demonstrates that when class B is the sub-class
of A, it is allowed that the pointer of pointer type of class B is assigned to

406 Chapter 14 Compilation of Object-oriented Languages

a pointer typed variable of class A. The pointer typed variable of class A
actually refers to an object of class A or an object of its extended class.

The implementation of this function requires a new operation, that is the
superclass of pointers. It will transform the pointer of object of subclass B
to the pointer that points to the pointer of object of parent object A. For
example, suppose that the operation is used in the assignment statements:

class B *b= . . . ;
class A*a=b

Notice that the second line refers to the first line. Hence it is translated to
class A a*= convert ptr to B to ptr to A(b);

Now the routine convert ptr to B to ptr to A() is an operation of types
on compilation. Since the object of B also starts with the fields of class A,
the value of pointer does not need to change, the only thing that is affected
is that the same pointer now points to different object.

14.3.4 Dynamic Constraint

A link of a method call and the corresponding body code of the method is
called constraint. As we have just mentioned that the same method name may
play role on different objects on the class chain. That means that method
calling may correspond to the method body code of different objects.

There are two modes of constraints, viz. static constraints and dynamic
constraints. The static constraint indicates that on compilation time it is
known already that of which object the method body code should be called.
For example, if in the source program the calling method of object is m2,
and from the example above we know that there are m2 A A and m2 A B.

Since it is static constraint, on the compilation time the calling object has
been determined, the calling object is m2 A A.

As for dynamic constraint, it indicates that the correspondence of the
method name and method body code is created on running time. When
the program runs, before implementing the calling of the method body, the
code is run first. According to the type of object and the position of the
object on the object chain it is determined that of which object the method
body should be called. For example, in the example above, which one should
be called, m2 A A or m2 A B? Therefore, dynamic constrain involves the
following cases:

1) There are multiple types of A (polymorphic), at that time all the classes
on the class chain are regarded to A. For example, for the example above,
there are two A’s. One is the “true’ A; while another one is A “embedded in
B”. For the true A, it needs to use m2 A A, and for the A embedded in B,
it needs to use m2 A B. Therefore in the code which the compiler generates
for the method calling, needs to discern whether it is A or B based on the
dynamic type message.

14.3 Characteristics of Objects 407

2) Method B needs a pointer that points to B so that it can visit all the
fields in B. If there are several sub-types, then every sub-type needs such
pointer. However, m2 may be dynamically pointed to a pointer call that is
class A – like pointer in B. Hence we need the other operation called (re)
subtyping. That operation reconstructs pointer that points to B from the
pointer that points to A, e.g., the method calling p → m2(A), where p is a
static pointer that points to object A. It can be translated as follows:

switch (Dynamic type of(p)) {
case Dynamic class A:m2 A A(p); break:
case Dynamic class B:

m2 A B (convert ptr to A to ptr to B(p));
break;

}
Here the dynamic type message is enumeration type with two values Dy-
namic class A and Dynamic class B. When p is a static pointer, p → m2(A)
call may be translated to

m2 A B
Notice that, this code line is consistent with declaration void m2 A A(class A*
this, int i) and void m2 A B (class*this, int i).

Apart from the methods aforementioned, the following method may also
be used.

In order to determine the method of which the routine is used, switch
statement is one that is a function used in a small range. It may be evaluated
in advance. After the evaluation, we transform the pointer that points B
from A and merge it to the routine m2 A B. Now the method may accept
the pointer that points to A.

void m2 A B (class A*this A, int i){
class B*this=convert ptr to A to ptr to B(this A);
The program body of method m2 A B,
visits any object field x through this → x

}
More generally, for the translation of every method m x y, the first parameter
points to the pointer that points to class x. That pointer may be transformed
to class y through application of convert ptr to x to ptr to y(). If x and y
are the same, then the transformation may be omitted.

The method call p → m2(A) may be translated to the following form
through this modification of m2 A B():

dynamic type of(p)==Dynamic class A?m2 A A:m2 A B(p);

The formula above is a computation function that makes the calling with
p as the parameter, where p is a static pointer that points to the object
of class A. Every time when the operation is executed on p, it is not to
evaluate the function, rather it is to merge the resultant function address to
the dynamic type information based on the dynamic type information of p.
The type information of objects of class B is a record with three selection

408 Chapter 14 Compilation of Object-oriented Languages

symbols, i.e., m1 A, m2 A and m3 B. They contain the addresses of calling
routines for m1, m2, and m3. Their first parameters all are the pointers that
point to the objects of class A. This kind of record that possesses the method
calling routine addresses is called delivery table, and each type information
of object provides a pointer that points to the delivery table. Fig. 14.9 shows
the representation of objects of class B.

Fig. 14.9 Representation of objects of class B and the delivery table.

The type information of objects of class A is a delivery table with two
fields, including the addresses of the routine m1 A A() and m2 A A(). These
two both have the pointers that point to the object of class A as their first
parameter. Therefore, in the two delivery tables, selection symbol m1 A may
select the routines with the same types. If m2 A is selected then the selection
will come from either m1 A A or m2 A B. The dynamic constraint is to make
the selection of m2 A A or m2 A B on running time.

14.3.5 Multiple Inheritances

In object-oriented programming languages, an object is allowed to have more
than one parents. Correspondingly, it is also allow one object to inherit from
more than one parents. This characteristics is called multiple inheritance. It
is contrast to that an object can inherit from one parent only and this kind
of inheritance is called single inheritance. The main object-oriented program-
ming languages al support multiple inheritances.

For example, Suppose that object class C possesses fields c1, c2 and meth-
ods m1, m2, and object class D possesses field d1 and methods m3, m4. Ob-
ject class E comes from the inheritances of class C and D, but it adds one
field e1 and one method m5, and redefines methods m2, and m4, as shown
in Fig. 14.10.

Different from single inheritance, multiple inheritance is unable to use
the pointer of delivery table that points to all object fields to represent one
object. Especially, for E, the delivery tables of E, “C in E” and “D in E” can

14.3 Characteristics of Objects 409

Fig. 14.10 An example of multiple inheritances (E inherits C and D).

be combined together. However, they have to use different pointer indication.
Therefore, the delivery table of E now becomes

m1 C C
m2 C E
m3 D D
m4 D E
m5 E E

E and “C in E” in the delivery table still have the same address, and the
delivery table of “D in E” is just below, as shown in Fig. 14.11.

Fig. 14.11 Representation of objects of class E.

Notice the operations of supertyping and subtyping, the former one trans-
forms child classes into parent classes, and the latter one transforms the
parent classes into child classes.

supertyping

410 Chapter 14 Compilation of Object-oriented Languages

convert ptr to E to ptr to C(e)=e
convert ptr to ptr to ptr D(e)=e+sizeof (class C)

subtyping
convert ptr to C to ptr to E(d)=d-sizeof(class C)

When an object class E inherits from class C and class D, it may generate
ambiguities. For example, C and D may contain methods with the same name;
and class E inherits these methods. When class E uses the method, it can
use only one of them but it cannot determine which one it should use. The
rules of the language should make it clear when the ambiguities or conflicts
happen how should compiler detect and resolve them.

14.3.6 Multiple Inheritances of Inter-reliance

Regarding multiple inheritance, there is one more situation called repeated
inheritance. For example, if in the example above, both class C and class
D are the extensions of class A. Then what is the meaning of “A in E”?
Different languages will have different rules. But roughly speaking, there are
two cases: either one object of E contains only one object of class A. This
is called independent inheritance. Or one object of E contains two or more
objects of class A. This is called inter-reliance inheritance. Some languages
allow these two inheritances even the mixture of these two, viz. some fields
may inherit relying each other, while others independently inherit.

Independent multiple inheritances may be realized using the mode spec-
ified above. The only complication is the procedure of identification. The
rules of the language should be explicitly established. When the fields and/or
methods come from different classes with the same name, how should they
be handled must have specific regulation.

Now we discuss the issue of inheritances of inter-reliance. For these the
complication is not on the choice of methods, rather, it is on the representa-
tion of the object data. Because in the example above, A has two data, so the
data must be handled properly to make sure that only one data be obtained.

Suppose that both object class C and object class D were obtained from
the extension of object class A. The class A has fields a1, a2, and methods
m1 and m3. The object class C redefines method m1, while object class D
redefines method m3, as shown in Fig. 14.12.

Thus the object data array may be put in the object according the fol-
lowing order. The first entry points to the pointer of delivery table of E (and
C in E). Then is the fields of A; subsequently it is those fields in C that have
not inherited from A; then it is the pointer that points to delivery table of
“D in E” (inside the delivery table of E); then it is those fields in D that have
not inherited from A. Finally it is those fields in E that have not inherited
from C and D. Fig. 14.13 shows the implementation.

14.3 Characteristics of Objects 411

Fig. 14.12 Multiple inheritances of inter-reliance.

Fig. 14.13 Objects of class E with inheritances of inter-reliance.

This order is correct for the objects of class E and “C in E”, but how is
it for “D in E”? Whenever the compiler compiles the object class D without
being aware of the situation of C and E, the compiler must determine the
representation of objects of class D. Suppose that D consists of the pointer
that points to its delivery table, followed by the fields of D after the delivery

412 Chapter 14 Compilation of Object-oriented Languages

table. D will not be able to work as when D is in the objects of type E, the
fields that it inherits from A precede the pointer of the delivery table for
a distance. Moreover, the fields of D are behind the pointer of the delivery
table. Therefore, when the generated code accesses the fields of objects, the
compiler maybe cannot find the fields of the objects. Usually the problem
will be solved by the specification symbols on running time. For the pointer
that points to object itself, the specification symbol allows the methods of the
object to visit the fields of the object. For every field, the specification symbol
must contain the offset from the beginning of the object pointer to where the
pointer is now. We enumerate the fields of the objects, hence we can use the
enumeration indices as the indices of offset table. Apart from the pointer of
delivery table, the representation of the object must contain the pointer that
points to the offset table. As it is unknown in advance which object class will
be contained in multi inheritance, hence all the objects should follow these
two schemas of pointers.

Take Fig.14.13 as example, suppose that the size of all pointers and fields
is 1, then from the pointer of E, the offset of field a1 is 2,the offset of a2 is
3, and then for c1 and c2, they are 4 and 5, the field e1 is 9. Therefore, we
have the indices of class E

2 3 4 5 8 9

and or “D in E”, the indices contain

−4 − 3 − 2

Notice that for an object of class E, both m1 and m3 have ambiguity. When
an object of class E is applied, the rules of the language or the programmer
should specify m1 and m3 clearly.

As multiple inheritance may cause complexity and the overhead of the
method calling, so some languages (e.g., Java) do not allow to use it.

Problems

Problem 14.1 The following is the representation of class Shape given in
java language:

abstract class shape {
boolean lsShape(){return true;}
boolean lsRectangle() {return false;}
boolean lsSquare() {return false;}
boolean double Surface Area();

}
class Rectangle extend shape {

double surface Area() {
...
}

References 413

boolean lsRectangle() {return true;}
}
class Square extend Rectangle {
boolean ls Square() {return true;}

}
Give the method lists of Rectangle and Square.

Problem 14.2 Refer to the polymorphism given in the Fig. 14.10 and Fig.
14.11, give an object of a given class E, present the compilation code of
method calls e.m1(), e.m3() and e.m4().

Problem 14.3 Refer to the multi-inheritance of mutual dependency. Sup-
pose that the method m5 in class E is defined as follows:

void m5(){
e1=d1+a1;

}
Suppose that all of the fields here are type int. Give the compilation code
of m5 in C.

Problem 14.4 When a language supports polymorphism, sometimes it is
necessary to test the real type of the current object. The method Square in
exercise 1 may realize this function. Some language has built-in operator
used for this operation, for example there is instance of operator in Java,
the expression “A instance of C” is a Boolean expression. If the object
pointed by a is an instance of C, then the value yielded is true. Design
an implementation scheme for the operator.

References

[1] Pressman R S (2005) Software engineering: a practitioner’s approach.
McGraw-Hill International, New York.

[2] Berald E V (1993) Essays on object-oriented software enginering. Addison-
Wesley, Reading.

[3] Budd T (1996) An introduction to object-oriented programming. 2nd edn.
Addison-Wesley, Reading.

[4] Wirfs-Brock R, Wilkerson B, Weiner L (1990) Designing object-oriented soft-
ware. Prentice-Hall, Englewood Cliffs.

Chapter 15 Compilation of Parallel Languages

Parallel changes not only happen as social trend, but
also happen on science and technology.

15.1 Motivation of the Chapter

This chapter will be totally different from previous chapters as so far there
is no really grand new parallel programming language to be used already.
What people have are only the parallel facilities parasitically affiliated to
the existing languages. The discussions before mainly focus on the issues of
compilation of sequential programming languages, and in this chapter and
the following chapter we will discuss the issues on the compilation of parallel
languages. Is it important? The answer is definitely yes. Because in the
new century, no doubt, parallel computers will dominate the whole market
of computers. Then developing programs for this kind of computers will be
the must if some one wants to be the programmer of the new century. Of
course he/she also needs to know how his/her programs are compiled by the
corresponding compilers. It is not exaggerating that parallel compilation will
become the main theme in compiler field.

15.2 Rising of Parallel Computers and Parallel
Computation

The explorations and pursuing of people in science and technology are always
continuing without cease. It is also true in computer science and technology.
Since 1991 the U.S.A. proposed the plan of developing high performance
computing and communication (HPCC). Many countries around the world
correspondingly invested huge fund to carry out the development of high
performance super computers. So far, the United states has successfully de-
veloped the super computer with the speed up to about one thousand trillions
per second. China recently has also announced that the scientists and engi-

416 Chapter 15 Compilation of Parallel Languages

neers of their country have also successfully developed the super computer
with the speed up to one thousand trillions per second. Other countries such
as Germany, Japan�Russia, etc. also make their endeavor to develop the
computers of this kind.

Since the speeds of the computers with single processor have almost
reached the limitation — the information flows inside the computers of this
kind cannot exceed 300 thousand kilometers per second. In order to develop
high performance super computers, the only approach is depending on par-
allelism — to develop the cluster of high amount of computers working in
parallel. For example, if each unit of the cluster computers has the speed of
10 millions per second, ten thousand units connected together and they are
assembled well, then the speed of the cluster definitely will be one trillion
per second. It may be said that the high performance computer is parallel
in structure. Now the parallel processing modes experienced several phrases,
from single instruction stream and multiple data stream (SIMD), parallel
vector processors (PVP), storage-sharing symmetric multiprocessors (SSSM),
massively parallel processors (MPP) to cluster. These parallel architectures
may roughly be divided into five classes [1]:

1) Single instruction multiple data stream array processors: They con-
sist of thousand-thousand processors with very simple functions. Data flow
through each processor with certain modes and then are processed. SIMD
type parallel computers played an important role in the stimulation devel-
opment of parallel computers. However, since the development of the micro
processing chips, SIMD type parallel computers used in scientific and tech-
nological computation have basically retreated from the stage after 1990s.

2) Parallel vector processors: In addition to scalar registers and scalar
components, vector processor computers have also special vector registers
and vector stream function components that can quickly handle vector com-
putation.

3) Main memory-sharing processors systems: Multi-processors share one
centralized memory and also possess special multi-processor synchronous
communication component that can support the development of data par-
allelism and control parallelism. But when there are too many processors,
the channels that link each processor with central memory will become bot-
tleneck, so that they constrain the development of the computers of this kind.
People then turned to investigate large-scale parallel computers.

4) Distributed memory multi-processor systems: They are computers
composed of lots of nodes. Each node has its own processors and memory
and Internet is the link among nodes. It mainly supports the parallel devel-
opment of data, as well as control.

5) Computer cluster systems: They are the sets that consist of all com-
puter nodes physically connected each other by high performance networks
and local networks. In usual case, each computer node is a symmetric multi-
processor server, a work station (WS), or a PC. The nodes may be isomorphic,
they may also be isomeric. The number of the processors generally is several

15.2 Rising of Parallel Computers and Parallel Computation 417

or even several tens, or hundreds, supporting the operations of control paral-
lel and data parallel. Each node has an integral operating system. Networks
and user interfaces may be taken to be control nodes and operational nodes.
As cluster has superior cost/performance, flexibility and well parallel abil-
ity, it has been widely applied in various fields, apart from being taken as
research topic. In the recent years, it has been much concerned.

Parallel computers provide the platforms which parallel computation re-
lies upon. The requirements to parallel computation come from human’s ac-
tivities in scientific research, also come from production practice. We may
classify them from different angles.

The objects which parallel computation handle may be classified. There
are following classes:

1) Numerical computation: This means that the computational problems
are based on operations of algebraic relations. For example, matrix opera-
tions, polynomial evaluation, solution of linear equation systems. Algorithms
for solving the problems of numerical computation are called numeration
algorithms.

Take the matrix computation as an example. It involves the addition of
two matrices, the multiplication of two matrices with the number of columns
of the first matrix being the same as the number of raws of the second matrix,
the solution of the inverse of a nonsingular matrix, and so on. For matrix
operations, They can be performed in parallel, because the computation of
each entry is independent of that of other entries. Therefore to perform them
in parallel may speed up the computation.

The computation in science and engineering, e.g., computational mechan-
ics, computational physics, and computational chemistry, etc., generally are
problems of numerical computation.

2) Non-numerical computation: Non-numerical computation is based on
operations of comparison relations. This kind of computation does not aim at
getting the value of algebraic relation operations, rather is the result based on
comparison relation. For example, the processing of objects (symbols), such
as sorting, selection, searching, matching, etc. The corresponding algorithms
are called non-numerical algorithms.

Take sorting as an example, given n numbers, it is required to sort them
into increasing order. Then the multiplex way sort algorithm may be used. In
the intermediate course of multiplex sort (e.g., for five way sort), the sorting
on each way is independent, they can be performed in parallel.

From the requirements of applications, they can be classified into three
classes:

1) Computation intensive: The large-scale scientific and engineering proj-
ect and numerical modeling such as the areas of construction and modeling
of prediction models, project design and automation, energy exploration,
medicine, military research, and fundamental theory research, etc., all pro-
pose very high requirements to computation. For example, regarding the
computation of celestial body motion, as the giant number of the celestial

418 Chapter 15 Compilation of Parallel Languages

bodies and their extreme far distances in between (in general, it is counted
with light year as the unit) the computation size is hard to imagine, it can
also imagine that the parallel computation can apply upon them. Another
example, in order to increase precision of the numerical weather forecast, it
is estimated that based on the longitude, latitude and the atmosphere layer,
at least 200 × 100 × 200 = 4 000 000 grid nodes need to take into account,
and then the parallel computation is performed upon these grid nodes.

2) Data intensive: numerical library, data warehouse, data mining, and
visual computation, etc., all involve massive data. Data intensive processing
also entails high-level parallel computation.

3) Network intensive: At first we explain the concept of network paral-
lel computation. The combination of computer science and technology and
communication technology makes computer systems developing towards net-
works. Various technologies make computer networks gradually to be wide
areas, international, wide band, low delay, multimedia, synthetic and intelli-
gent. Thereby, the concept of network parallel computation is also proposed.
The so-called network parallel computation is based on the computation of in-
dividual computer, and plus the message passing between computers to form
the computation of high-level. It sufficiently makes use of conditions pro-
vided by high speed information networks (or called information high way),
implementing resource sharing, inter-communication, message passing ser-
vice. Hence network intensive is the computation performed in the intensive
network environment.

From the implementation of the parallel computation, they can be clas-
sified as:

1) Synchronous parallel computation: the so-called synchronous parallel
computation means that two or more computation are required to begin at
the same time and also finish at the same time.

2) Asynchronous computation: Asynchronous computation does not re-
quire the beginning and finish of the computation at the same times, it just
require that the parallel computation keep necessary and normal communi-
cation and information interconnection.

Again, we can classify parallel computation from the memory it needs:
1) Memory-sharing parallel computation: Under the mode, several pro-

cessors (each one may have or may not have own memory) share memory. In
this case, the access to the shared memory may be constrained in some ways.

2) Distributed memory parallel computation: Under the mode, there is
no any constraint to the access of memory. But it is likely that a data may
have several copies, hence the whole amount of the memory may be reduced.

In the following, we introduce the practical applications of parallel com-
putation in more details in order for reader to have deeper impression on
the concept. Many challenging topics of application fields have proposed par-
allel computation. For example, in the field of magnetic record technology,
the research on the computation and emulation of static magnetic and in-
ter induction with the aim of reducing the high noise of graduated disc;

15.3 Parallel Programming 419

in new medicine ingredient design application, the research on the compu-
tation and emulation of developing medicine for curing cancers and AIDS
through restraining the role of virus proteinase that affects human immu-
nity. In aviation manufacture, the research on computation and emulation
of hydromechanics to develop the engine of supersonic jet; in liquid faction
application field, the research of modeling of bionic catalytic promoters, the
research on the computation and emulation of the role of enzyme in the pro-
cess of analytic-composition. In fuel burning application field, the research
of new engine design aiming at the exhibition of the role of fluid mechanics
through the computation of chemical dynamics. In ocean science applica-
tions, the research on the computation and modeling of the heat exchange
of atmospheric flow and ocean activities with the aim at the modeling of
the ocean as a whole. In ozone consumption application field, the research
on the computation and emulation of chemistry and dynamics mechanism in
the course of controlling the consumption of ozone. In mathematical analysis
application field, the research on applying computer to form clinical images,
analytical technique of computation layers, the computation and emulation
of magnetic resonance imaging. In atmosphere pollution application field, the
research on the emulation of atmosphere quality model, in order to control
the wide spread of pollution, and the exhibition of the physical and chemistry
mechanism of pollution. In protein structure design application field, the re-
search on the computation and emulation of the three dimension structure of
protein using computer imitation. In computer graphics application field, the
research on computation and emulation of real-time image forming and im-
molation design. In cryptographic applications, the break of the encode with
long digit keys, the computation and emulation for finding the two factors of
a large number that is used for encoding and decoding.

15.3 Parallel Programming

In Section 15.2, we have attempted to explore the parallel computers and
parallel computation from a number of aspects. One may notice from the
introduction that the parallel computation can only be realized on the com-
puters. And the computers that realize parallel computation should also be
parallel type. Besides, to implement parallel computation, one must also use
parallel programming language to develop the programs. This kind of lan-
guage should use the explicit structure to express the parallelism. Obviously,
parallel programming is far more difficult than sequential programming. The
difficulty comes from the traditional way of thinking of people. No one gets
used to think in parallel. Besides, it is also difficult to determine which part
of the program can be explicitly expressed as parallel one. And also the size
of granules of the parallelism changes as the program runs. For example, in
order to sort 16 numbers, at the beginning, the 16 numbers can be divided

420 Chapter 15 Compilation of Parallel Languages

in to 8 pairs to compare, then they can be formed into 4 groups with each
group containing 4 numbers. Subsequently, the sort is performed in parallel
in two groups with each containing 8 numbers. It is seen that the size of
granules changes as the program proceeds. Therefore even though there is
parallel language that can explicitly express the parallelism, the programmer
still needs to give the rein to his/her own professional talents to really find
out the parallelism, and correctly express it.

The so-called explicitly express parallelism, usually adopts two forms, viz.
cobegin . . . coend and parbegin . . . parend. the omission between two words
means that there may be arbitrary more parallel program segments. In this
case, the responsibility of finding and organizing the parallelism falls on to the
programmer. As for the compiler, its work is rather simple. What it needs to
do is to assign the programs or program segments that need to run in parallel
to different processors. It can be done with master/servant fashion. In this
fashion, the parallel computer consists of one controller (process) and several
subordinators (also processes). The responsibilities of the master process are
to maintain the global data structure, partition the tasks and interfaces be-
tween users, including receiving tasks, initiate computation and reclaim the
results of the computation. As for the responsibilities of each subordinator,
they have to carry the computation assigned to them, including local initial-
ization, computation, communications between modules and finally return
the results to the master process.

The hidden parallelism of programming languages is more difficult and
challenging field. In this field, the determination and partition of the tasks of
parallelism fall on the compiler. Directing at the source program, the compiler
has to find out which parts can be done in parallel and then organize them in
this way so that the program may be run in parallel. The compiler has also
to automatically generate the communication code.

In the rest of this section, we introduce five types of parallel programming.
Then in Section 15.4 we concentrate on the discussion of hidden parallel pro-
gramming, mainly exploring the instruction level parallelism (ILP), especially
for very long instruction word (VLIW) and superscalar, how do they generate
target code.

15.3.1 Shared Variables and Monitors

The simplest model of parallel programming is realized through process set
that shares variables and carries communications.

A process is an abstraction of a physical processor. Each process sequen-
tially executes program code. Conceptually, a process is a virtual processor
that has processing ability and address space where the address space is
used for storing data. Therefore, the address space is the abstraction of the
physical storage.

15.3 Parallel Programming 421

A process may create many processes to get the parallelism. The address
spaces of different processes at least partly overlap. Therefore, many processes
may access the same variable. This is what we said of shared variable. A
shared variable may be read or written by many or even all processes, and it
becomes an important mechanism of communications.

In this type of programming, an important issue is to access shared vari-
able synchronously. For synchronization, we have explained it before. But
now we need to introduce the concept of exclusive synchronization. Let us
observe an example first. In this example, suppose that two processes syn-
chronously execute the following program with an attempt of increasing the
value of shared variable X.

X: shared integer:
X:=X+2:

Suppose that the initial value of X is 6. Obviously, if both processes add 2
to X, the value of X will be 10. But what will really happen? If the two
processes initially read 6, then they synchronously add 2 to X and wrote it
back to X, then the result is 8, rather than adding 2 again to X. obviously
this is not our expectation. The reason for this is that both two processes
did the addition operation simultaneously. In order to avoid this situation,
we adopt the measurement of mutual exclusive synchronization.

Mutual exclusive synchronization means that in any given time, there
is only one process that may access the shared variable. To implement this
simple synchronization, the primitive operation may use the lock variable.
The lock variable possesses an undivisible operations: gain and release. The
so-called undivisible means that the whole operation is an integral process:
gain and release. After some process gains the lock variable, other processes
cannot gain it until the process releases the lock variable. The situation is
like that other processes are locked by the lock variable. When the process
completes its task, it releases the lock. Thereby other processes may compete
for gaining it. But next time, there will be only one process that can gain
the lock and then continues its execution. Therefore, the function of the lock
variable is making the constraint : In one time, there is only one process that
can access the shared data structure. With the lock variable, the example
above may be written as:

X: shared integer:
X-lock; lock;
Acquire-lock(X-lock);
X:=X+2:
Release-lock(X-lock);

Now, we have ensured that in any given time, there is only one process that
executes the operation of adding 2 to X. But the problem with this fashion is
that it is inefficient and it is prone to failure. The main problem is that, when
there is somewhere the statement is not protected properly, the program will
go to failure. The more structured and higher level of the solution to mutual

422 Chapter 15 Compilation of Parallel Languages

exclusive synchronization is monitor. The monitor is similar to an abstract
data type. It contains data and the operations for accessing the data. The
data encapsulated by monitor are shared by multi-processes. The most crucial
point is that at any time the operations of monitor is carried out in the fashion
of mutual exclusion.

Apart from mutual exclusion synchronization, we also need condition syn-
chronization. In condition synchronization, a process is locked until the con-
dition holds. For example, until a process generates the result that meets
the need of continuous computation. In the monitor, condition synchroniza-
tion usually is expressed by condition variable. Condition variable is shared
variable of Condition type. For Condition variables, two undivisible opera-
tions are defined: wait() and signal(). For condition variable c, its operation
wait(c) locks the applying processes while signal(c) wakes up one of the wait-
ing processes. These two primitive operations can only be applied during the
operation of the monitor. One of the important functions of operation wait(c)
is that the process locked by it temporarily left the monitor. In this way other
processes may have chance to be allowed to enter the monitor when signal(c)
happens.

15.3.2 Message Passing Model

The parallel programming model with shared variables has a problem, that
is, it is based on the machine with physically shared memory. This model is
not suitable for multi-computer systems as multi-computer systems have no
shared memory that can be used for shared memory variable. Therefore an-
other model of parallel programming is proposed— message passing model.
Message passing model is not only suitable for the multi-computer systems
without shared memory but also for the computer system with shared mem-
ory.

In parallel computer systems using message passing model, the data ex-
change between processes is realized through message passing. This work can
be done by two primitive operations send and receive. They are as follows:

process1
send(process2, message);

process2
receive(process1,message);

This represents that process1 sent to process2 a message. The format of
the message depends on the programming system. In the low layer, message
usually is a byte array. And in the high-level language, message may be
similar to a structural value of a record where may have different fields of
types. After process2 calls receive(), it then stays in the locked state until
the message arrives.

There are many basic models of send/receive. The problem that needs to

15.3 Parallel Programming 423

be solved is how to establish the connection with each other between send side
and receive side. Obviously, this requires that both sides know the address
and communication mode of the counterpart. The more flexible mode is to let
the receive side receive the message sent by any process in the program. For
example, on internet, one can receive the message sent by anyone. This mode
is very useful in the case that the receive side does not know in advance who
will send message to it. But the disadvantage is that rubbish message may be
received. The method of increasing flexibility is to use indirect process name
rather than directly assigning process name. For example, the port names
which many languages use may realize the function. The send side just needs
to put the message to the port, and the process that issues receive statement
on the port may receive the message. The match of send side and receive side
is done by the system.

The another problem is when the send side can continue the sending? In
asynchronous message passing, the send side and the receive side operate at
different places. Hence the send side may continue after it finishes one oper-
ation. But in synchronization environment, the requirements of synchronous
message passing are strict, it continues passing only when it is determined
that the passing message from send side has safely arrives at the destination.
This mode has its advantage in this way.

In some languages, the receive side can control the type and the length
of message received. For example,

receive print(size, text) such that size<4096;
it indicates that it can only receive the print message with length
less than 4096.

or

receive print (size, text) by size;
// this indicates that the print messages are required to be received
in increasing order.

What we introduced above is about receiving message by receive state-
ment with explicit mode. Corresponding to this, there is another mode called
hidden receiving mode. It creates a new thread process for every message
received.

What is a thread process? Simply speaking, a thread process is a light
level sub-process that possesses its own program counter and stack. We ex-
plain the concept further now. Talking about process, we know that the most
basic process is sequential process, that is, the activities that happen from
the execution of the program on a sequential computer. Process consists of
program and data, both can reside in the memory. Process also contains pro-
gram counter and stack. The program counter points to the instruction that
is currently executing, while the stack records the calling order of embedded
functions. We call those sub-processes that possesses program counter and
stack as thread process. Fig. 15.1 shows the relation between process and
thread process.

424 Chapter 15 Compilation of Parallel Languages

Fig. 15.1 Thread process in process.

In Fig.15.1, there are two thread processes, thread 1 and thread 2. They
execute on the same code of process p. Each thread process is identified by its
own program counters pc1 and pc2 and calling stacks s1 and s2. The process
data area is shared by the two thread processes. Since this type of thread
process was used as early as 1980s by Mesa Language. Its form was simple
and this is why it is called “light level”. We still keep using the name. Thread
process executes in the context of process. It has no address space, but it can
access to the address space where it resides. The thread process will execute
a message handler that is a routine defined by programmer to handle various
types of message.

Therefore, we create a thread for every message received. When the mes-
sage handler is completed, it ends. These thread processes can access global
variables of the process.

In hidden reception, a process can activate multi-thread processes.
Thread processes can be used for other purposes. For example, if a process

needs a remote process to send requirements, it can create a thread process to
send message and wait for the result. At the meantime, the original process
(e.g., the main program, it can be regarded as thread too) can continue its
work. Thread process has become an important concept in parallel program-
ming system.

We stipulate here that a thread process executes in a pseudo parallel
mode. The so-called pseudo parallel means that each thread process sequen-
tially executes on the same processor as the process does. It is also called
concurrent execution. Besides, the multi-processors of the multi-processor
system with shared memory can be assigned to a process, and in this way,
the threads can have the parallel execution in the real sense.

15.4 Object-oriented Languages

Shared variables and message passing are the low layer model of parallelism.
They directly reflect the architecture of shared memory and distributed mem-

15.5 Linda Meta Array Space 425

ory. Many other parallel programming languages are designed based on more
abstract model. These kinds of languages include parallel functional, logical
and object-oriented languages. We just introduce the situation of object-
oriented languages here.

The important idea of object-oriented languages is to “encapsulate” data
into objects. The data in the objects can only be accessed via the operations
(or methods) defined for objects. As we introduced in Chapter 14, other
important structures include classes, inheritances, and polymorphism. The
biggest superiority of object oriented programming is that it can write pro-
grams with well structures. From the technology point of view, it is suitable
for writing large-scale programs and may realize re-used software packages.
No matter whether it is for parallel programming or for sequential program-
ming, this superiority is extremely important. This is why people are inter-
ested in parallel object oriented languages.

Parallelism usually may be introduced from the execution of a number of
objects at the same time. It can also be introduced through allowing several
processes execute on the same processor at the same time. The communica-
tions between objects are expressed via operation requirements. One object
may cause the operation of another object on the same processor or different
processors. The operation requirements and message passing are similar, but
from the semantics of language, operation requirements are more integral.
Meanwhile, it may have many substitution methods. Many parallel object
oriented languages allow that the internal processes of objects may consist of
multiple control threads. One common mode is to use one thread as the main
process of an object, and let that thread dynamically create an additional
thread to handle each operation.

This manner realizes hidden reception. The synchronization of the thread
processes may be represented using monitor, many parallel object oriented
languages are based on monitor.

15.5 Linda Meta Array Space

The another method that gets higher abstraction level of programming model
is using suitable communication data structure, to design meta space as a
part of Linda system [2]. Linda is a small set of simple primitive operations.
These primitive operations may be added to existing sequential language,
so that the language becomes a parallel language. There are many basic
languages of which the idea is applied to generate parallel languages, for
example, C/Linda, Fortran/Linda and Lisp/Linda all are parallel languages.

Meta array space is a kind of shared memory that in structure is accessed
in combination. Meta array space is regarded as records. No matter on which
processor does a process run, the record can be accessed by all the processes
in the program. From the sense, meta array space is a shared memory. How-

426 Chapter 15 Compilation of Parallel Languages

ever, meta array space can also be efficiently realized in distributed memory
systems.

There are three operations that are defined in meta array space:
1) out: adding a meta element to the meta array space;
2) read: from the meta array space, a matched meta element is read;
3) in: from the meta array space, a matched meta element is read, mean-

while, remove it from the meta array space.
For example, in C/Linda, calling

out(‘‘item’’,5,3.12);

generates a meta element with three components (a string, an integer type
number, a float number), and adding the meta element to meta array space.
read() and in() operations are used to meta array space to search for a meta
element. For each component of meta element, it is either a real parameter
(through the expression of value passing) or determines a formal parameter
(a variable beginning with a “?”, through introduction transmission).

The “real” and “formal” parameter here are different from the “real” and
“formal” which we introduce in procedural languages. For example, calling

float f;
in (‘‘item’’,5, ?&f)

stipulates, in order to read a matched meta element with three components
from meta array space, and the first component is a string with value “item”,
the second component is integer type number 5, and the third component is a
float number. If from the meta array space, the found element is just (“item”,
5, 3.12) that is added to meta array space with

out(‘‘item’’,5,3.12)

it will be read out by in operation. Then it will be removed from the meta
array space. If in the meta array space, besides (“item”, 5, 3.12), there are
(“item”, 5, 2.69) and (“item”, 5, 4.65), then it indicates that in the meta
array space there are many meta elements that match each other, hence
from them one may arbitrarily choose one. But if there is no suitable meta
element that fits the requirement, then in() or read() is locked. The calling
process is hanged up, until there is another process that adds suitable meta
element to the meta array space.

The primitive operation aforementioned is an atomic operation that is
undivisible. That means that either it will be executed until it finishes, or it
is locked and cannot run. Therefore if there are two processes that attempt
to execute an operation on the same element at the same time, then there
will be only one process that will succeed, and the another will fail and be
locked.

In Linda, there is no the primitive operation that modifies the existing
meta element in the meta array space. In this case, if one wants to modify
the existing meta element, it must be that the meta element is taken from
the meta array space (through read() or in()), then modify it and finally

15.6 Data Parallel Languages 427

add it to the meta array space. If there are two or three processes that
simultaneously execute the segment of code, then there is only one process
that successfully executes the in operation, the rest processes are locked until
the meta element is put back to the meta array space.

Linda model is similar to shared variable model, their difference is that
meta array space is of combination addressing. One meta element has no
address, but read() and in() operations define the specification of meta ele-
ment, the system will do the matching of meta element and the specification.

15.6 Data Parallel Languages

The another important parallel programming model is data parallelism. In
this model, all the processors define the same algorithm (and code), but it
executes on different part of the same data set. The data set usually is an
array. In contrast with data parallelism, the another one is task parallelism
where different processors execute different algorithms.

Some parallel languages realize parallelism through built-in data paral-
lelism. For example, Fortran 90 supports matrix operations under data par-
allelism. For data parallel programming, the simplest explicit language struc-
ture is parallel loop statement. For example the matrix multiplication using
data parallelism may be expressed as follows:

parfor i:=1 to N do
parfor j:=1 to N do

c[i,j]:=0
for k:=1 to N do

c[i,j]:=c[i,j]+A[i,j]*B[j,k];
od;

od;
od;

It is declared in the example that two external steps may be executed in
parallel, and let compiler actually assign computation and data to different
processors. The main advantage of data parallelism is that for compiler, the
simple structure makes the analysis of the parallelism even easier to realize.

So far we have briefly introduce five models of parallel programming. They
are shown in Fig. 15.2

428 Chapter 15 Compilation of Parallel Languages

Fig. 15.2 Five types of parallel programming models.

15.7 Code Generation for Hidden Parallel Programs

In this section, we will introduce the compilation of instruction level paral-
lelism, especially of the very long instruction word (VLIW) and super scalar
structures with emphasis on the code generation of the post end of com-
piler. We emphasize the code generation because it is on this aspect that
the compilation of instruction level parallelism is different from the usual
compilation.

Here we introduce the compilation technique called region schedule tech-
nique where “region” means some parts of program that may be compiled
simultaneously. The differences between different ILP techniques lie on the
extents of the regions in consideration.

At first we briefly introduce the region schedule algorithm:
1) The code to be compiled is expressed in the intermediate code of the

compiler. From those codes that are not yet debugged a region is selected. So-
called region means a set of operations that come from more than one basic
module. Usually (but not must), a region is a set of consecutive basic modules.
Sometimes the transformation of the code is done before the selection of the
regions. The aim is to enlarge the size of the regions. Fig. 15.3 shows an
example of typical region.

2) The operations selected are set-up in the data priority diagram. Some-
times on the edges or for operations additional information that is important

15.7 Code Generation for Hidden Parallel Programs 429

Fig. 15.3 An example of typical region —a multi-entries and multi-exits region.

to the region schedule algorithm are added. Besides, on the diagram, the
special edges may be added to show prohibited or illegal or unsuitable code
movement. These edges will prevent code from illegal movement, because
these movements are likely to violate the flow control, and during the debug-
ging, there is no way to make the compensation.

3) Schedule these operations.
4) Either along the direction, or on the sequential stage, carry out the

necessary modifications. These modifications may adopt additional forms of
operations, they adjust the illegal transformations caused by the positions of
the debugging operations. For example, sometimes an operation that should
go along some path of code is moved to somewhere else. In this case, the op-
eration should be moved back to its original position. This kind of additional
operations is called patching operation.

5) Return to step 1) to repeat the steps above until there is no unscheduled
code.

The steps aforementioned are the kernel algorithm of region schedule.
The initial trace schedule technique presented the algorithm. In the last two
decades, other region schedule algorithms were also occurring. In any step,
they are different from the trace schedule algorithm, i.e., different from the
kernel algorithm above. Generally speaking, the main differences are on the
step 1), the selection of regions, and also on the step 3), the complexity of
the scanning of the schedule structure.

Although region schedule usually involves the region of loopless code,
most of the algorithms handle loop in certain manners. For example, many
compilers expand important loops in order to enlarge the size of regions. But
even in the case, the really scheduled region is still loopless.

In order to schedule loops, a set of techniques called software stream is
created. The earliest software stream technique was developed in 1970s that
was developed for Fortran compiler of CDC –6600. It was used by IBM for
the compilers of high performance CPV during the same period of time.
Under the software stream technology, several loop iteration operations are

430 Chapter 15 Compilation of Parallel Languages

organized to be a new loop [3]. The new loop combines different iteration
operations to form a new single loop. New loop mixs the different iteration
operations to fill the “gaps” (on different processors). On the entry and exit
of the new loop, similar to the entry and exit of new loop of region schedule,
the operations are arranged on the new position that allows the original loop
iterations to perform the operations which the single iteration of new loop
cannot do.

Interestingly, some ones proposed the idea that combines the region sched-
ule and stream. Conceptually, the idea is to make loop expansion infinitely,
then using region schedule to debug until the explicitly reasonable schedule
model is formed successfully. The model is used to form a new loop model,
establishing software stream. The technique is called perfect stream.

In the following, we discuss three problems concerning region scheduling:
1) The main region types.
2) Once a given region type is selected, how to form the real region from

the source program.
3) The construct and issue of schedule.

15.7.1 Types of Regions

Most of the region schedule algorithms differ on the shape definition. Usually,
these algorithms are named based on the shapes of the regions. Therefore,
we first introduce the most commonly used regions.

1) The basic blocks. The basic block is the degenerate form of the region.
It generally consists of a segment of sequential statements with only one entry
and one exit.

2) The track. Track is another type of regions. The tracks constitute the
basic block. A track is a linear path of the program code.

Suppose that B0, B1, . . . , Bn are basic blocks of the program, and their
order is given. A track is formed from the operations of these basic blocks.
And it has the following properties:

(1) Every basic block is the predecessor of the following block in the
sequence. That is, for k=0, . . . n – 1, the descendant of Bk is Bk+1, or we say
that Bk branches to Bk+1.

(2) The code of track does not contain loop, except that the whole region
is a part of some extended loop extension. viz. for any i and j, there exists
no the path Bj → Bi → Bj. But track does not prohibit the forward branch
in the region, or the flow away from the region and then return to the region
again later.

In the Fig. 15.3, B1, B2, B3, B4, B5, B6, B7 are basic blocks, where B1

→ B2 → B4 → B6 → B7 is a track that crosses the region (the shade part).
Similarly, B1 → B2 → B5 → B7 and B3 → B4 → B6 → B7 are also tracks.

(3) Super blocks. A super block actually is also a track but it contains

15.7 Code Generation for Hidden Parallel Programs 431

some constraints. Apart from the branch that goes to the first block, the
braches that go to other blocks are not allowed. Therefore, a super block
consists of the operations of the basic block series B0, B1, . . . , Bn, and it
possesses the same properties as the track does. The properties (1) and (2)
above hold for super blocks. We have:
• Each basic block is the predecessor of the following block in the basic

block series. For each K=0, 1, . . . , n – 1, Bk+1 follows Bk or Bk branches
to Bk+1.

• Super block does not have loop, except that the whole region is the part
of some of the extended loop activities, viz., for any i and j, there exists
no path Bj → Bi → Bj. But for super block, it has one more property:

• In the region, apart from B0, there is no branch that switches to a block
of the region.
In the references on super block regions, the illegal branches are called

side doors.
(4) Tree regions: A tree region is a tree shape region in the control stream

of the program, and it contains a basic block. A tree shape region consists
of the operations of the series of basic blocks B0, B1, . . . , Bn, and it has the
following properties:
• Apart from B0, each block has just a predecessor. That is, the predecessor

of Bj is the basic block Bi, where i<j. Bi is also the parent node of Bj.
This implies that a super block will be formed through arbitrary path of
the tree region, i.e., a track without side door entry.

• For any j and i, there exits no Bj → Bi → Bj, except for B0. It contains
no loop, except that the whole region is a part of the loop that surrounds
it.
As super block, the constraints of not allowing side doors may be removed

using tail copy and other expansion techniques. If a region has only one
control flow, this case is called linear region. In this sense, track and super
block are linear regions while tree region is non-linear region.

(5) Other region. Besides the regions described above, some experts also
proposed other regions, e.g., in Fig. 15.3, the track2 is a non-linear region
with one entry. It is a bit like the tree region, but there is no constraint of
side door. But its implementation is very difficult. The large scale module is
also a region module. It is a region of single entry and multiple exits, and it
has internal control flow. It is a variant of super block, and contains some
prediction operation. It can be scheduled as a module.

15.7.2 Formation of Regions

Once the shape of region is determined, two problems occur. One is how to
partition the program to be some regions with specific shapes; and second
is how to construct the schedule of them. The first problem is called the

432 Chapter 15 Compilation of Parallel Languages

formation of the region, and the second is called the construction of the
schedule.

We discuss the first one. In order to form the region, the whole control
stream of a program must be divided into some blocks that can be provided
to schedule construction program to consume and to manage with clear def-
inition. Hence, the formation of regions and the efficiency of schedule con-
struction combination are crucial to the performance. These regions that are
wisely selected will cover the context free grammar of the program with such
a manner that the execution of the program follows the path that scheduled
code predicted. Therefore, the important thing is to make sure that schedule
construction combination knows what it needs to do.

The formation of the region aims at finding out the parts of program that
can be executed simultaneously, and they are combined to form the same
region. If two parts of program can be executed together, but in different
regions, it will not be good for instruction schedule. Therefore the designers
of the formation of the regions are confronted with three problems: (1) which
programs may be executed frequently? (2) how do you know that two pro-
grams may be executed together? (3) How are the shape of the region and
the two problems above interacted each other?

For the traditional answers to the first two problems, the images are used
to measure or use the heuristic search to estimate the execution frequency
of each program. Both heuristic search method and profile-based method
assign execution frequency to such parts of programs as the nodes and edges
of context-free grammar. If the heuristic search method is used, then it should
pay more attention on the method of collecting statistic numbers, and how to
manage these numbers when the program modified by different parts of the
compiler. On the collection of profile types and the techniques of collecting
statistic numbers, many creations have been done in the last decade.

Once a set of statistic numbers is available, the rest problem is how to
use them to form the regions.

The formation of the regions usually involves the selection of the good
regions according to the existing context-free grammars. It also contains the
copies of some parts of the context-free grammars to improve the quality
of the regions. The results of copies definitely will affect the length of the
program. Hence many different algorithms and heuristic search methods
are applied to make the tradeoff. The formation of the regions also needs the
effective regions which the generation of schedule construction programs may
use, this may require additional bookkeeping and program transformation.

The formation of regions is related to the context-free grammar of pro-
grams. And only from the height of the context-free grammar, can the concept
of region be formalized, so that the formation of regions be clarified.

Reviewing the definition of context-free grammar (CFG) which we dis-
cussed before, and the language accepted by a context-free grammar L(G).
We have pointed out that most of the parts of all programming languages
belong to context-free grammars. Therefore, most of the programs developed

15.7 Code Generation for Hidden Parallel Programs 433

from these languages are context-free languages.
For the convenience of the following description, we introduce two con-

cepts:

Definition 15.1 Vertical compilation [4]. Given a program, the procedure
of such compilation is called vertical compilation that starts with the program
itself, and using reduction method, or bottom-up analysis, finally the program
is reduced to the start symbol or statement symbol.

Definition 15.2 Horizontal compilation. Given a program, the procedure
of such compilation is called horizontal compilation that the execution of the
program is the gradual implementation of the nodes —terminal strings in the
derivation diagram of context-free grammars from left to right.

In order to run the programs in parallel, it needs to partition the programs
that have been horizontally compiled into regions, then by region schedule
algorithm, the parallel execution is realized. The formation of the regions is
related to both horizontal compilation and vertical compilation.

Definition 15.3 In the context-free grammar CFG G, for two nonterminals
A and B, we say that A � B if B can occur at the right hand side of the
production with A as its left hand side.

Obviously, relation � is transitive as if A � B and B � C, then we must
have A � C. Because from the derivative relation of productions, we may
know that C occurs at the right hand side of the production that has A as
the left hand side. Therefore for any nonterminal A in G, we all have S � A
where S is the start symbol of G. Otherwise A is an unreachable nonterminal
in G, and it should be deleted as it has no any meaning in G. But in general,
the set of nonterminals is of partial order, rather than of total order.

Lemma Every context-free grammar is equivalent to a Greibach normal
form of grammar, viz., its all productions have the form

A → a α,
where a is a terminal and α is a nonterminal string (it may be empty).

Theorem 15.1 In the grammar with Greibach normal form, if in the pro-
duction A → b α, α contains nonterminals A and B but they have no �
relation, then they each constitutes different regions that are disjoint.

Proof Suppose that starting from start symbol S, and the production with
S as the left part is S→ aα. Then in α, the first nonterminal is B, apart from
the first terminal. We continue the derivation. We must get a string with
terminals and nonterminals as its elements. Among them there are those
nonterminals that they have no relation �. Therefore, there is no conflict
happening. They form different regions.

Theorem 15.2 In a context-free grammar, if in some production, there is
a nonterminal that occurs twice or more at the right hand side, then each of
them form a region.

434 Chapter 15 Compilation of Parallel Languages

Example suppose that context-free grammar G has the following set of
productions:

S→dBA|(CBA|aA|CcA|aB|CcB|a—CC
T→aB|cCB|a|Cc
A→+S
B→*T
C→aBAD|CBAD|aAD|cACD|aBD|cDC|aD
D→)

where each production can be numbered and the nonterminals are numbered
in the order of their occurrences. According to the relation �, those nonter-
minals that have no the relation may form different regions, as shown in Fig.
15.4.

Fig. 15.4 A derivation tree of Greibach normal form.

Theorem 15.3 In a conditional statement, the two branches may form the
regions that are able to compile in parallel, then when it runs, it will be
decided which branch will be executed according to the condition.

Proof When the compilation proceeds, both two branches need to be com-
piled so that the program can decide which branch is executed. While in the
phase of compilation the compilation of two (even more) branches do not
cause conflict. Even in the phase of running, it is still feasible that let two
branches run in parallel first, then the condition is decided to let one run.

For example, for mergesort, we have the program flow stream shown in
Fig. 15.5 in which the left and right parts enclosed by dash lines form paral-
lelable compilation regions. After compilation, the execution of the program
may be started. It is shown in Figs 15.6 and 15.7.

Theorem 15.4 In Shellsort, the comparisons of different increments can
be compiled in parallel as disjoint regions.

Proof In the shellsort with increments, say 8, 4, 2, and 1, if the number of
elements to be sorted is big, then when it starts, 1 and 9, 17 and 25, 33 and
41, . . . may be compared. These comparisons obviously may be proceeded in
parallel, both in compilation and in execution. Similarly, then the increment

15.7 Code Generation for Hidden Parallel Programs 435

Fig. 15.5 Mergesort.

Fig. 15.6 The execution of program after compilation.

Fig. 15.7 The execution of program that executes in parallel first then in sequen-
tial.

become 4, 1 and 5, 9 and 13, . . . may be handled in parallel again. The same
holds for increments 2 and 1.

Theorem 15.5 In the evaluation of expressions (either numerical or propo-
sitional), if the expression belongs to two disjoint sub-expressions that have
no value exchange then they can be regarded as region that can be compiled
in parallel.

For example, in Ak = (kn−kk!) − (k − 1)n+k−1(k − 1)!/n!, kn−kk! and

436 Chapter 15 Compilation of Parallel Languages

(k − 1)n+k−1(k−!)! may be compiled in parallel. Then it executes in such a
way that two sub-expressions run in parallel, then it runs sequentially.

15.7.3 Schedule Algorithms for Regions

The research on region schedule algorithms is naturally important after the
formation of the regions. The problem is also called schedule construction.
The goal of the formation of region is to efficiently implement the compilation
and execution.

Instruction level parallel (ILP) computer is the main stream of parallel
microprocessors, while explicitly parallel instruction computer (EPIC) is its
variant. Therefore we emphatically consider the region schedule algorithms
of ILP. According to the schedule system, the region schedule may be divided
into loop schedule and operation schedule; according to the style of search,
it can be classified to greedy schedule and backtrack schedule; according to
flow analysis, it can be classified as linear schedule and graphic schedule.

1) Loop schedule and operational schedule
This kind of schedule aims at minimizing a target function, meanwhile to

distribute operations to the loop “sink”. Hence, the whole schedule strategy
contains loop schedule and operational schedule. Loop schedule repeatedly
selects operations from the region to fill the loop. Only when all the operations
of current loop have been used up then the next loop is entered.

Operational schedule repeatedly selects the operations of a region and put
them into earliest loop that the relevance and target resource allow. Opera-
tion schedule techniques differ as the selection methods differ. It may be led
by some heuristic search or priority schedule. Operation schedule is more pow-
erful than loop schedule theoretically.But its implementation is more compli-
cated.

2) Linear schedule and graphic schedule
For a region that consists of n operations, the complexity of the linear

schedule is O(n). This is the main advantage of the linear schedule. Most of
the linear schedule techniques use the quickest possible schedule or suspends
the schedule as late as possible. The differences of these two are that oper-
ations are put in the earliest (or latest) possible loop that the resource and
data constraint allow.

The graphic schedule techniques, i.e., the list schedule, repeatedly selects
an operation from the operations ready to be scheduled in the data ready
queue. The premise of an operation to be ready is that in the ready queue
all its predecessors are scheduled. Once the operation is scheduled, it then is
removed from the data ready queue, and inserts its descendant that becomes
ready. These iterations continue until all the operations in the region are
scheduled.

Problems 437

3) Greedy schedule and backtrack schedule
In the greedy schedule, the candidate of schedule is selected greedily from

data ready queue. The backtrack schedule allows to backtrack once the sched-
ule failed, then it searches for suitable candidate again.

As the parallel computers appear massively, the parallel compilation tech-
niques increasingly become the hot topic of the computer technology. Here the
issues that involve regions and schedule have important position in parallel
compilation technology.

Problems

Problem 15.1 In sequential programming languages, which instructions
may be considered to be able to compile parallel or to execute parallel?

Problem 15.2 Determine whether the following program

for i:=1 to 1000 do
for j:=1 to 1000 do

A[i,j]:=A[i,j] +1
od;

od;

can be compiled and executed in parallel?
Problem 15.3 Among the sorting algorithm which you know, which ones

you consider may be compiled in parallel?
Problem 15.4 Linda meta space can be used to simulate message passing

and variable sharing. Specify how to use Linda to model sending/receiving
of message, and read/write share variables.

References

[1] IEEE Proceedings of the IEEE (2001) Special issue on Microprocessor Ar-
chitecture & Compiler Technology.

[2] Grune D, Henrie Bal, Ceriel J et al (2001) Modern compiler design. Pearson
Prentice Education, Singapore.

[3] Su Y L (2005) The intelligenization of synchronization languages in embed-
ded systems. The Journal of Guangxi Academy of Science 21(4): 236 – 238.

[4] Su Y L (2004) On the issues about region schedule in parallel compilation.
The Journal of Guangxi Academy of Science 20(4): 220 – 224.

Chapter 16 Compilation of Grid Computing

Grid computing puts every thing done in and between
high performance, clusters, peer computers and inter-
net computing sites under a definite big umbrella.

Ian Foster

16.1 Motivation of the Chapter

The rising of the grid computing, no doubt, is a new thing that happened in
the end of last century and the beginning of this century. It definitely brought
lots of new things with it. If it has become a reality and gradually occupies
certain amount of market, everything involved should be taken into account,
especially it is not mature yet. For those problems that are still open, we
should also make our effort to solve them, to make our contribution to the
solutions. This chapter only presents a brief introduction to grid computing.
We believe that more knowledge on it will be added as the time goes, and
the contents on the topic will be more bountiful in the future.

16.2 Rising of Grid Computing and Intent

In early 1990s, in academic community, there were many research projects.
All these projects were on distributed computing. Among them, there was a
key research field in which a distributed high performance computer system
was developed so that it behaves like a large-scale computer. In 1995, on
the IEEE/ACM supercomputing conference held in San Diego, California,
17 sites of high-end resource were linked with 11 high-speed networks, thus
demonstrating an attempt of establishing a super “meta computer.” This
demonstration was called I-Way (represented Internet). It was led by the
Alanne laboratory of American Energy Ministry and Ian Foster of Chicago
University [1]. Later in this network, 60 different applications were developed.
Many scholars from science and engineering community took part in the
effort. Due to the teams that created various software so that all computing

440 Chapter 16 Compilation of Grid Computing

resources worked together, hence in the device that the demonstration showed
covered the exploration of many concepts of early stage of grid computing.

The success of I-Way urged the DARPA (The Administration of Ameri-
can ministry, high-level research project management) to invest fund in the
project that creates fundamental tools for distributed computing. This re-
search project was collaboratively led by Ian Foster of Alanne Laboratory
and Carl Kesselman of University fo California. It was named Globus. This
project team created a set of tools that became the basis of the grid com-
puting research activity for academic research field. On the supercomputing
conference held in 1997, the running software from about 80 sites around the
world based on Globus tool kit was linked together.

These efforts were called grid computing as it is similar to the electric grid.
The functions of the grid computing is like the function of electric grid that
it provides the electricity to billions of appliances so that they all have the
power. The grid computing makes any one at any time to use the tremendous
computing ability with truly transparent manner.

In the academic field, the most concerned problem is still on the estab-
lishment of the effective grid frame so that the distributed high performance
computing may play role. Since in the same period of time, the Internet de-
veloped quickly, the ability of personal computers was increasingly enhanced,
scientists made many attempts to establish powerful distributed computing
system through the networking of personal computers. In 1997, the Entropia
network was established to equip the world wide idle computers to solve
the scientific problems interested. Subsequently Entropia accumulated up to
30,000 sets of computers with the trigger speed of 1010 per second. A grand
new philanthropic computer field occurs, in which users volunteered to pro-
vide their computers for use of the analysis of patients reaction to chemistry,
also use for the discovery of the medicine for AIDS and other therapeutics.

Although the projects aforementioned have not yet got the investment
from any companies and become real product, they have received attention
from more multimedia than early stage in any other science research plans.
Since the end of 2000, the papers on grid computing were transferred from
commercial journals to popular papers and journals. The main news papers
around the world all report the development in the field.

Nowadays, the big companies like IBM, SUN Microsystem,Intel, HP, and
the smaller companies like Platform Computing, AVaki, Entropia, Datasy-
napse, United Device, etc., all invest more fund to the research on grid com-
puting. But their focus is rather on the applications to commerce than to
scientific research.

Now we may consider the intent of the grid computing. The common
definition of grid computing is:
• The flexible, safe and harmonic resource sharing in the individual, re-

search department and resource dynamic set.
• The transparent, safe and harmonic resource sharing, and the cooperation

in various sites.

16.2 Rising of Grid Computing and Intent 441

• The organizations that are able to form virtual cooperation. They work
together in an open and hyterogeneus server environment to share appli-
cations and data, so that they can solve common problems.

• That are able to accumulate great amount of computing resources, these
computing resources physically separate in order to solve large-scale prob-
lems and workload, just like that all servers and resources may be put
together in a site.

• The fundamental structure of hardware and software, it provides reliable,
consistent, ubiquitous and cheap accesses to computing resources.

• Network provides us with information, while grid allows us to handle
them.

• The definitions listed above each has its unique features, and also grasps
some characteristics of the grid computing. But we tend to use the follow-
ing definition that defines grid wider and so it may better describe grid
system.

Definition Grid computing. In the situation that does not exist central
position, central control, and ubiquitous and existing trust relation each vir-
tual organization structure in the procedure of pursuing their common target,
the set of resources, including hardware and software that can organize the
organization structures to share the resources, is called grid computing.

The virtual organization in the definition involves very wide extent. It
ranges from small companies, till the big companies spread around the world,
with lots of people coming from different structures. The size of virtual orga-
nization may be either big or small, either static or dynamic. Someone can
also be temporarily set up for special purpose. When the goal is attained, It
is dismissed.

Some of the examples of virtual organizations are:
• The accountant department of a company.
• The competition score statistic department of South Africa Soccer games.
• The urgently organized response team for handling petro leaking in Mex-

ico Bay.
A resource is an entity for share, it may be computing-type, e.g., personal

digital assistants, laptop computers, desk computers, workstations, servers,
clusters, and supercomputers; it may also be storage-type, e.g., the hard disc
drivers, cheap redundant array of magnetic disc, and double word storage
device. The sensors are another type of resources, band width is also a kind
of resource used for various activities of the virtual organization structures.

That there is no central position and central control implies that there is
no need for setting the specific central position for the management of grid
resource. Finally, the crucial point that needs to be noted is that in network
environment, resources do not need to know the information each other, they
do not need to have predefined security relation.

442 Chapter 16 Compilation of Grid Computing

16.3 Grid Computing Model

Grid is a lattice of a × b, on every grid (i, j) (1 � i � a, 1 � j � b) there
is a processor, the edge corresponds to the bidirectional communication link.
The processor on the grid is identified by binary array (i, j) (i.e., its position
in the grid). Since each processor has a local memory unit RAM, hence
it can execute basic operations such as addition, subtract, multiplication,
comparison, local storage access, etc. in any time unit. Suppose that the
computations are simultaneous, i.e., there exists a global clock, in the time
of the clock, every processor may complete each predictable task in the unit
time of the clock. For convenience, we only consider square grid, that is, we
have a=b. Fig. 16.1 (a) presents a

√
p ×√p network. Fig. 16.1 (b) presents

a linear array.

Fig. 16.1 Grid network and linear array that link computers.

Here we assume that the links between processors are bidirectional. But
in linear array, processor 1 has no left adjacent while processor p has no right
adjacent. For other processor i, i− 1 is its left adjacent while i+1 is its right
adjacent.

√
p×√p network has several sub graphs, each sub graph contains

a linear array with
√

p processors.
The communication between processors is done under the help of com-

munication links. Any two processors that have links to connect can commu-

16.3 Grid Computing Model 443

nicate each other in one unit time. If there is no link between two processors,
then their communications need to rely on the path that connects them. The
time that the communications between the two processors take would depend
on the length of the path (at least it is right for small amount of information.)
Suppose that in unit time, one processor may execute a local computation,
or at most communicate with four adjacent.

In this grid network, the processors that the first coordinates are equal
form a row of the processor grid network, the processors that the second
coordinates are equal form a column of the grid network. If each row or each
column consists of

√
p processors, this forms a linear array. Usually, the grid

network algorithm consists of the steps on rows or columns.

16.3.1 Group Routing

In a fixed grid connection, the single step communication between processors
may be regarded as group routing. Every processor in the network has a
group message that needs to send to some processor. All the group messages
have to be sent to the correct address at the speed as fast as possible. And
on arbitrary link and on some time period at most only one package can pass
through. As the band width of any communication channel is limited, hence it
is necessary to have the constraint, i.e., at any time period, only one package
may pass through channel. If there is two or more packages that arrive at
processor V at the same time, and they all need to use the same link to leave
V, then in the next unit time, only one package can be sent, other packages
have to wait for transmission on the queue of V. In the process of the schedule
of these packages, priority scheme may be used. The priority scheme includes
furthest destination first (i.e., the package with furthest destination is sent
first), furthest source first (the package with furthest source is sent first), and
FIFO (first-in-first-out).

Partially Permutation Routing (PRT) is the special case in routing prob-
lem. In partially permutation routing, every processor at most contains a
group source address, also at most contains a group destination address. In ex-
clusively read and exclusively write parallel random access machine (EREW
PRAM), partially permutation routing may execute in a synchronous write
step However, in any fixed grid network connection, partially permutation
routing may send and receive through communication edges. Usually, it is
a sophisticated task. Besides, In any fixed grid network connection, groups
enter processor according to some order, and it is hoped that they leave ac-
cording to some assigned order. However, sorting the rearranged data may
involve multiple partially permutation routing. Therefore, in fixed grid net-
work connection any nontrivial algorithm needs partially permutation rout-
ing. This is one of the main differences between grid algorithm and parallel
random access machine algorithm.

444 Chapter 16 Compilation of Grid Computing

The evaluation of partially permutation routing algorithm usually is done
according to the length of running time and the length of the queue. Running
time means from begin of running until the time when the last package arrives
at the destination. The length of the queue means that during the routing
the maximum number of packages that any processor must store. The lower
bound of the queue is the largest number of packages to or from any node.
Suppose that in the package, it not only contains message (from a processor to
another processor), but also contains the source and the destination addresses
of the message. Package routing algorithm is determined by the path that
every package passes through and the priority scheme. The time that any
package takes to arrive the destination depends on the distance from source
address to the address of destination, and the waiting time (called delay) of
the package in the queue.

Example 16.1 Consider packages a, b, c, and d, as shown in Fig. 16.2(a),
their destination is shown in Fig. 16.2(g). Suppose that the FIFO scheme is
adopted. When competition takes place, it can be removed with any mode.
Besides, the route that every package will pass through is decided by the
routing algorithm and it will be the shortest route. When t=1, every package
advances one edge towards the destination. Hence packages a and b will
arrive at the same node. When t=2, one of a and b will need to line the
queue because they arrive at the same position at the same time, so the
competition takes place. The competition may be resolved with any mode.

Fig. 16.2 The example of routing.

16.3 Grid Computing Model 445

Suppose that a wins Meanwhile, when t=2, package c and d also advanced
one edge towards the destination, they will be together with b (as shown in
Fig. 16.3). When t=3, as b has higher priority than c and d, so b goes first.
When t=4, packages c and d compete again for advancement. Since they have
the same priority, the resolution is arbitrary. Suppose that d is the winner.
Then package c will take 2 more steps or delay two more steps to get the
destination. Finally each package arrives at the destination.

The moving distance of c is 4, and it lined to queue twice (competed with
b and d respectively), so it delayed 2, and the total consuming time is 6.
Suppose that the different priority scheme is used, what is the result? If the
furthest destination first scheme is adopted, then when t=4, the package c
will have highest priority, so it will be handled in advance. In this case, its
running time is 5.

16.3.2 Routing in Linear Array

In linear array, as the connection is bidirectional, the processors can send or
receive message from each adjacent. This implies that, if there is a package
that moves from left to right, and there is another package that moves from
right to left, then these two stream will not have competition. We will prove
that the partially permutation routing in linear array can complete in p – 1
or even less steps. It is worth noticing that the worst case needs p – 1 steps.
For example, if a package wanted to pass through from processor 1 to p.

Example 16.2 In Fig. 16.3, the circles represent the packages moving from
left to right, the clicks represent the packages moving from right to left. For
example, packages a and b move through the same edge in reverse directions
at the same time. Since the edge is bidirectional, there is no competition.
They can go ahead at any time without any impediment. A package that is
from node 1, and destination is p must pass through p – 1 edges. Hence it
takes at least p – 1 steps.

Fig. 16.3 Packages moving to right from left and moving to left from right are
independent.

Lemma 16.1 Suppose that in each source address there is only one pack-
age. In a linear array with p processors, assume that the destinations are
arbitrary. Without losing generality, we now only consider the case of mov-
ing from left to right. If package q has the source at processor i and it wants
to get to processor j. Then it will need to move j – i to get the destination.

446 Chapter 16 Compilation of Grid Computing

Notice that one package can only passes one edge at a time. Since q does not
meet any package on the way, it will not be delayed. For all the packages the
routing selection has maximum time p – 1. Meanwhile, the length of queue
for the algorithm is the largest number of packages going to any node.

Lemma 16.2 In the linear array of p processors, any processor i (i=1,
2, . . . , p) initially has ki packages and they meet

∑p
i=1 ki=p. That means that

each processor is exactly the destination of a package. If the priority scheme
of furthest destination first is adopted, then the time taken by package with
source processor i will not exceed the distance that the package moves to
the destination. In other words, if the package moves from left to right, the
consuming time will not exceed p – i; if it moves to left from right, the time
is less than i – 1.

Proof Suppose that package q comes from processor i, and its destination
is q. Without losing generality, suppose that the package moves from left
to right, and suppose that each package has selected the shortest path from
source address to destination address. If package q generates delay, it can
only be generated by that the number of destination is greater than j. And it
is also caused by that a package has its source at the left of i. Suppose that
the numbers of such packages at processors 1, 2, . . . , j are k1, k2, . . . , kj−1

(initially), notice that
∑j−1

i=1 ki � p− j.
Suppose that m satisfies m � m′ � j – 1, km−1 and km � 1, the sequence

km, km−1, . . . , kj−1 is called free sequence. The package in free sequence
cannot generate delay due to other distributions, because according to the
priority rule, the package at the left has higher priority than the package at
the right to be selected.

Moreover, in every step, at least one package joins the free sequence.
Fig. 16.4 shows the example. the numbers represent the number of packages
on the nodes. For example, when t = 0, on node i there are 3 packages. At
the time, 0, 1, 0, 1, 1 is a free sequence. Notice that, as time changes, the
number of packages in the sequence will change too. For example, when t =
1, a package joins the sequence; when t = 2, 4 packages join the sequences
again.

Therefore, after p – j steps, all the packages that may cause package q
delayed are in the free sequence. Package q needs at most j – i steps to get
destination (see Fig. 16.4). The moving of package from right to left is similar.

Fig. 16.4 Demonstration of Lemma 16.2.

Lemma 16.3 In the linear array of p processors, suppose that the packages
sent from any processor are more than one, and the number of receiving
packages is more than one too. From processors 1, 2, . . . , j the number
of sending packages are no more than j+f(p) (for any j, and f is a selected

16.4 Compilation of Grid Computing 447

function). Then in the priority scheme of furthest destination first, the routing
selection for these packages can be resolved in p+f(p) steps.

Proof Suppose that q is a package that has source i and destination j (j is
located at the right of i). q can be delayed by at most i+f(p) packages because
these packages have their source addresses 1, 2, . . . , i, and they have higher
priority than q. If each package makes q delayed at most once, that means
that the package with higher priority cause q delayed. Then the package will
not make q delayed again. Then the delay of q will be equal to or less than
i+f(p). Since q only needs j – i steps to get to destination, the total time that
q takes is less than j = f(p). In summary, for all the packages, the maximum
consuming time is p+f(p).

Example 16.3 Fig. 16.5 demonstrates the proof of Lemma 16.3. In this
example, there are 8 packages a, b, c, d, e, f, g, h. Suppose that g is the
package that is most concerned. Package g can only be delayed by a, b, c, d,
e, f, h. When t=9, package g arrives at its destination. It passed the distance
of 2, and the dalay is 7. In this graph, the packages that passed node j are
not shown.

Fig. 16.5 The illustration of Lemma 16.3.

16.4 Compilation of Grid Computing

So far there is no any formal programming language used for grid comput-
ing. Therefore we have no way to explore the compilation of this kind of
language. However, there are many researches already on the compilations of
grid computing programs or compilation between procedures [2]. They have
not put into market, especially there is very few works that had been done
in the compilation between documents. One of the reasons is that the com-

448 Chapter 16 Compilation of Grid Computing

pilation of the whole programs must make the compilation very complicate,
even though there were some researches who stated that it is very beneficial
to the correctness and performance of programs. But users usually do not
want to have long time compilation.

However, in the future, the tasks of compilation is so heavy and tough.
So the compilation between procedures becomes a must rather than a luxu-
rious thing, especially for the compilation of grid computing on distributed
heterogeneous computers.

For the compilation of cross procedures, the problems that need to be
solved are as follows:

1) The compilation of cross procedures that supports grid application
system frame must be able to integrate the whole application performance
evaluation program and mapping program. Therefore, in order to construct
the execution model of the whole program, a cross compilation of interpro-
cedure is very necessary.

2) The management of binary position (i, j is also the necessary function
of the program development time) In order to avoid the expensive phase
of partitioning binary components, it is important to connect the parts of
programs in shared component based on remote computing resources. These
programs have partly stored in the remote computing resources in advance.
The optimization of the contingencies is the crucial function of interprocedure
cross compilation.

3) In order to avoid the time of compilation being too long, the recompi-
lation of the document in program should be managed. Although there are
some researches in the analysis of recompilation, they are not available in
market yet.

4) If one wants to put the previous running time analysis into the de-
cision making of the currently running compilation, then the management
of recompilation is more complicated. In order to manage this process, the
compilation environment should be complicated enough too.

5) Some interprocedure cross compilation analysis needs to be completed
in linking time and running time. How to effectively manage the process is
still an open problem.

The research on compilers has generated two general techniques for han-
dling the long latency in storage and communications on parallel computers:
one is hidden latency, it overlaps the data communication and computing.
The another is the reduction of the latency that is used for reorganizing
program so that the data in local storage can be more effectively reused. In
practice, these two techniques are very effective.

In the compilers used in grid computing, the implementation of these two
techniques is very sophisticate, and the hidden latency is especially problem-
atic, because the latency in grid computing is big and changing. Therefore,
if we want to be able to determine how to extract the values of the variables,
then it will need to spend more time in the estimation of running time and
communication delay. This also means that the latency tolerant algorithm is

16.4 Compilation of Grid Computing 449

more important.

Running time compilation

The kernel of the compilation of grid computing is its parallel imple-
mentation. The important problem that is related to this is the scheme of
automatic load balance in the grid. Therefore, there is need for some nec-
essary information, e.g., the upper bound of loops and the sizes of arrays.
However for many applications, these messages are unknown before running.
The lack of this information is also difficult for the definitions of problems in
irregular grid. It makes the implementation of parallelism very difficult even
on homogenous parallel computers.

The running time compilation has many forms. After the scalar data have
been put into memory, it may be as simple as reconsideration of decision,
but it can also be as complicated as planning communication in irregular
computation. Because before the crucial data structures are defined, the fun-
damental grid and position of the computing are unknown.

For the grid, it is necessary to reconfigure the whole program and the
implementation of load balance when it is running, this is possibly an ex-
tremely time-consuming process. Therefore it needs to have a strategy that
may minimize the overhead of these steps. In general, it is necessary to carry
out the research on how to minimize the overhead with running time being
emphasis and complicated decision factor because more and more the cases
in which the requirements will be met in the future.

In order to resolve the problem aforementioned, some designed the method
of running time compilation reviewer/executer. In this method, the compi-
lation program partitions the key computing part into two parts: one is the
reviewer, and another one is the executer. The former one can only be ex-
ecuted once, after the running time data is allowed to use to establish the
plan that will be effectively executed on parallel computer. And the later one
executer is called in the execution of every iteration of the computing�and
the execution is to implement the plan defined by reviewer.

The idea of the scheme is to amortize the computing cost of running times
in many time steps of complicated computing. In the upper costs of loops are
unknown, the reviewer may partition the loop into some small loops. Once
the upper bounds are known, they may match the power of target machine,
meanwhile executer only needs to execute correct computation on the small
loops in each machine. The reviewer must follow the rules of making the
balance in complicated and irregular problems. The tasks of reviewer and
executer are very complicated.

Running time compilation is a powerful tool for tailoring the programs so
that they are suitable for execution on any parallel computers. Especially it
is structured crucial for distributed heterogeneous structured computers.

For grid computing, the compiler and parallelization tools reside on the
middle level of the matrix (grid).

In the current stage, what we know about the compilation of grid com-

450 Chapter 16 Compilation of Grid Computing

puting is limited indeed. But we may predict that, not long after, people
will have deeper understanding about it, consequently, there will be more
concrete achievements on the research of the field.

Problems

Problem 16.1 Design an algorithm for sorting numbers in the grid with√
p×√p nodes.

Problem 16.2 Suppose that on the
√

p × √p grid, it happens that each
processor is a source address of a package, and it is also the destination of
a package. Design a deterministic routing algorithm to solve the routing
problem for the packages. Your algorithm should has the complexity of
O(
√

p). The size of queue is O(1). Hint: use the sorting algorithm.
Problem 16.3 On an

√
p × √p grid, at first the sorting for the rows is

executed, then sorting for the column is performed. Prove that the rows
are still in order.

Problem 16.4 Using the ides of problem 2, design a deterministic group
permutation routing algorithm. The complexity of your algorithm should
be O(

√
p) and the size of the queue is O(1).

References

[1] Foster I, Keeselman C (2004) The Grid, 2nd edn. Elsevier, Amsterdam.

[2] Abbas A (2004) Grid Computing: a practical guide to technology and appli-
cations. Charles River Media.

Index

A

abort command 250
accepting states 59, 73
Algebra 239
Allocation 337
alphabet 64
Approximate Inverse 255
arbitrary source program 238
Assignment statement 294
Assumption and assertion 258
Asynchronous computation 418
Attribute Grammar 208
Automata 55

B

backtrack schedule 437
Backus-Naur Form 106
bi-infinite linear cellular automaton

76
Binary Bits 359
Bit Operations 368
blank 108
Boolean expressions 308
Bottom-up Syntactical Analysis 180
Branches 373
Byte Operations 369
Bytes 359

C

Call-by-name 348
Call-by-references 347
Call-by-value 347
carries communications 420
children of the node 221
Code Generation 428
code generators 355, 354
compilation 9, 12
compilation of a statement 19
Computation intensive 417

Conditional Instructions 367
configuration 46
connection matrix 77
Consistency 11
Context-free Grammars 126, 135
context-sensitive grammar 117
context-sensitive language 117
Control stream node 287
copy-restore 348

D

Data intensive 418
data parallelism 427
data stream 219
debugging 9, 316
Demonic nondeterminism 251
Dependence Graph 212
deterministic 63, 103
Distributed memory parallel

computation 418
dynamic loop detection 221
dynamic storage 336

E

efficiency 9
entire process 236
equivalent 121
Error Handling 319
Evaluation of Attributes 212
explicit allocation 336
Expression Quadruples 391

F

final states 59, 64, 73, 74, 102, 108
Finite Automata 59
fixed-sized blocks 337
Formation of Regions 431
function transducer 59

452 Index

fuzzy automaton 74

G

Garbage Collection Algorithm 338
Generalized Assignment 262
Generation of Codes 358
Grammar 27, 55
Graphic Representation 287
graphic schedule 436
Grid Computing 442
Group Routing 443
Guarded command 259, 260

H

handling method 90
Handling of Constants 86
Hidden Parallel Programs 428

I

Identifier Analysis 84
Identifier errors 97
inheritance 403, 405
initial state 59, 73, 102, 108
innumerable objects 403
inputs 74
input alphabet 102, 108
instantaneous descriptions 110
instructions of MMIX 383
internal states 102, 108
Iteration 264
iterative circuit computers 76

J

Jumps 373

K

Kleene closure 57

L

L attributed definitions 222
LALR(1) Syntactical Analysis 191
Language 1, 31
language accepter 58
Language Generated 34

Languages 55
left-linear 67
Left-recursive symbol 137
leftmost 105
Lexical Analyzer 80, 87
Linda system 425
Linear Array 445
linear bounded automaton 118
Linear schedule 436
LL(1) Syntactical Analysis 173
local transition function 77
Loop schedule 436
Loop Statements 306
LR(0) Syntactical Analysis 185
LR(1) Syntactical Analysis 193

M

Management nodes 286
Memory 361
Memory-sharing parallel

computation 418
Message Passing Model 422
Meta array space 425
meta space 425
method overload 404
Methods of Syntax Analysis 161
miracle command 251
Mistyping 313
Multiple Inheritances 408

N

Name conventions 248
Network intensive 418
Non-deterministic Push-down

Automata 102
Non-deterministic Finite Automaton

64
Non-numerical computation 417
not closed 106
number errors 97
Numerical computation 417

O

object-oriented languages 403, 425
operational schedule 436
Optimization 324
Optimization of Programs 320
Ordering Relation 252

Index 453

P

parallel computation 419
parallel programming 427
Parameter Passing 346
phrase-structure grammar 117
Postfix Representation 290
Precedence rules 248
Preliminary Knowledge 25
Procedural statements 307
production 126
program structures 8
programming languages 9
Provability 10
pumping number 69, 105
punctuation errors 97

Q

Quadruple Code 292

R

Reasoning Language 247
Recursion 254
recursively enumerable 117
region schedule algorithms 436
Register Allocation 357
Registers 361
regular grammar 66, 67
regular intersection 106
Reliability 9
Reversed Polish Form 390
right-linear 67
rightmost 105
Routing 445
running of the programs 9

S

S-attribute grammar 224
Scan 343
schedule construction 436
self-reproducing automata 76
Semantic errors 313, 319
Sequential composition 251
shares variables 420
Simulation 256
skip command 250
SLR(1) Syntactical Analysis 189

Source Language 230
Stack Allocation 334
stack alphabet 102
stack initial symbol 102
start variables 57
states 64, 73
Static Declaration 267
static loop detection 221
stochastic automaton 73
Storages Management 355
Subprogram Calls 375
Super block 430
Switch statements 309
Synchronous parallel computation

418
Syntax errors 313
Syntax Error Handling 159
Syntax Tree Form 393

T

tape alphabet 108
target machine 281, 358
target program 355
terminal symbols 57
tessellation structures 76
Tokens 343
Top-down Syntax Analysis 164
transition function 64
translates 3
Translation of Expressions 390
triple expressions 391
Turing machine 46, 108
Type conversion 304
Types of Regions 430

U

unrestricted grammar 117

V

valuation space 75
variable-sized blocks 337
variables 57
Various Statements 394

W

wrong spellings 97

	Title Page

	Copyright Page

	Preface
	Table of Contents

	Chapter 1 Introduction
	1.1 Language and Mankind
	1.2 Language and Computer
	1.3 Compilation of Programming Languages
	1.4 Number of Passes of Compiler
	1.5 An Example of Compilation of a Statement
	1.6 Organization of the Book
	References

	Chapter 2 Grammars and Languages
	2.1 Motivation of the Chapter
	2.2 Preliminary Knowledge
	2.3 Grammar
	2.4 Language
	2.5 Language Generated by a Grammar
	2.6 Turing Machine
	2.7 Issues Concerning Grammars and Languages
	Problems
	References

	Chapter 3 Finite State Automata and Regular Languages

	3.1 Motivations of the Chapter
	3.2 Languages, Grammars and Automata
	3.3 Deterministic Finite Automata
	3.4 Nondeterministic Finite Automata
	3.5 Regular Expressions
	3.6 Regular Grammar
	3.7 Kleene’s and Moore’s Theorems
	3.8 Pumping Theorems and Closure Properties for LREG
	3.9 Applications of Finite Automata
	3.10 Variants of Finite Automata
	Problems
	References

	Chapter 4 Lexical Analysis
	4.1 Motivation of the Chapter
	4.2 Lexical Analyzer
	4.2.1 Role of Lexical Analyzer
	4.2.2 Identifier analysis
	4.2.3 Handling of Constants
	4.2.4 Structure of Lexical Analyzer

	4.3 Output of Lexical Analyzer
	4.4 Error Handling
	Problems
	References

	Chapter 5 Push-Down Automata and Context-Free Languages

	5.1 Motivation of the Chapter
	5.2 Push-Down Automata
	5.3 Context-Free Languages (LCF)
	5.4 Pumping Theorems for Context-Free Languages
	5.5 Push-Down Automata and Context-Free Languages
	5.6 Applications of Context-Free Languages
	5.7 Turing Machines
	5.8 Turing Machines as Language Accepters
	5.9 Equivalence of Various Turing Machines
	5.10 Recursively Enumerable Languages (LRE)
	5.11 Context-Sensitive Languages (LCS)
	5.12 Hierarchy of Machines, Grammars and Languages
	5.12.1 Hierarchy of Machines
	5.12.2 Hierarchy of Grammars and Languages

	5.13 Relations Among Machines, Languages and Grammars

	Problems
	References

	Chapter 6 Context-Free Grammars
	6.1 Motivation of the Chapter
	6.2 Context-Free Grammars
	Problems
	References

	Chapter 7 Syntax Analysis
	7.1 Motivation of the Chapter
	7.2 Role of Syntax Analysis in Compilers
	7.3 Methods of Syntax Analysis
	7.4 LL(1) Syntactical Analysis Method
	7.5 Bottom-Up Syntactical Analysis Method
	7.6 LR(1) Syntactical Analysis Method
	7.6.1 LR(0) Syntactical Analysis
	7.6.2 SLR(1) Syntactical Analysis
	7.6.3 LALR(1) Syntactical Analysis
	7.6.4 LR(1) Syntactical Analysis

	Problems
	References

	Chapter 8 Attribute Grammars and Analysis
	8.1 Motivation of the Chapter
	8.2 Attribute Grammar
	8.3 Dependence Graph and Evaluation of Attributes
	8.3.1 Dynamic Attribute Evaluation
	8.3.2 Loop Handling

	8.4 L Attribute Grammas and S Attribute Grammars
	Problems
	References

	Chapter 9 Algebraic Method of Compiler Design

	9.1 Motivation of the Chapter
	9.2 Source Language
	9.3 Algebraic Foundation and Reasoning Language
	9.3.1 Algebra Fundamentals
	9.3.2 Reasoning Language

	9.4 A Simple Compiler
	9.4.1 The Normal Form
	9.4.2 Normal Form Reduction
	9.4.3 The Target Machine

	Problems
	References

	Chapter 10 Generation of Intermediate Code
	10.1 Motivation of the Chapter
	10.2 Intermediate Code Languages
	10.2.1 Graphic Representation
	10.2.2 Postfix Representation
	10.2.3 The Quadruple Code

	Problems
	References

	Chapter 11 Debugging and Optimization
	11.1 Motivation of the Chapter
	11.2 Errors Detection and Recovery
	11.3 Debugging of Syntax Errors
	11.3.1 Error Handling of LL(1) Parser

	11.4 Semantic Error Check [2]
	11.5 Optimization of Programs [3]
	11.6 Principal Ways of Optimization
	11.6.1 Elimination of Subexpressions
	11.6.2 Copy Propagation
	11.6.3 Dead-Code Elimination
	11.6.4 Loop Optimization
	11.6.5 Reduction of Strength [7]

	Problems
	References

	Chapter 12 Storage Management
	12.1 Motivation of the Chapter
	12.2 Global Allocation Strategy
	12.3 Algorithms for Allocation
	12.3.1 Algorithm for Stack Allocation
	12.3.2 Algorithm for Heap Allocation

	12.4 Reclamation of Used Space
	12.4.1 Basic Garbage Collection Algorithm
	12.4.2 Supports to Garbage Collector From Compilers
	12.4.3 Reference Counts
	12.4.4 Tokens and Scans
	12.4.5 Dual Space Copy
	12.4.6 Contract

	12.5 Parameter Passing
	12.5.1 Call-by-Value
	12.5.2 Call-by-References
	12.5.3 Copy-Restore
	12.5.4 Call-by-Name

	Problems
	References

	Chapter 13 Generation of Object Code
	13.1 Motivation of the Chapter
	13.2 Issues of Design of Generators of Target Codes
	13.2.1 Input of Code Generators
	13.2.2 Target Programs
	13.2.3 Storages Management
	13.2.4 Selection of Instructions
	13.2.5 Register Allocation
	13.2.6 Selection of Order of Computation
	13.2.7 Method of Generation of Codes

	13.3 Target Machine MMIX
	13.3.1 Binary Bits and Bytes
	13.3.2 Memory and Registers
	13.3.3 Instructions
	13.3.4 Load and Store
	13.3.5 Arithmetic Operations
	13.3.6 Conditional Instructions
	13.3.7 Bit Operations
	13.3.8 Byte Operations
	13.3.9 Jumps and Branches
	13.3.10 Subprogram Calls
	13.3.11 Interruptions

	13.4 Assembly Language of MMIX
	13.5 Generation of MMIXAL Target Codes
	13.5.1 Translation of Expressions in Reversed Polish Form
	13.5.2 Translation of Triple Expressions
	13.5.3 Translation of Expression Quadruples
	13.5.4 Translation of Expressions
	13.5.5 Translation of Syntax Tree Form of Expressions
	13.5.6 Translation of Various Statements

	Problems
	References

	Chapter 14 Compilation of Object-oriented Languages

	14.1 Motivation of the Chapter
	14.2 Objects and Compilation
	14.3 Characteristics of Objects
	14.3.1 Inheritance
	14.3.2 Method Overload
	14.3.3 Polymorphic
	14.3.4 Dynamic Constraint
	14.3.5 Multiple Inheritances
	14.3.6 Multiple Inheritances of Inter-reliance

	Problems
	References

	Chapter 15 Compilation of Parallel Languages
	15.1 Motivation of the Chapter
	15.2 Rising of Parallel Computers and Parallel Computation

	15.3 Parallel Programming
	15.3.1 Shared Variables and Monitors
	15.3.2 Message Passing Model

	15.4 Object-oriented Languages
	15.5 Linda Meta Array Space
	15.6 Data Parallel Languages
	15.7 Code Generation for Hidden Parallel Programs
	15.7.1 Types of Regions
	15.7.2 Formation of Regions
	15.7.3 Schedule Algorithms for Regions

	Problems
	References

	Chapter 16 Compilation of Grid Computing
	16.1 Motivation of the Chapter
	16.2 Rising of Grid Computing and Intent
	16.3 Grid Computing Model
	16.3.1 Group Routing
	16.3.2 Routing in Linear Array

	16.4 Compilation of Grid Computing
	Problems
	References

	Index

