Yunlin Su
Song Y. Yan

Principles of
Compilers

A New Approach to Compilers
Including the Algebraic Method

RS RN &\ Springer

Yunlin Su
Song Y. Yan

Principles of Compilers

A New Approach to Compilers
Including the Algebraic Method

Yunlin Su
Song Y. Yan

Principles of Compilers

A New Approach to Compilers
Including the Algebraic Method

With 129 figures

ﬁ BER T i @ Springer

HIGHER EDUCATION PRESS

Authors

Prof. Yunlin Su

Head of Research Center of Information
Technology Universitas Ma Chung
Villa Puncak Tidar No-01 Malang

Java Timur, Indonesia

E-mail: su.yunlin@machung.ac.id

ISBN 978-7-04-030577-7
Higher Education Press, Beijing

ISBN 978-3-642-20834-8

Prof. Song Y. Yan

Department of Mathematics
Massachusetts Institute of Technology
77 Massachusetts Avenue

Cambridge MA 02139, U.S.A.
E-mail: syan@math.mit.edu

ISBN 978-3-642-02835-5 (eBook)

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011926225

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks.
Duplication of this publication or parts thereof is permitted only under the provisions of the
German Copyright Law of September 9, 1965, in its current version, and permission for use must
always be obtained from Springer. Violations are liable to prosecution under the German Copyright

Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the

relevant protective laws and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The compiler is one of the most important aspects of system software. When
any computer user develops a computer program, one must use some pro-
gramming language, rather than using a computer instruction set. This im-
plies that there must be the compiler of the programming language that
has been installed on the computer one uses, and otherwise the developed
program cannot be run.

There are some differences between a compiler and programming lan-
guage. Once language is designed, it must be kept unchanged (except when
it contains a mistake that has to be corrected), while the techniques for im-
plementing compilation might be changed over time. Hence people always
explore the more efficient and more advanced new techniques to raise the
quality of compilers.

The course similar to “The principles of Compilers” has become one of
the most important courses in computer science within higher institutes. Ac-
cording to our knowledge, the development of compilation techniques evolves
in two directions. One is towards the improvement of the compilation tech-
niques for existing languages. Another is towards the research and develop-
ment of the compilation techniques of new languages. These new languages
include object-oriented languages, distributed languages, parallel languages,
etc. This book introduces the newest knowledge in the field, and explores
the compilation techniques suitable for the languages and computation. It
associates the compilation of programming languages with the translation of
natural languages in human brains so that the reader can easier understand
the principles of compilers. Meanwhile, it introduces the algebraic method of
compilation that belongs to formal technology.

This book consists of 16 chapters. Chapter 1, Introduction, outlines the
process of compilation and associates the compilation of programming lan-
guages with the comprehension and generation of natural languages in human
brains. Chapter 2 introduces the grammar and language. The generation of
the language is based on the grammar and languages are the fundamentals
of the compilation process. Chapter 3 introduces finite automata and regu-
lar languages, together with Chapter 4, it is devoted to lexical analysis, the
first task of analysis stage. Chapter 3 may be regarded as the theoretical
preparation of lexical analysis; while Chapter 4 is the concrete practice of

vi Preface

lexical analysis. Chapters 5—7 commonly work together to discuss syntacti-
cal analysis. Chapter 5 introduces push-down automata that correspond to
context-free grammars. Chapter 6 devotes to the discussion of context-free
grammars and the context-free languages which they generate. Chapter 7
explores the second task of analytical stage — syntactical analysis. Following
this is the semantic analysis. After the analytical stage finishes, the synthetic
stage starts. The main task of the synthetic stage is to generate object code.
Chapter 8 introduces and analyzes attribute grammars. Chapter 9 introduces
a new compilation method — the formal method of compilation. Chapter 10
discusses the generation of the intermediate code. Chapter 11 expatiates the
debugging and optimization techniques for compilers. Chapter 12 explicates
the memory management that is related to compilation of programs. Chap-
ter 13 is the destination of the compilation, the generation of object code.
The chapter introduces the virtual machine MMIX that is proposed by D.E.
Knuth in his book The Art of Computer Programming. This virtual machine
is the mixture of features of 14 most popular machines in the current mar-
ket, it has rich an instruction set, and makes object codes flexible. Chapters
14 and 15 expound the compilation techniques for object-oriented program-
ming languages and parallel programming languages. Chapter 16 discusses
issues for grid computing. Though grid computing has attracted one’s atten-
tion there is no any language especially suitable for grid computing at the
present. Hence, we just focus on its features, pointing out the issues which
the compilation of the language should be tackled when the language exists.

We would like to express our sincere appreciation to Ms. Chen Hongying
of Higher Education Press. Without her encouragement, help and patience,
we could not finish the writing of this book. We also want to thank the
authors whose contributions were referred to the book. A great part of the
contents of the book is taken from them. We would like to acknowledge Tim
Lammertink and Myrte de Vos for their kind help. Finally, we would like to
express our gratitude to our family and students for their long-term support
and understanding.

No doubt, there might be neglects or mistakes remaining in the book. We
hope that the reader would be generous with your criticism.

Yunlin Su
Song Y. Yan
March 2011

Contents

Chapter 1 Introduction - - -« -« cvvvvmanenee ... 1
1.1 Language and Mankind « -« ««« v o v v 1
1.2 Language and COmpPUber - -« « v o v vvvveneneneaee .. 3
1.3 Compilation of Programming Languages - - -« - -« -« -« « oot 12
1.4 Number of Passes of Compiler - -« -« oo 17
1.5 An Example of Compilation of a Statement- « - -« - -« ..o 19
1.6 Organization of the Book « « « « « « v v v vvvv v, 21
PrODIOINIS: « « « « « « o o e o e e e 23
RETEIOICES: - « « + « ¢ v e e v e e e e e e e 23
Chapter 2 Grammars and Languages: - - - -« -« -« o vt 25
2.1 Motivation of the Chapter - « -« -« « o v v vvveenenen .. 25
2.2 Preliminary Knowledge: « -+« « o v vvveviia 25
0.3 CTAIIIAT « « « « « = o+ e ot e e e e 27
2.4 LANGUAGE: « + « + + o v o 31
2.5 Language Generated by a Grammar - « -« -« -« - oo oo 34
2.6 Turing Machine « « « « «« « v v v vv oo 37
2.7 Issues Concerning Grammars and Languages- « -« -« -« -« -« 52
PrODIOIIIS: « « « « + « o o e e e e e e 53
RELETEIICES - « « « « o e e e e e e e e 54

Chapter 3 Finite State Automata and Regular

LANGUAGES - + « + « v v ot 55
3.1 Motivations of the Chapter- - -« - -« oo 55
3.2 Languages, Grammars and Automata - « - -« -+« -« 55
3.3 Deterministic Finite Automata - - - -« -« +« v oo 59
3.4 Nondeterministic Finite Automata « -+« -+« 64
3.5 Regular EXPressions: - « « -« «covvevee ettt 65
3.6 Regular Grammar « « -« « oot emae et 66
3.7 Kleene’s and Moore’s Theorems « - -+« -« - oo oo oo v 68

3.8 Pumping Theorems and Closure Properties for Lrgg - - - - - - - 69

viii Contents
3.9 Applications of Finite Automata- -« -+« -« oo 70
3.10 Variants of Finite Automata - -« -« -« - oo 72
ProODIEIIS: « « « « « « o v e e e e e e e 77
RETETOICES: - « « + « ¢« o v e e e e e e e e e e 78
Chapter 4 Lexical Analysis « - -« -« c v vvrvvenaee.. 79
4.1 Motivation of the Chapter « - « -« v v vv v, 79
4.2 Lexical ANAlyzer « -« -« o v v vt R0
4.2.1 Role of Lexical Analyzer- « - -« -« 81
4.2.2 Tdentifier Analysis « -« -« v ot]4
4.2.3 Handling of Constants « -« -+« -« oo oo oo 86
4.2.4 Structure of Lexical Analyzer « - - - -+« oo vt 87
4.3 Output of Lexical Analyzer- - « -« «« o vvvvvnenaeaean .. 95
4.4 Error Handling -« - -« v v v oo 97
PrODIOINIS: « « =« & o e o e e e 98
RETETOICES: « « « + « ¢ v e o v e e e e e e 98

Chapter 5 Push-Down Automata and Context-Free

LANGUAGES « + « + « + v v ot 101

5.1 Motivation of the Chapter - - -« -« cvvvn v 101
5.2 Push-Down Automata « - - =+« =« = v v o v v e i e e 102
5.3 Context-Free Languages (Lop) -« <« c oo oo eooe oo e 103
5.4 Pumping Theorems for Context-Free Languages- - -+ - -« -+ - - 105
5.5 Push-Down Automata and Context-Free Languages- - - - - - - - 106
5.6 Applications of Context-Free Languages - -+« -« -+ oo oo vt 106
5.7 Turing Machines « - « -« v v v veeiee ot 107
5.8 Turing Machines as Language Accepters - -+« -« -+ oo oo v v 108
5.9 Equivalence of Various Turing Machines - - - - -« -+« oo o 115
5.10 Recursively Enumerable Languages (Lgyg) «+«« -+« -+ - - 116
5.11 Context-Sensitive Languages (Lgg) - <=« - -« v oo e v v oo 117
5.12 Hierarchy of Machines, Grammars and Languages - - - - - - - - 119
5.12.1 Hierarchy of Machines- - - -+ -« -+ - v v i 119
5.12.2 Hierarchy of Grammars and Languages - « -« -« -« - - 120

5.13 Relations Among Machines, Languages and Grammars- - - - - 121
ProODIEIIS: « « « « « « o v e e e e e 124
ROFEIOICES - - « + = « « « o v e e e e e e e e e e 124
Chapter 6 Context-Free Grammars - - - - -« -« ov oo 125
6.1 Motivation of the Chapter - - -+ -« 125
6.2 Context-Free GramImnars - - « « -« « « c c e oo e m e eeneenen.. 126
6.3 Characteristics of Context-Free Grammars- - -« - -« - -« -« .- 135

Problems ... 154

Contents ix

REETEIICES - « + « « « « v e e e e et e e e 155
Chapter 7 Syntax Analysis -« -« -« «covreremarenea, 157
7.1 Motivation of the Chapter - -« -+« v 157
7.2 Role of Syntax Analysis in Compilers - -« -« oo v ve v 158
7.3 Methods of Syntax Analysis « - -« -« - oo 161
7.4 LL(1) Syntactical Analysis Method -« « - -« -« v oo oo 173
7.5 Bottom-Up Syntactical Analysis Method - -+« -« -+ oo v oo v v 180
7.6 LR(1) Syntactical Analysis Method- - -+« « oo 185
7.6.1 LR(0) Syntactical Analysis - - - -« -« o oot 185
7.6.2 SLR(1) Syntactical Analysis - - -+« « o oo vve et 189
7.6.3 LALR(1) Syntactical Analysis: - - -« -« oo vvovvvv 191
7.6.4 LR(1) Syntactical Analysis - - -« -« o ooovv et 193
7.6.5 Comparison Between LL(1) Syntactical Analysis
Method and LR(1) Syntactical Analysis Method - - - - - 202
PrOBIEIMIS: « « « « « o v e e e e e 205
ROLOIEIICES « « + « « « « v e e e e et e e e e 206
Chapter 8 Attribute Grammars and Analysis- - ------ .- .. 207
8.1 Motivation of the Chapter - - -« -« oo 207
8.2 Attribute GIamImAar « « « « « « « o o v e v m et 208
8.3 Dependence Graph and Evaluation of Attributes - - - - - - - - - 212
8.3.1 Dynamic Attribute Evaluation - -« -« ovvon o 217
8.3.2 Loop Handling: « -« « «« v v v vvevneee 291
8.4 L Attribute Grammas and S Attribute Grammars - - - - - - - - - 222
ProObBlEmmIS: « « « « « o v v e e e 295
REETEIICES - « -+ « « « « v e e e e e e e e 297
Chapter 9 Algebraic Method of Compiler Design- - ----- .- 229
9.1 Motivation of the Chapter - -« - -+« v v 229
9.2 Source LAnGUAGe « « « « « «« o v et 230
9.3 Algebraic Foundation and Reasoning Language - -« - -« -« - .- 238
9.3.1 Algebra Fundamentals - -« -« -« oo 239
9.3.2 Reasoning Language: « « -« -« «vovvena . 247
9.4 A Simple COmpiler: « « « «« o« v vv v 275
0.4.1 The Normal FOTTN « « « + « « « o oo v ee e e e 276
9.4.2 Normal Form Reduction -« -« -« v v 277
9.4.3 The Target Machine: « - -« ««c v vvvvneeanaenen . 281
ProObBLEImIS: « « « « o v v e e e 289

References .. 282

X Contents

Chapter 10 Generation of Intermediate Code- - - - - - -+ -+ - - 285
10.1 Motivation of the Chapter- - « - -+ -« oo oo 285
10.2 Intermediate Code Languages - - - - - -« - oo oo 286

10.2.1 Graphic Representation - -« - -« -« oo 287
10.2.2 Postfix Representation - - -« - -« oo 290
10.2.3 The Quadruple Code -+« « v v vvoe e 292
PrODBLEITIS: « « « « « o v e e e e 311
REETOIICES - « « « « ¢ v e e e e et e e 312

Chapter 11 Debugging and Optimization - --------- 313
11.1 Motivation of the Chapter- - - - - -+« oo v 313
11.2 Errors Detection and Recovery - - - -+« + o oo oo 313
11.3 Debugging of Syntax Errors « - -« -« oo 316

11.3.1 Error Handling of LL(1) Parser- - - - -+ - - -« - o oo ve 318
11.3.2 Error Handling in LR(1) Analysis - - - - - - - - - oo oo v 319
11.4 Semantic Error Check: « « « « « v v v v e e 319
11.5 Optimization of Programs:- - « -+« -« - o oo 320
11.6 Principal Ways of Optimization- - - - -« - -+ oo v oo 324
11.6.1 Elimination of Subexpressions- - - - -« -« .o 324
11.6.2 Copy Propagation: « « « « -« «« v vvevvnenane.. 395
11.6.3 Dead-Code Elimination: - -« -+« -« oo ovv oo 326
11.6.4 Loop Optimization « « « « «« « v v vv v, 397
11.6.5 Reduction of Strength- - - - -« oo 328
PrOBIEIIS: « « -+« « o v e e e e e 399
REETEIICES - « + « « + + v e e e e e e e e 330

Chapter 12 Storage Management - - - - - - -« .o 331
12.1 Motivation of the Chapter- - « - -+ -« - v v 331
12.2 Global Allocation Strategy - - - - -« -« voovi 332
12.3 Algorithms for Allocation « -+« -« v v v v v 334

12.3.1 Algorithm for Stack Allocation « -+« -« oo v vt 334
12.3.2 Algorithm for Heap Allocation - - -« -t 336
12.4 Reclamation of Used Space -« - -« -« - oo oo 337
12.4.1 Basic Garbage Collection Algorithm - - - - .- - 338
12.4.2 Supports to Garbage Collector From Compilers - - - - - 340
12.4.3 Reference COUNLS « « « « « « « v v oo e et 342
12.4.4 Tokens and SCANS « « « « « « « v v oo v e ee e 343
12.4.5 Dual Space COpy « « « « v v v v e e 344
12.4.6 CONETACE - « « =« v oottt e e e e 345
12.5 Parameter Passing « « -+« «cc oot 346

12.5.1 Call-by-Value- -« « « v v v v veeieo e 347

Contents xi

12.5.2 Call-by-References « - « -« «« v v vvevovneavananan . 347
12.5.3 COpy-RESTOTe « « « « « v v oo e e 348
12.5.4 Call-by-Name- - « « « «« oo vovnenaea 348
PrODIEIMIS: « -« « « o v e et e e e e e 349
ROFEIOICES - - « + = « « « o v e e e e e e e e e e 351
Chapter 13 Generation of Object Code - - - - - - - -+ -+ oot 353
13.1 Motivation of the Chapter: - « -+« ««c v oo v oo 353
13.2 Issues of Design of Generators of Target Codes: « - -« - -+ -+« 354
13.2.1 Input of Code Generators - - « -« - - =+ - oo o oot 354
13.2.2 Target PrOgrams « « -« -« o v vvovenenaeen.. 355
13.2.3 Storages Management - « « -« <+« oo 355
13.2.4 Selection of Instructions « -+ -+« - - oo 356
13.2.5 Register Allocation: « -« -« «« oo v vv v 357
13.2.6 Selection of Order of Computation - -« -« ... 358
13.2.7 Method of Generation of Codes- - - - -+« -+ oo oo v 358
13.3 Target Machine MMIX « -« « v v v voevee o 358
13.3.1 Binary Bits and Bytes - - - -+ 359
13.3.2 Memory and Registers - - - - -« 361
13.3.3 TNSEIUCHIONS « + « + « =+ = o v et e e e 362
13.3.4 Toad and SEOTe: « - « « « c v v e v e e 363
13.3.5 Arithmetic Operations « -+« -« - oo 365
13.3.6 Conditional Instructions - -« - -« -« oo oo v 367
13.3.7 Bit Operations - « - « -« « v v v v ettt 368
13.3.8 Byte Operations: « « -« -« v v ettt 369
13.3.9 Jumps and Branches: « -« -« « o« o v v vt 373
13.3.10 Subprogram Calls: « -« « « c« v v vv e 375
13.3.11 Interruptions « « -« -« v v v et 377
13.4 Assembly Language of MMIX - -« -« o v oo 382
13.5 Generation of MMIXAL Target Codes: -« -« + -« v oo v v n 389
13.5.1 Translation of Expressions in Reversed Polish
FOTTIL -+ « v v v e e e e e e e e e e 390
13.5.2 Translation of Triple Expressions: - « -« -« -+« v oo ve 390
13.5.3 Translation of Expression Quadruples - - - - -« 391
13.5.4 Translation of Expressions - - -« -« v 392
13.5.5 Translation of Syntax Tree Form of Expressions- - - - - 393
13.5.6 Translation of Various Statements - - - - - -« -+ -« - . 394
PrODIEIIIS: « « « ¢« o v e e e e e e e e 395

References .. 397

xii Contents

Chapter 14 Compilation of Object-oriented Languages - - - - - 399
14.1 Motivation of the Chapter- - « - -+ -« - v oo 399
14.2 Objects and Compilation « -« -+ v v oo oo 400
14.3 Characteristics of Objects: -« -+« v oo v 403

14.3.1 TNRETIEANCE: « -+ -+ =« o v o e e e e e 403
14.3.2 Method Overload - « « « « « « v v e vt v e 404
14.3.3 POlymorphic: « « « « « « v v e 405
14.3.4 Dynamic Constraint - - « - -+« - - oo v 406
14.3.5 Multiple Inheritances -« - - - -« oo 408
14.3.6 Multiple Inheritances of Inter-reliance « - -« - -« -« . .. 410
PrODIOINIS: « - « = =« ¢« o e e e e e 412
ROFOIOICES - - « + = « « « o v e e e e e e e e 413

Chapter 15 Compilation of Parallel Languages - - - - - - - - - - 415
15.1 Motivation of the Chapter: - « - -« -« v v oo e 415
15.2 Rising of Parallel Computers and Parallel

COMPUEATION « =« + + + o v e vt 415

15.3 Parallel Programming: - « - « -« -+« oo vvevene e 419
15.3.1 Shared Variables and Monitors « -« -+« -« oo oo 420
15.3.2 Message Passing Model- - -+ - - - oo oo 422

15.4 Object-oriented Languages - « - -« -+« v oo v oo i 424
15.5 Linda Meta Array Space: « « -« -« v vveveeeneee . 425
15.6 Data Parallel Languages - « « « - -« «« o v vvovnenene.. 427
15.7 Code Generation for Hidden Parallel Programs - - - - - ... 428
15.7.1 Types of REGIONS « « « « « v v v v voeme e 430
15.7.2 Formation of Regions - « - -« -« v oo 431
15.7.3 Schedule Algorithms for Regions - -« - - -+ -« v oo oo 436
ProODIEIIS: « -« « « « ¢ o v e e e e e 437
ROFOIOICES - - « + =« + + o e e e et e e e e e 437

Chapter 16 Compilation of Grid Computing- - - - - - - -« .- 439
16.1 Motivation of the Chapter: - « - -« -« oo oo v 439
16.2 Rising of Grid Computing and Intent -« -« .o v oo 439
16.3 Grid Computing Model: « « « « v v v vv i 449

16.3.1 Group Routing: « -« « « v v vvveiee 443
16.3.2 Routing in Linear Array - - - -+« - oo oo 445
16.4 Compilation of Grid Computing « -« -« -« - v oo v oo oot 447
PrODIOINIS: « -« « « ¢« e o e e e e e e 450
REFETOICES - - « = « ¢ v o e e e e e e e 450

Chapter 1 Introduction

Language allows us to know how octopuses make love
and how to remove cherry stains and why Tad was
heartbroken, and whether the Red Sox will win the World
Series without great relief pitcher and how to build an
atom bomb in your basement and how Catherine the
Great died, among other things.

Steve Pinker

1.1 Language and Mankind

If you read the text above, you must be engaging in one of the mind’s most
enchanting process— the way one mind influences another through language.
However, we put a precondition on it that you have to know English, other-
wise the text has no influence at all to you. There are so many languages in
the world that even no one can exactly tell how many there are. Therefore,
there is the need of a bridge that connects different languages so that people
can understand each other. The bridge is the translation. And the subject
of the book is the translation between the formal language and the machine
language, or compilation.

What is the compiler or the compilation program? Simply speaking, it
is a program of which the function is to translate programs written in a
programming language into machine codes that are to be run by the same
kind of machine the codes belong to. In order to explain things behind this,
we need to discuss it further.

Language is main means of human communication and the way in which
most information is exchanged. By language, people link up each other, they
express their attentions and feelings, and they describe matters or express
their understanding [1]. It is one of the kinds of intelligence or the product
of intelligence. However, in the long process of human evolution, there was
a long period without language. Gradually, they invented oral language to
meet the need of living. Therefore, oral language can be considered as the first
breakthrough in language, it was also a breakthrough in human civilization.
From oral language to written language, it underwent even longer time. The

2 Chapter 1 Introduction

occurrence of written language represented a more significant breakthrough
of human being in terms of languages. Human thinking and problem solving
can be conceptualized as processes involving languages. Many, if not most or
all, forms of thinking and problem solving are internal, that is, done in the
absence of external stimuli. Abstraction of puzzles, for example, into verbal
symbols provides a way to think about a solution. It is not difficult to imagine
that without language the process of thinking cannot be completed, contin-
ued and deepened as if there is no language one simply cannot express his/her
ideas to other. When one wants to reminisce, he/she is unable to describe the
process that involves many objects and complicated plots. Written language
is more powerful than oral language. It not only can link up people at the
contemporary era, but also it can link up the present time and the ancient
time so that people at the present time can also know things that took place
in ancient period. By using written language, people not only can commu-
nicate with people in the vicinity, but also contact people at long distance.
Especially with the modern communication tools, e.g., computer networks,
televisions, and telephones, people may communicate with each other even
quicker, more convenient and may make sure the security and secrecy of in-
formation. That means that written languages change the extent of time and
space of communication of people.

The civilizations of the human being are divided into many branches. Each
one is symbolized by different language. Each race or nation formed each own
language due to the difference of living locations and evolution conditions.
In history, there were several thousands languages. As time passed, many
languages, especially the oral languages, that were used only by few people
had extinguished. Until now there are still some languages that have only oral
versions and have no corresponding written versions. Therefore, the languages
that have real impacts and are used by the great throng of peoples are not too
many. However, people who use these languages want to share the civilization;
they want to cooperate with each other or to do business. Obviously, each
language is so different from others that unless one has learnt it otherwise one
has no way to understand, and vice versa. Hence, if two different language
speakers want to converse with each other, they need a bridge to link them. It
is the translation. Its task is to translate a language spoken by A to another
language spoken by B and to translate the language spoken by B to a language
spoken by A. It is not only necessary to translate the oral language (the
translator of colloquial languages is a called interpreter) but also necessary, or
even more important to translate the written languages including the works in
social science, natural science, novels, etc. Without the translations, people
speaking different languages cannot converse, communicate, and exchange
their thinking or discoveries. In this sense, we may say that the world is
small but the number of languages in the world is far too many.

Today as the rapid development of science and technology and the in-
evitable tendency of economy globalization happening in almost every coun-
try around the world, language translation including colloquial and literal,

1.2 Language and Computer 3

has become a heated profession. Take as an example for the colloquial trans-
lation or interpretation, it involves three persons, i.e., two, A and B. who
want to converse with each other for some purpose, and one, C, who helps
them with the thing. Suppose that A speaks the language X and B speaks
the language Y. Obviously, in order for A and B understanding each other
the task of C is to interpret the words of X spoken by A into language Y,
meanwhile, he interprets the words of B spoken in Y spoken by B into lan-
guage X. Therefore, C must be a bilingual in this circumstance. And this
situation is shown in Fig. 1.1.

interpreter
of Aand B

Fig.1.1 Oral translation.

The role of C sometime needs to be done by two persons, say C or D, is
in charge of the interpretation from X to Y or from Y to X.

While in the case of a literal translation, the translator mainly translates
a foreign language into his native language for the native readers, or he trans-
lates his native language into foreign language to serve the foreign readers.
No matter which case it is, the purpose is the same, i.e., to make the listener
or reader understanding each other.

1.2 Language and Computer

It is well known that computer is one of the greatest inventions of mankind
in the last century. It embodies the newest development of mankind’s science
and technology. Computer relies on its running to solve problems set by
people while the running relies on the program that is composed of a sequence
of the instructions in advance from the instruction set of the machine. The
instruction set that is used to develop programs can be considered as the
language of computer. It acts to follow the sequence of the instructions as if
it speaks the language that consists of the sequence. This kind of language
consists of the sequence of 0s and 1s.

Hence in order to make the computer running and working for peoples, one
should develop the program with the purpose of solving intended problem.
For doing so one needs to master the instruction set. We do not say that
people cannot master the instruction set and develop programs by using it.
However, it is really very tedious and cumbersome to “speak” the language to

4 Chapter 1 Introduction

computer; especially it is too much for the common users of the computers.
It is something like that one is required to understand the principles of the
television and operate the existing components of the television if one wants
to watch the television.

When the computer was just invented, there was not any other language to
use for running the computer. The instruction set of computer was the unique
language which people may use to develop programs. The historical period
is called the period of manually programming. The instruction commonly
contains the operation code that indicates the operation it performs, the
addresses of the data which the operation performs as the control codes.
At that time, only very few people were the designers or developers of the
computers. For them to build the programs using the instruction set was
not a problem though it also entailed them to work hard and spend lots
of time. As computers became more and more popular, the users were no
longer those who are very familiar with the principles inside the computers,
they are just the real user, no different from the users of televisions. They
want to freely use the computer to solve their varieties of problems. In this
circumstance, no doubt, the machine language became their stumbling block
in using computers [2]. In order to break away from the constraints of the
machine language, from soon after the invention of computer, people had
started searching the solution to the problem. The first step was to replace
the operation codes of the instructions to the notations easily mnemonic,
e.g., to use ADD to represent addition, SUB to represent subtract, MUL to
represent multiplication, and DIV to represent division, or more simply, just
to use +, —, x, and / (or +) to represent the arithmetic operators. Then, they
used symbolic addresses to take the place of real binary addresses, etc. Of
course the language transformed in this way is no longer computer language,
or original computer instruction set, although it basically corresponds to the
computer instruction set, and they are completely equivalent. This was the
first step that people broke away from computer language. Though it was a
minor step, it was crucial. It indicates that people may not be confined by the
computer instruction set, they may use more convenient language to develop
programs for computers. This kind of languages is called assembly languages.
Here the module given above was still suitable. As shown in Fig. 1.2, the left
side of the bottom edge of the triangle represents any program written in
assembly language which we call the source program, and the right side of the
bottom edge is totally equivalent program written in a computer instruction
set which was produced by the assembler on the top of the triangle and has
the name of the object program or target program. And the assembler plays
the role of the compiler of which the duty is to translate the source program
into the executable object program written in machine language. Therefore,
the assembler must also be executable on computer and by its operation it
produces the object program as its output.

Hence the assembler is the early version of the compilers. As the lan-
guage which source programs used was assembly language, it was only the

1.2 Language and Computer 5

Assembler

Source program
(In assembly language)

Target program
(In machine instruction set)

Fig. 1.2 Translation of computer assembly language.

simple adaptation of the machine instruction set (e.g., the operation code
was the mnemonic code of the original one). Hence it is also called low-level
language. Here the word low means that it is machine-oriented (low-level)
and isn’t mankind-oriented (high-level). Assembler is also a low-level form
of the compilers as it hasn’t used much the compilation principles which we
used in the compilers for high-level programming languages.

After the success of assembly languages and their assemblers, people
started the design of the mankind-oriented high-level programming languages.
The common feature of these languages is that they broke away from the
restriction of the computer instruction set. They adopted a subset of the
commonly used language (in general it is English) and established the gram-
mar to describe the statements or elements which people used to develop the
programs. These languages are called procedure-oriented languages or sim-
ply procedural languages, or imperative languages. The earliest programming
languages include FORTRAN (stands for FORmula TRANSslation, it was first
designed as early as 1954 [3]), ALGOL 60 [4], COBOL (stands for Common
Business Oriented Language, it was first designed in 1959, and its success was
strongly influenced by the United States Department of Defense). In terms of
the occurrence of the programming languages, the 1960s was stormy. It was
said that at that period over two thousand languages were developed, but
only thirteen of them ever became significant either in terms of concept or
usage. Among them, APL (stands for A Programming Language, developed
by Dr. Kenneth Iverson at IBM [5]) is an interactive language. It devises
a powerful yet compact notation for computation which incorporated many
concepts from mathematics. PL/1 (stands for Programming Language/1) is
suitable for scientific computation. With 1 in the name it probably intends
to be number one in terms of its great deal of functionality. LISP (stands
for List Processing, developed by McCarthy and his co-workers to design
a conceptually simple language for handling symbolic expressions with its
domain being artificial intelligence) [6]. PROLOG (stands for Programming
for Logic) is another effort for use in artificial intelligence. SNOBOL (devel-
oped in the mid-1960s at Bell Telephone Laboratory [7]) is a language whose
main strength is in processing string data. As the name SIMULAG7 indicated
that SIMULA was designed in 1967 and had simulation as its major appli-

6 Chapter 1 Introduction

cation domain. And it was later refined in CLU, Euclid, and MODULA [8].
GPSS or SIMSCRIPT [9] provided the example that conventional program-
ming languages can and have been augmented so that simulations can be
easily described. The later development of the programming languages was
the coming of the general-purpose language called ADA [10] in honor of Ada
Augusta, Countess of Lovelace, the daughter of the famous poet Byron. She
collaborated with Charles Babbage (1792 1871) who between 1820 and 1850
designed two machines for computation. One relied on the theory of finite dif-
ference and so he called it Difference Engine. The other embodied many of the
principles of a modern digital computer and he called this Analytical Engine.
Ada, as the collaborator of Charles Babbage, helped him with developing
programs for the analytical engine. Therefore she has recently been recog-
nized as the first programmer. The other language that later became very
popular is C [11]. Tt initially was used for writing the kernel of the operating
system UNIX.

Apart from few (if any) languages the languages aforementioned basically
all are procedure-oriented languages. After the software crisis that took place
in the late 1960s, the structured programming method was proposed, and it
hastened parturition of Pascal (in honor of French mathematician Pascal, de-
signed by Swiss computer scientist Niklaus Wirth [12]). Another methodology
that was proposed to solve the software crisis is the object-oriented software
design method, and it caused the production of the object-oriented languages.
For example, based upon the C language, C++ was developed. Soon after it
Java was also designed based upon C. In addition, SMALLTALK [13] is also
of this kind.

As hardware unceasingly develops it also puts forward the new require-
ments to software. New computer architectures like distributed systems, par-
allel computer systems, computer networks, etc. all propose new requirements
and challenges to computer programming. New languages that meet these
needs sequentially come out.

No matter how the languages change, there is one thing unchanged that
the source programs written in these languages must be compiled first before
they become executable object programs on computers. That is to say that
they obey the module as shown in Fig. 1.3.

Compiler

Source program
(Written in some prog-
ramming language)

Object program in
machine language

Fig.1.3 A process of compilation.

1.2 Language and Computer 7

In Fig. 1.3, the compiler should be written in machine language. Only by
this way can it be executed on computer and translate the source programs
into object programs. To write the compiler directly in machine language
is not easy, and the work load is conceivably tremendous. Therefore, people
thought of using high-level language instead. Then it is compiled by a simpler
compiler written in machine language. By the two-run compilation process,
the real executable compiler is realized, as shown in Fig. 1.4.

Compiler Compiler
(Written in A) (Written in B)

Compiler
(Written in A)

Compiler’s
object
program

Source program

(Written in A) Object program

Fig.1.4 Sequential compilation process.

There are two triangles in Fig. 1.4. At first the second triangle is put to
run. After its run, it yields the compiler’s object program which in turns to
replace the compiler on the top of the first triangle executable. And via its
run on computer it also yields the object program that corresponds to the
source program. That is what we really need.

The module can be extended further. For example, one uses A language
to write the source program, and the compiler is written in B. Obviously the
compiler cannot be executed before it is compiled to the machine language.
Now the compiler in B can be regarded as a source program. And its compiler
is written in C. Once again, the C compiler is taken as a source program. It
is compiled by a really executable compiler in machine language.

The sequence of programs works backward. The compiler in machine lan-
guage first translates the C compiler into an executable compiler. Then by
its turn it translates the compiler in B to machine language. Finally by its
run it translates the source program into an executable object program.

The process can be extended to any levels. As long as the last level is
executable, the backward process can continue to transform the former one
to executable and in turn it transforms its former one again until the first
level can be run. Then the whole compilation process ends.

In designing a programming language a number of criteria must be kept
in mind in order to make the language welcome by users and qualified as a
quality language.

8 Chapter 1 Introduction

1. A well-defined syntactic and semantic description of the pro-
gramming language is essential

No matter what kind of description tool was used for the description, the
goal should be that when a programmer uses the language to design his/her
program, the description of the language, including syntactic and semantic,
should provide explicit information to let him/her correctly work and just as
he/she writes or talks in native language. If the description of the language
cannot provide explicit, concise, and comprehensive information, then no one
will be interested in using it as everyone must be afraid of meeting trouble in
the design of the program. Therefore the well-defined syntactic and semantic
description of the language is really, absolutely important.

In terms of use of the natural or native languages, including English and
Chinese, they are all not perfect, they all have the problems of ambiguity
or confusion. Nevertheless, as human has the higher ability in understanding
language in comparison with computers, the problems which people were
confronted with are less. However, as for the programming languages which
people use to interact with computer, the situation is drastically different.
In a programming language, even a minor bug or an ambiguity which people
made in their program, the program may not be able to correctly run, or it
reports mistakes. The bug of the programming languages sometimes was not
easily found. When D. E. Knuth reported the “remaining trouble spots in
ALGOL60” [14], it was 1967 after AGOL60 had been published for several
years. Obviously, if people happen to use them, they must be wrong. From
this example, one may know that it is not easy to realize the goal of well
description. This is also why thousands of languages soon disappeared after
the programming language storm took place in the 1960s [15]. Time like the
great breakers that washed out the sands washed the programming languages
that were not qualified in terms of the point.

2. Determinism of program structures

The determinism of program structures is intimately related to the explicit
and comprehensive description of the language. With the determinism of
the program structures, we mean that any programs in the language have
deterministic levels or hierarchy, easily understand and this makes the design,
debugging, and modifying easier to carry out. Therefore, the determinism of
the structures is different from the description, but they complement each
other.

3. Fast translation

This can also be said high efficiency of translation. When programmers
design their programs, they must hope that the programs can be translated
quickly. As Niklaus Wirth said that “A language that is simple to parse for
the compiler is also simple to parse for the human programmer and that can
only be an asset.”

1.2 Language and Computer 9

High efficiency is no doubt an important criterion for appraising the qual-
ity of programming languages. Starting from the early stage when people
started using programming languages, they had concerned about the effi-
ciency with which they designed programs. Therefore, a high efficiency has
wider meaning than fast translation means. There are several implications of
the high efficiency.

1) The high efficiency of the execution of programs.

Initially, when talking about high efficiency, almost no exception, it meant
the efficiency of the execution of the programs. And this entails the quality of
the compiler that compiles the source programs to object programs with the
high efficiency of the execution. Therefore, it may involve the design of the
optimal compiler, the efficient register allocation, as well as the mechanism
design for supporting the running of programs. Though the efficiency of the
execution of programs is intimately related to the design of the language, the
quality of the compilation by the compiler decidedly affects the efficiency of
the execution of the programs.

2) The efficiency of the compilation.

Probably, this point is just consistent with what Wirth expressed. The
large-scale productive program means that they frequently run. Hence the
saving of even only few minutes is still crucial if the great number of running
is taken into account for every day. This is why it becomes an issue which
people are concerned with. The issue is related to the quality of the compiler.
The other kind of the program is also related to the quality of the compiler.
It is the compiler that is in charge of the compilation of student programs
or programs used for teaching. Typically, the programs written by students
will not be used for production. They were the results of their learning. Only
the correctness is concerned. Therefore, we just need to make the compiler
working efficiently to compile the program to point out the errors (if any) in
the program. Therefore, in this situation the important thing is still the fast
translation of the compiler, rather than that compiler can produce the object
program with high execution efficiency and optimization.

3) The efficiency of the writing, debugging, and running of the programs.

In terms of the efficiency, the third aspect is that of writing, debugging
and running of programs. For example, if we use a language to solve some
problems, it turned out that the time spent by the programmer on designing,
coding, debugging, modifying, and running of the program was the least and
the energy spent by the programmer was also the least. If this really happened
it would be most welcome by the programmer or the user of the language. In
the practical sense, this is the real standard that measures the efficiency of
some language in solving problems on the computer. When using a language
to solve problems, one should pursue the efficiency rather than the traditional
one which are considered the efficiency of compilation only.

4. Reliability

The so-called reliability means that features should be designed in such a

10 Chapter 1 Introduction

way that syntactic and logical errors are both discouraged and easily discov-
ered. Comments both enhance the comprehensiveness and play a role for the
reader of the program to check the correctness of the program. Hence any
designer of the language should provide the facility in the language he/she
designs. Programmer when designing a program should also make use of the
facility to enhance the reliability of the program.

5. Machine independent

High-level programming language is intended to use in a variety of ma-
chines, of course, one of its goals is the ability to move the programs from a
machine to a machine.

6. Generality

The idea of generality is that all features should be composed of different
aspects of a few basic concepts. That also means that related concepts should
be unified into a single framework as the class does in the object-oriented
language.

7. Extensibility

The reason for taking this as a desirable feature is that translators are
usually forced to choose one representation for all objects of a given type and
this can be very inefficient. Programming language should allow the extension
of itself via simple, natural and elegant mechanism.

Almost every language provides the definition mechanism of subroutine
or subprogram. In developing large programs, a great part of the tasks for the
programmer can be regarded as the extension of the language as he/she has to
make a decision i.e. in order to solve the problem, how should he/she utilize
the primitive characteristics to simulate the data structures of the problem.
Hence, from the view point of the concept, it is equal to extend the original
language to include the structures simulated. Moreover, the hardware envi-
ronment that has rapidly developed and changed recently also requires the
change of software to meet them, especially the parallel computer systems,
clusters, distributed computer systems, etc., all require the programming
languages that are suitable to them. In the book later we will discuss the
computer architecture for explicitly parallel instruction computing (EPIC).
It is the extension of the very long instruction word (VLIW). These devel-
opments in hardware all require the new programming languages that are
suitable their compilers.

8. Provability

It will be desirable that when a program is developed, there is also a
mechanism to carry out the verification of the program. Is there a formal
definition of all features of the language? If it is so, this will permit formal
verification of programs. However, the cost of the process of formal verifica-
tion is very high, either unaided or aided by machine, and requires a high-level

1.2 Language and Computer 11

mathematical sophistication. It seems that as though this goal may never be
completely achieved, it continues to be worth striving for.

9. Consistency with commonly used notations

People usually get used to some notations. If they are changed in a newly
designed language, people must feel inconvenient and hard to accept the
new notations. For example, the operator + that is predefined to work on
integers, reals, and mixed integers, and real arguments, may be extended by
the programmer to work on complex numbers and matrices, etc. But if it is
replaced by other notations, people will not be happy to use it.

These nine criteria are the guidelines for creating a successful program-
ming language design. However, people discover that the best designed lan-
guage unnecessarily satisfies all the guidelines. The “go to” statement is such
an example. In the early created languages, almost no exception, all set up
the statement to realize the transfer of the control.

In order for programs not only able to be executed sequentially, but also
able to transfer, the initial motivation of setting “go to” statement was not
wrong. However, in practice, the misuse of the “go to” statement may really
cause problems. This was why Edgar Dijkstra published the famous letter,
accusing that the “go to” statement is harmful. He proposed that the “go to”
statement should be removed from the programming language. His opinion
initiated a long-term debate on whether the “go to” statement should be re-
moved or not. Later in 1974, D. E. Knuth [16] made a thoughtful argument to
end the debate. He pointed out that though the “go to” statement is a state-
ment which is easily misused, banishing it from the language repertoire seems
like a too severe form of surgery. From the debate, an idea of programming
methodology gradually became explicit, it was the structured programming.
PASCAL was the representative of the structural programming languages.
Then MODULA, C and ADA were also the products under the effect of the
methodology.

The so-called software crisis reflected the serious problems in the devel-
opment of software, e.g., the quality of the software couldn’t be guaranteed.
There were too many bugs hiding in the code and the development life pe-
riod was always suspended. It forced people to search for the solution. Then
another approach was proposed. It is the object-oriented programming. The
languages that correspond to this method are object-oriented programming
languages, as we have mentioned, SMALLTALK, C++, and JAVA belong to
the category.

The occurrences of network environment, distributed environment and
parallel computers have put forward the new thinking of parallel and dis-
tributed programming. Definitely, these require the languages for doing so.

12 Chapter 1 Introduction

1.3 Compilation of Programming Languages

From the discussion above, we have known that the programs written in
high-level programming languages need to be compiled before they can run
or executed on computer. Therefore, to write programs is something like that
the communications between two persons need a third person to translate.
In the process, people are concerned about the efficiency —the execution
of programs. In practice, the focuses or goals may be varied. If the goals
are different, the result may also be different. For example, in the course of
compilers, in view of the nature of the course, we are naturally concerned
about the compilers. The goals of compilers may be followings:

1. To develop the compiler as small as possible

According to the energy saving principle, of course we will take it as our
goal to produce a compiler as small as possible. In other words, it is all
right as long as it can handle basic tasks of compilation. Such a compiler,
however, may not be complete, as it may not be able to handle sophisticate
situations. The possible case that corresponds to the situation may be the
subset of the language. It just considers the basic elements of the language,
rather than the whole language. This kind of compilers may be taken as
the project of students with the purpose of providing training practice to
students. For training students to master the basic skills of the compilers,
this kind of compilers may play well but in practical applications they are
far from complete and unqualified to fulfill the practical task of compilation.

2. To create a compiler that possesses the better ability of diag-
nosis and recovery from failures

A compiler should be able to discover the errors within the source pro-
grams written by the users, not only static errors, but also dynamic errors.
After the error is found, it should also determine the source of the error, se-
quentially it presents the hint for correction. Only such kind of compilers can
be considered as user-friendly. It is also very helpful for users to guarantee the
correctness of the programs. However, it does not guarantee that the object
programs produced must be efficient. This kind of compilers is suitable for
the teaching environment as its ability of compilation and hinting is instruc-
tive for students. It belongs to the so-called dirty compiler category. It can
also be used as the preliminary compiler, after which the clean or optimized
compiler may work again on the source programs and produce the optimized
object programs with high efficiency.

3. To produce the compiler that will compile flexible and efficient
object programs

Based upon producing correct object programs from source programs, the
compiler requires that the object programs have higher efficiency. Therefore,
apart from the compilation, the compiler also implements the optimization

1.3 Compilation of Programming Languages 13

of object programs.

If we pay attention to the process by which the object programs are
yielded or to the final product —object programs, the possible goals can be
as follows.

1) The time spent by the compiler to translate the source program is the
least. If this is the goal, we must require that the speed of compilation of
the source program and confirmation of correctness of the source program is
fastest, and it uses the fastest speed again to generate the object program.
As for the efficiency of the object program, it is not its business and out of
its consideration.

2) The object program which the compiler generates is most efficient. It
is contrast to the first one as its focus is the efficiency of the object program
rather than the speed or efficiency of the compilation.

3) The size of the object program which the compiler generates should
be smaller. Notice that 2) was concerned about the time efficiency, here it is
concerned about the space efficiency. Therefore, the two are not equivalent.
Of course, in general, the shorter the program is, the faster it runs. However,
it is not always like this. For example, the program may be short, but it
contains lots of loops, then it may be time-consuming. Hence the goal here
is pursued mainly from the space which the object program occupies. If the
memory space of the computer is limited, it may consider this as the goal.

From the discussion above, we can see that the goals of writing compilers
may be a variety, and it is impossible to require that the compilers written
by different groups of people or written for different purposes simultaneously
meet all the same requirements. As for developing other systems, we can only
realize the compromise of the different goals. Now we focus on the compiler
and the compilation process. For the compiler, as its specific goal is to trans-
late programs written in some language into the target language of a kind of
computers, the compiler is used to establish the correspondence between the
two sides — the source language and the computer. In other words, for a pro-
gramming language and a kind of computers, there needs a compiler for the
language that runs on the computer. If there are m programming languages
and n computer systems, according to the correspondence between the lan-
guage and computer given above, we need to develop m x n compilers. Of
course, this is not the case that we look for as it implies a tremendous work
load. In order to reduce the work load, the approach we take is to find out
in the compiler which part is computer-related and which part is computer
independent. For those computers independent parts, we make them shared
by all compilers. Only for those computer related, we direct at the different
computer to design the corresponding parts of the compiler separately. Just
out of the reason, the compiler we developed is not written directly in the
computer instruction set as only in this way, instead it can be unrelated to
the specific computer. The works that need to relate to the specific computer
should be suspended as late as possible (for example, let it happen when
the compiler is really working for compilation, rather than when it was de-

14 Chapter 1 Introduction

veloped). By the effort, the number of the compilers for m languages and
n computers may be reduced from m x n to m + n. Here we just briefly
introduce the idea, we will expound it in details later in the book.

Further we will explain the working principles of the compilers. We be-
gin our discussion with general languages. When we study a language, no
matter it is native language or foreign language, the first we should study is
the words, i.e., the individual words to stand things. It includes the spelling,
the writing, the pronunciation, etc. Then we study the grammar with which
the individual words may be linked together to form a meaningful sentence
with correct grammar. As for the compiler, its working process contains two
phases, the analysis phase and the synthetic phase. The analytical phase in-
cludes two parts again: lexical analysis and syntactic analysis. Lexical anal-
ysis starts from the input of the source program. The input of the source
program is considered as the input of the character stream. The lexical anal-
ysis has to differentiate the words in sentences, they include identifiers, con-
stants, key words, variable names, operators, punctuation symbols, etc. At
the time, it has also to check the correctness of the spelling or writing of
the words. Only when they all are correct, may the next analysis, i.e., the
syntactic analysis be called on. And in order for syntactic analysis easier to
work, all the characters in the input form should be transformed into the
intermediate code form. In this aspect, it is somehow similar to the product
of language understanding in mind. The question now is that in order for
the neural system in our brain to process the utterances, what representa-
tions result in memory when listeners understand utterances or texts? What,
for example, would be stored in memory when you hear “The kid is on the
bed”? Research has suggested that the meaning representation begins with
basic units called propositions [17,18]. Propositions are the main ideas of
utterance. They are a kind of the intermediate code form easy to process and
produce the understanding. For “The kid is on the bed”, the main idea is
that something is on something else. When one reads the utterance, he/she
will extracts the proposition on and understand the relationship which it ex-
presses between the kid and the bed. Often propositions are written like this:
On (kid, bed). Many utterances contain more than one position. Consider
“The dog watches the kid playing on the ground board”. We have as the first
component proposition On (kid, ground board). From that, we build up

Playing (kid, On (kid, ground board))
Finally we get to
Watch (dog, Playing (kid, On (kid, ground board)))
The intermediate code form makes every language unit having the same
format which we call token. They are linked together to represent the original
sentence.

The syntactic analysis takes the token sequence as input, then it analyzes
each sentence based upon the grammar of the programming language. If

1.3 Compilation of Programming Languages 15

after this, it did not find any error in the program (sentence sequence),it fur-
ther transforms the source program into the intermediate code representation
again so that the sequential synthetic phase may work on the representation
and transform it into the target program. Hence the working process may be
shown in Fig. 1.5.

Error handling |y

Character
stream

Token Syntactic Intermediate

——|Lexical analysis . :
y stream analysis representation

Symbol table. constant table

Fig. 1.5 Working process of syntactic analysis.

The symbol table of Fig. 1.5 represents the structure in which for each
identifier a record is contained. As for the constant table, it represents the
structure in which for each constant a record is contained. In the symbol
table, apart from the identifier and the address that allocates to it (but it
is not the real memory address, it is only a relative address), it also con-
tains the segments for its various attributes. This kind of the data structure
may accelerate the searching of the record of every identifier, and it can also
accelerate the store of the identifier into the record or the retrieval of the
identifier from it. Upon the lexical analysis in working, when it meets an
identifier for the first time, if the lexical analysis confirms that it is an iden-
tifier, it is called the definition occurrence of the identifier. Then the later
occurrence is called the application occurrence. As the definition occurrence
appears, the compiler puts it to the symbol table, and allocates an address
to it according to the order it occurred, the allocated address is also stored
in the table. Meanwhile, based on the definition or declaration for it made
by the source program, the relative attributes are also put into the table.
On the application occurrence, the identifier is transformed to intermediate
form according to the record obtained from the definition occurrence, and
it is also needed to check whether the attributes implied in the application
occurrence are consistent with that of the definition occurrence. If they are
not consistent, the lexical analysis will consider that there is an error there.

The constant table is similar to the symbol table. For a constant, lexical
analysis first needs to transform each character that represents the digit (If
the constant represents a signed integer, it may contains a symbol + or —. If
it is a real or a float number, it may also contains +, —, decimal point, and
exponential symbol.) into corresponding numeric value. In the process, it is
also required to check whether it is correct or not. After the correctness is
confirmed then the constant is put in the constant table, and the address is
assigned to it as well as its attributes are put into the table.

For more concrete details of the symbol table and constant table, we will
further explain them later in the book.

16 Chapter 1 Introduction

The error handling may be carried out in both lexical analysis phase and
syntactic analysis phase, even in the later synthetic stage (including seman-
tic analysis). Actually, usually the lexical analysis and syntactic analysis may
handle the majority of the errors detected by the compiler. The errors that
can be found by lexical analysis include such errors as that the input char-
acters cannot be linked to form any symbol of the language; while the errors
that usually can be found by the syntactic analysis include such errors as
that the token stream violates the grammar rules or structural rules of the
language. During the semantic stage, the compiler intends to detect the fol-
lowing construction: it is correct in syntactic structure, but it simply has no
meaning in the operation concerned. For example, we want to perform the
additional operations of two identifiers, but one identifier may be the name
of an array while the other is the name of a procedure. The error handling
should not stop the working of the compiler after it discovers an error so that
it can continue the compilation and continue to find out more errors (if any).
Definitely, the user prefers knowing more errors in his/her program to only
knowing an error.

We have outlined the analytical stage in the preceding part. As we men-
tioned before, for the complete compilation process, after the analytical stage
has been finished, the next stage will be synthetic stage, the tasks of which
may be divided into the generation of the intermediate code, the optimization
of the code and the generation of code. Fig. 1.6 shows the process.

/ o \

Source Lexical Syntactic Intermediate Code Code Object
program analyzer analyzer code optimizer | | generator code

\ /

Fig.1.6 Working process of compiler.

Error handler

The intermediate code may be considered as a program of abstract ma-
chine. This intermediate code should be easy to generate, at the same time
it should also be easy to translate to the object code.

The intermediate code may have several forms. A more popular one is the
form of three addresses in which the program is expressed as the sequence of
instructions and each at most has three operands as shown in the following
expression:

idy :=idg +ids

or
id; (+idg, idy).

The intermediate code forms also have several properties. At first, apart from

1.4 Number of Passes of Compiler 17

assignment (i.e., the value of right-hand side is assigned to left-hand side),
each three-address instruction has at most one operator. Therefore, when the
instruction is formed, the compiler must decide the order of operation, for
example, the multiplication or division should be performed before addition
or subtract. Second, the compiler should generate a temporal name for stor-
ing the value which each instruction calculates. Third, some three-address
instruction may have the operands less than three. As for more details about
the generation of the intermediate code we will introduce later in the book.

The code optimization stage intends to improve the intermediate code in
order to produce the machine code that may run faster. The optimization
may be divided into local optimization and global optimization. The local
optimization in general is simpler, for example, some instructions are com-
bined into one instruction so that the number of instructions in the program
reduces. The global optimization involves the modification of the algorithm
of the program. The amount of the code optimization implemented by dif-
ferent compilers may vary remarkably; the time consumed may be different
too. For example, in comparison to other compilers some optimized compiler
may spend most time on optimization. However, there are also some other
compilers that only briefly perform optimization, they may also remarkably
reduce the running time of the object code while the compilation time was
not so much.

The task of the object generation stage is simply to generate the object
code. Usually the object codes consists of the assembly code or the relocatable
machine codes. For every variable which the source program uses, memory
unit for storing is needed. Then each intermediate instruction is translated
into the machine instructions that equally perform the same task. Thus the
machine code is yielded. However, there is also a key task for code generation,
that is the allocation of registers to variables as the allocation may speed up
the operation of the computer.

1.4 Number of Passes of Compiler

Before we start our discussion, we have to introduce the term scanning or
pass first. Scanning means the whole process of reading or passing the source
program from very beginning to its end. Obviously, in order to implement
the compilation of the source program it is absolutely necessary to scan the
program once from its beginning to its end. Without doing so for the whole
program, how can the compiler collect all information of the program? Hence
for any compiler, scanning the source program at least once is the must. If
the scanning of the program can be done backward and forward repeatedly,
one pass is enough. We do not allow to do so as we want a thing to be regular.

For a certain compiler one pass is enough for it to implement the com-
pilation of the source programs. For those languages in which the definition

18 Chapter 1 Introduction

occurrence of the identifiers precedes the applied occurrences of the identifiers
it is the case, while for others it may need more than two passes.

In practice, there are many ways that arrange various stages of the com-
piler into one pass (in one pass it may involve a stage or a number of stages of
the compiler. In reverse, a number of stages that are consecutive may be put
into one pass, of course they may also be put into separate passes.) Usually
one pass exclusively assigned for a stage (e.g., the lexical stage or syntactic
stage) has its advantages, as in this way the tasks of the compiler may be as-
signed to different groups or different individuals. This is consistent with the
principle of software engineering. It is also feasible that a number of stages are
combined in one pass, for example, one pass may be composed of the lexical
analysis, syntactic analysis, semantic analysis and intermediate code genera-
tion. If it is the case, then the token stream formed by lexical analysis may
be directly translated into the intermediate code and the activities of these
stages within the pass may be carried out interlacingly. We may consider the
syntactical analysis as one that assumes main responsibility, it intends to find
out the grammar structure of the tokens which have been seen. It gets the
next token by calling the lexical analysis. As the grammar structure of the
token stream was found, the syntactic analysis calls the intermediate code
generator to perform the semantic analysis and generate the intermediate
code.

To divide compiler stages into a number of passes is beneficial to the
division of the compilation work. However, it does not mean that the more the
pass number is, the better. A reasonable idea is to have less pass number —
the less, the better, as it must take time to read and write the intermediate
file. On the other hand, however, if many stages were put into one pass, it is
likely to store the whole program in the memory as one stage may need the
information obtained in other stage. In this case the compiler may require
much larger memory space than it really needs. Therefore it causes serious
problem for the memory space. To put a number of stages into one pass can
also cause other problems. For example, the interface between the lexical
analysis and the syntactic analysis may be confined to a token, and then
it is equal to set up a bottleneck for their running. On the other hand, it
is usually very difficult to perform code generation before the intermediate
code is completely generated.

Therefore, it is not necessarily efficient to put some stages into one pass,
and it would be rather better to put them in different scans. If we adopt
the so-called post patching-up technique, however, it is feasible to put the
intermediate code and the target code generation together. By means of as-
sembler, the so-called post patching-up technique is as follows. Suppose that
we have an assembler with two passes. The first pass is aimed at discovering
all the identifiers that represent memory units, and when the identifier is
found, its memory address is derived. Then in the second pass, the memory
address will replace the identifier. In summary, to make compiler with fewer
numbers of passes is proper as it will avoid multiple times of the input and

1.5 An Example of Compilation of a Statement 19

output of intermediate files. However, if some works are really necessary to be
divided into different passes, it will be no good at all to grudgingly combine
them together as this will cause unnecessary problems or difficulties.

1.5 An Example of Compilation of a Statement

In this section, we will illustrate the working principles of the compiler by
the compilation of a statement.

Example Suppose that the capital is a, and it is stored in the bank with
compound interest rate r. How much will be the amount of the sum of the
capital and the interest? Write a program that computes the amount. Sup-
pose the time period is n.

So we denote a as the sum of the capital and interest and initialize it as
1. Then the formula that computes the amount is as follows:

a:=(1+r)"xa
The corresponding program that computes the amount is as follows:

var n : int,
a,r : real,

a:=1,

ie.,
a:=(l+r)Tnxa.

The compilation of the statement begins with the input of the character
stream that constitutes the program. Then the lexical analysis works first. It
transforms the characters into tokens. It confirms that var, int, real all are
key words of the language, and n, a, r are identifiers. The identifier n has
the attribute of integer while a, r have the attribute of real number. There is
also a constant 1 that is integer. By this assumption, the symbol table and
constant table are shown in Tables 1.1 and 1.2.

Table 1.1 Symbol table

Symbol name Intermediate code Attribute
n idy int
a ida real
r ids real

Table 1.2 Constant table
Constant value Intermediate code
1 C

20 Chapter 1 Introduction

With symbol table, we can draw the process of the compilation of the
statement according to the compilation process given in Fig. 1.6. Since there
is no error in the program we omit the error handling part.

In Fig. 1.7, for the sake of simplicity, we use EXP in place of the exponent
operation id17 n.

a=(l+rtnxpxa 1
l Intermediae code generation
l lexical analyzer] temp 1:=inttoreal (c)
idy: = (c+ids) 1 id; = id, temp2:=templ+id;

temp3:=temp2 1 id;
temp4:=temp3 = id,
temp4:=id,

l Syntax analyzer generates]

1
Pl
Idz * l
/ \ Code optimization
1 *
1
I &

temp l:=inttoreal (c)

; ; ;
/ \ id, id; templ:=temp1+id;
c ids templ:=templ Tid>
’ idy:=templ
1
[Semantic analyzer obtains l
- 1
. N Code generation
ldg * 1
T/ \ STO idy R
P id; LDA ¢ RI
i id ADDF id; RI
1 a3 &
AN EXP !dl R1
inttoreal ids LDAF id; R2

MULF R2 RI

¢ STOR R idy

Fig. 1.7 An example of compilation process of source program.

In the practical computer, in general, the exponential instruction is not
directly provided, but usually it provides the macro-instruction of the expo-
nential computation. In the intermediate code generation, we have used 5
assignment instructions. In the code generation, the number is not changed
and the number of instruction used is not reduced. However, the number of
the temporal memory units is reduced from 4 to 1. Therefore, the optimiza-
tion of the programs can be either the decrease of the number of instructions
or the number of memory units used, or both.

1.6 Organization of the Book 21

1.6 Organization of the Book

As a monograph on compiler principles, our intention is to bring the reader to
the front of the field, including the principles of the compilers for distributed
and parallel programming as well as the ideas of compilation for grid com-
puting. So far, the authors found that many books on compilers seldom dealt
with these topics though more and more computer systems were designed
with these principles. And the books on compilers left a gap between the
need and the reality. That makes the students who studied compiler princi-
ples have no idea about how should the two kinds of languages be handled
with compilation. To teach the students with obsolete materials is no good at
all for them, no matter how these materials are disguised as useful things. In
addition we intend to use the concise and explicit language as possible as we
can to cover the necessary knowledge of compilers. In our introduction, we
also encourage the reader to exert his/her creative thinking to supplement
the details of the compilation. As the title of the book indicates, it just pro-
vides the principles instead of details. In this way, we provide the broader
way to the reader to enhance himself/herself.

Chapter 2 focuses on grammars and languages. Starting from Chapter
2, at the beginning of each chapter, we first introduce the motivation of
studying the chapter. In this way, we want the reader having the purpose of
the study in mind. Therefore, he/she will not be blind when the study starts.
Both grammars and languages are the fundamentals of the programming as
the design of any programming language is based upon them. The syntactic
analysis stage is carried out by contrasting to the grammar of the language.

Chapter 3 expounds the finite state automata (or briefly finite automata,
FA) and regular expressions. The automata theory which we discuss is the
design tool of the compiler. It is an essential tool of the lexical analysis. The
compiler design has become a rather mature branch of computer science,
rather than ad hoc or contrived one. It is done under the guideline of the
theory for finite automata.

Chapter 4 discusses the lexical analysis. The lexical analysis is intimately
related to the topics of Chapter 3.

Chapter 5 further introduces the pushdown automata (PDA) that is the
extension of the finite state automata. We introduce two kinds of pushdown
automata with acceptance by final state and empty stack. We also describe
the properties of the pushdown automata.

Chapter 6 focuses on the context-free grammars, i.e., Type 2 grammars.
We explore the characteristics of these grammars as well as their relations
with pushdown automata. This is the preparation for discussion on syntactic
analysis.

Chapter 7 is with the subject of syntactic analysis. It may be seen as one
of the kernels of compilers. We deeply discuss the top-down syntactic analysis
and bottom-up syntactic analysis techniques. Both techniques are still in use
and dominate over the syntactic analysis domain. For the top-down syntactic

22 Chapter 1 Introduction

analysis, we first introduce the LL(1) analytic technique, including definition
of LL(1) grammars, properties of LL(1) grammars, and decision of whether
a given grammar is or not an LL(1) grammar. If it is not an LL(1) grammar,
it may be feasible to transform it into LL(1). We also provide the may of
the transformation Finally, we introduce the implementation of the LL(1)
syntactic analysis. Sequentially, we devote almost the same pages to discuss
the LR(1) of bottom-up syntactic analysis in which we explain LR(0), SLR(1),
LALR(1), and LR(1) one by one. Then the implementation of the technique
is also given.

Chapter 8 deals with the attribute grammars and their analysis. This is
the supplement of the analysis for the context-free grammars. The program-
ming languages mainly contain the characteristics of the context-free gram-
mars but they also contain small part that is not context-free. The attribute
grammars direct at the analysis of the part.

Chapter 9 introduces an algebraic method for compiler design. This chap-
ter may be seen as one of the high lights of the book. As far as we know, there
are very rare books on compilers that contain the content. We do so because
we believe that the algebraic method is not only useful for the design, it will
also be popular in the future.

Chapter 10 discusses the generation of the intermediate code. In this
chapter, we introduce some kinds of the intermediate languages that are
commonly used.

Chapter 11 deals with the issues on debugging and optimization. In this
chapter, a variety of ways for checking errors are discussed. The aim is simply
for eliminating these errors before the program is translated to the object pro-
gram. As for optimization, we provide the approaches to local optimization
and global optimization.

Chapter 12 deals with the issues on storage management. As some books
pointed out that the storage management does not belong to the category of
compilers, it should belong to that of operating systems. It is the operating
system that is in charge of the management of the storage. On the other
hand, no compiler is not concerned about the allocation of its symbol table,
its constant table, its object code as well as its source program, etc. Therefore,
in this way it is very natural that we have to discuss the issues on the storage
management.

Chapter 13 is the final issues on the compilers of procedural languages,
and the generation of the object code. The unique feature of the chapter is
that we adopt the MMIX machine as the target machine. In our point of view,
it is better to use a pseudo machine like MMIX than any specific machine as
MMIX is claimed to be the representative of the machines in the 21st century
while any specific machine will definitely be obsolete in the next few years.

Chapters 1416, under the titles of compilation of object-oriented lan-
guages, compilation of parallel languages, and compilation of grid computing,
discuss the issues regarding the compilation of these new kinds of languages
or computing. These are frontiers of compilers. If any new book or mono-

References 23

graph on the field does not involve on these topics, it is hard to regard really
as the book on the field any more, or it can only be regarded as an obsolete
book on the field. However, as these fields are still growing, not mature at
all, we can only introduce the state of the art of current level.

Problems

Problem 1.1 For the compilation of programming languages, why are the
two phases— analysis and synthesis necessary? For the translation of
natural languages, what phase do you consider important?

Problem 1.2 From the design of programs, expound the necessity of lan-
guages for thinking.

Problem 1.3 According to your understanding of the text, analyze and
compare the pros and cons of single-pass and multi-pass scanning tech-
nique.

References

[1] Pinker S (1994) The language instinct: How the mind creates language.
Morrow, New York.
[2] Ritchie DM et al (1978) The C programming language. Bell Syst Tech J, 57,
6, 1991 —2020.
[3] Backus JW et al (1957) The FORTRAN automatic coding system. Proc
Western Jt Comp Conf AIEE (now IEEE) Los Angles.
[4] Naur P (ed) (1963) Revised report on the algorithmic language ALGOL 60.
Comm ACM 6(1): 1-17.
[5] Iverson K (1962) A programming language. Wiley, New York.
[6] McCarthy J et al (1965) LISP 1.5 programmer’s manual, 2nd edn. MIT
Press, Cambridge.
[7] Farber DJ et al (1964) SNOBOL, a string manipulation language. JACM,
11(1): 21-30.
[8] Wirth N (1977) MODULA, a language for modular programming. Softw Prac
Exp. 7: 3—-35.
[9] Kiviat P et al (1969) The SIMSCRIPT II programming language. Prentice
Hall. Englewood Cliffs.
[10] Wirth N (1971) The programming language pascal. Acta Inf, 1(1): 35—63.
[11] Knuth DE (1964) The remaining trouble spots in ALGOL 60. Comm ACM,
7(5): 273 —-283.
[12] Sammet J (1969) Programming Languages: History and fundamentals. Pren-
tice Hall, Englewood Cliffs.
[13] Goldberg et al (1980) Smalltalk-80: The language and its implementation.
Addison-Wesley, Boston.
[14] Horowitz E (1983) Fundamentals of programming languages. Springer,
Berlin.

24

Chapter 1 Introduction

United States Department of Defense (1980) The Ada Language Reference
Manual, Washington D. C.

Knuth DE (1974) Structured programming with GOTO statement. Comp
Surveys, 6(4): 261 —301.

Clark HH, Clark EV (1977) Psychology and language; An introduction to
psycholinguistics. Harcourt Brace Jovanovich, New York.

Kintsch W (1974) The representation of meaning in memory. Hillsdale, Erl-
baum.

Chapter 2 Grammars and Languages

To explain how children acquire meanings, we charac-
terized children as scientists whose hypotheses are con-
strained by innate principles. We can use the same anal-
ogy to describe how children acquire the rules by which
units of meaning are combined into larger units —in
other words, grammar.

Richard J. Gerrig, Philip G. Zimbardo

2.1 Motivation of the Chapter

From the development of the mankind language, the language itself was cre-
ated first without the establishment of the grammar. As the knowledge of
mankind enriched and developed, the grammar was created to help the study
of the language and to make the language normalized. As any native language
is very complicate and the grammar was founded after the language, no mat-
ter what language is, not any grammar can totally describe the phenomena
of the language. In addition, there exist ambiguities in the native languages.
For the human being, in general, these phenomena of ambiguities can be
handled by human themselves. For computers, however, it is hard for them
to accept and even to understand ambiguity. Programming languages are dif-
ferent from native languages in that the generation of the language is almost
at the same time. The the purpose of the grammar is to help the users of the
language to avoid any ambiguity and to express the meaning correctly. The
program should be correctly written in order to be run on computer with
correct results. Therefore, the research on compilers should be started with
the discussion on the relation between grammars and languages.

2.2 Preliminary Knowledge

Definition 2.1 Character. Commonly used Latin alphabet, Arabic numer-

26 Chapter 2 Grammars and Languages

als, punctuation symbols, arithmetic operators, Greek alphabet, etc. all are
characters. For character, as for the point in geometry, we do not further
define it. We suppose that it is well known common sense. In the following
or in the future, we just use the lower case to denote the character while the
Latin alphabet is used for character list.

Definition 2.2 Alphabet. The finite set of the characters. In general, if the
Latin alphabet is taken as the alphabet, then the upper case is used for the
purpose. For example, we have A = {a,b,¢c, 1,2}.

Definition 2.3 Character String. Any string that consists of 0 or more
characters is called a string. The string that consists of 0 character is called an
empty string. It is denoted as “e”. It indicates that there is no any character
in the string. If A is defined as an alphabet as aforementioned, then a, 1, 1a,
abc, 1ba,..., all are the character strings over A or briefly strings. Usually
strings are denoted as Greek letters as a, [etc.

Definition 2.4 The operations on strings. Given A = {a,b,c, 1,2}, the
strings over A are determined. There are three kinds of the operations over
the strings.

1) Concatenation or juxtaposition. For example, a and 1 are strings, then
al and la are concatenation or juxtaposition of them. In general, if a and
are strings, then of and o are strings too.

2) Disjunction or selecting one operation. If a and 8 are strings, a | f§ rep-
resents that selecting one from the two, the result is still a string. Obviously,
the operation satisfies the commutative law, i.e., a | = | .

3) Closure. Given a string a, we can define the closure operation as follows.

o =¢la|aalaoal...
= (2.1)

This is also called the Kleene closure. We can also define positive closure as
follows,

=aloo|aoal...
=ala®|a®|.... (2.2)

The introduction of closure operations makes it possible that finite num-
ber of strings or even a string may become the infinite number of strings. For
a finite set of strings A = {a, B, v}, it may be regarded as A = (a | B | V),
hence

A" =g |A|A%|A%]...

=el(a|B|v)[(a|BlV)([B[v)|(a[B[v)(@[B[¥)(|[BlV)]....
(2.3)

2.3 Grammar 27

Similarly, we can also define
AT =A|A? A%
= (a|BIv) [(a|B[v)(a|Blv)|(a]B[v)(a[Blv)(a][B[V)]. ...

From Egs (2.1)—(2.4), we may get

a*=c¢|at (2.5)
A* =g | AT.

We need to point out the difference between empty string € and empty
set @. Empty string is a string without any character inside while empty set
is a set without any element. The two things share a fact that both contain
nothing. But they are different as one has no character in it and another has
no element (it may be characters or something else). For set, we may also
define its closure.

Definition 2.5 The closure of set. Let A = {a,b,c} be a set. The closure
operation of set A is defined as

A" =e¢e UAUAAUAAAU...
—eUAUAZUA3U... (2.7)

Similarly, we have
AT =AUA’UA3U... (2.8)

What we get in this way is still a set, but it can be regarded as string too,
the set of strings.

Definition 2.6 Regular expression. Given a set, e.g., A = {a,b,c}. The
regular expression over A is defined as:

1) The element in A is regular expression.

2) If p, q are regular expressions, then after the following operation the
result is still a regular expression:

(1) concatenation, i.e., pq, pp, and qq;

(2) disjunction, i.e., p | q or q| p;

(3) closure, i.e., p* or q*.

3) Return to 2), start from the regular expressions obtained by 1) or 2),
repeatedly perform the operations in 2), what we get all are regular expres-
sions.

2.3 Grammar

Definition 2.7 Formal grammar. According to linguist Noam Chomsky [1],
a grammar is a quadruple G = (Vn, V1, P, S), where

28 Chapter 2 Grammars and Languages

e Vy is a set of nonterminals. In general, we denote them as upper case
letters (e.g., A, B, C). The so-called nonterminal means that it may appear
at the left hand side of the productions to be explained soon, and it may
derive the terminals or nonterminals at the right hand side of productions.

e Vr is a set of terminals. In general, we use lower case letters to denote
the element of the terminal set (e.g., a, b, ¢, etc.) The so-called terminal
means that there is no thing that can be derived from it, and it cannot
appear alone on the left hand side of productions. Here we have VNUV =
&, that is that they are disjunctive, or they have no common element.

S is a start or distinguished symbol, S € Vy.
P is a set of productions (or rules). The production is as following

o — f, (2.9)

where a is called the left part of the production while § is called the right
part, and
ac (VN @] VT)Jr,

B S (VN UVT)*.

That means that a is a nonempty string that consists of terminals and non-
terminals, while 3 is a string that also consists of terminals and nonterminals
but it may be empty.

Notice that the left part of productions cannot consist of terminals alone
as we have mentioned that terminal cannot be used for derivation.

Definition 2.8 Derivation. Given a grammar G = (Vy, V1, P, S), a deriva-
tion means the following step:
If
o — uwTvx (2.10)

is a production in P, where u, w, v, x € (VN UV7)*, and
T—yUz (2.11)

is another production in P, then T in Eq. (2.10) may be replaced by the right
part of Eq. (2.11) and Eq. (2.10) now becomes

o — uw(y Uz)vx. (2.12)

This is a derivation step in G.

For a grammar, derivation is the only kind of operations. In general, the
first derivation starts with the production of which the left part is the start
symbol. Then the nonterminal within the right part of the production is
replaced by the right part of the production of which the left part is the
nonterminal. It is just like we did from Eqgs. (2.10) and (2.11) to get Eq.
(2.12). The process will continue until finally there is no any nonterminal
again in the string obtained.

2.3 Grammar 29

Definition 2.9 Rightmost derivation. In the productions of the grammar,
if in the right part of the production to be used for derivation, there are more
than one nonterminals, then the derivation is carried out for the rightmost
nonterminal. If all the derivations are carried out with the rule, then it is
called rightmost derivation.

Definition 2.10 Leftmost derivation. In the productions of the grammar,
if in the right part of the production to be used for derivation, there are more
than one nonterminals, then the derivation is carried out for the leftmost
nonterminal. If all the derivations are carried out with the rule, then it is
called leftmost derivation.

Definition 2.11 Grammar hierarchy. Chomsky divides the grammars into
four types — Type 0, Type 1, Type 2, and Type 3.

We now explain these grammars separately.

Definition 2.12 Type 0 grammars. Within the grammar G = (Vy, Vr, P,
S) for the productions with the form o — f3, where o = ¢pAy, where ¢ and
y are arbitrary strings in (Vy U Vp)* (empty string is allowable) and A is
the start symbol S or other nonterminal; f = Ewo, &, w,¢ € (Vy U Vrp)* (that
means that all of them may be empty). Apart from these descriptions, there
is no any restriction again. This type of grammar is called of Type 0.

If we define that the length of a string be the number of terminals and
nonterminals, and denote | a | as the length of a. Then the definition of Type
0 means that there is no restriction on the lengths of o and f.

Type 0 grammar is the most general form of grammars. It is also called
phrase structure grammar.

Example 2.1 A Type 0 grammar is as follows.

S — ABSCD,
BA — AB,
DC — CD,
A — aA,

B — bB,

C — cC,

D — Dd, (2.13)
BSC — BC,
A —e,

B —¢,
C—e,
D—e,

S —e.

In these productions, the only one that shrinks is BSC — BC, for it we have
| @ |>| B |. Apart from this one (excluding those that have empty right parts),

30 Chapter 2 Grammars and Languages

they have | a |<| B |. It is not a shrink grammar. As it has both | a |<| B |
and | a [>| B |, it is Type 0.

Definition 2.13 Type 1 grammar. In the grammar G = (Vn, V1, P, S) for
the productions with the form a — f in P, if we always have | a [<| B |, unless
| B |= 0, then the grammar is called Type 1 grammar. Type 1 grammar is
also called context-sensitive grammar (CSG).

Example 2.2 The following grammar G = (Vn,Vr,P,S) is a context-
sensitive grammar, where Vy = {S;A,B,C,D,E,F}, V4 = {a,b,c}.

The production set P consists of the following productions:

S — ABCS,
S — F,

CA — AC,
BA — AB,
CB — BC,
CF — Fe, (2.14)
CF — Ec,
BE — Eb,
BE — Db,
AD — Da,
D—e

Definition 2.14 Type 2 grammar. In the grammar G = (Vy, Vr,P,S) for
the productions with the form o — in P, if they always have | a |= 1, that
is, the left part of every production consists of one nonterminal only, then the
grammar is called Type 2 grammar. It is also called context- free grammar

(CFG).

Example 2.3 The following grammar G = (Vn, Vr,P,S) is Type 2 gram-
mar, where Vy = {S,A,B,C,D}, V1 = {a,b,c,d,e}. And production set P
consists of the following productions.

S — DCD,
D — B,

D — AD,
A — Db,

A —c,
B—d,

B —a,

(2.15)

C—e.

Definition 2.15 Type 3 grammar. In the grammar G = (Vy, Vr, P, S), for
the productions with form a — § in P, they have only two forms, i.e.,

A — aB (2.16)

2.4 Language 31

or
A —b.
It may be as
A — Ba (2.17)
or
A —b.

where A, B are nonterminals while a, b are terminals. This kind of grammars
is called Type 3 grammar. It is also called regular grammar (RG) or linear
grammar (LG). Depending on the right part of the production whether the
nonterminal appears on the left or on the right it is called the left linear
grammar or the right linear grammar. Therefore, correspondingly Eq. (2.16)
is called the right linear and Eq. (2.17) is called left linear.

2.4 Language

We define a language before we establish the relation between the grammar
and the language generated by the grammar.

Definition 2.16 Language. The any set of strings over a finite alphabet X,
i.e., the any subset of ¥* is called the language.

Simply speaking language is the set of strings. Hence, ¥*, ¢, and 3 all are
languages since the language is only a set of special kinds (the set of strings).
For any finite language we can determine the language by enumerating its
elements. For example, {abc, xyz, e, u} is a language over set {a, b, ..., z}.
We are interested, however, in infinite languages. In general, in infinite lan-
guages cannot be determined by enumerating. Before we present the features
between grammars and languages, we like to further explore the languages.

At first we make some supplement about the operations of strings.

Definition 2.17 Reversal of the string. Given a string w, the reversal of
w, denoted as w? is a string generated from w via changing the order of the
characters in w so that the first in the original left to right order becomes the
last, and the second one becomes the second from the end, etc. For example,
(alphabet)® = tebahpla. By using mathematical induction method with the
length of the string, the reversal of the string may be formally defined:

1) If the length of w is zero, then w = w? = ¢; if the length of w is 1, i.e.,
w is a character, say, a, then wi = al = a = w.

2) Suppose that the reversal of a string with length n has been defined,
and w is a string with length n+1, let for @ € 3, w = ua and | u |= n, then
wl = au®. Since for the string u with length n, we have defined its reversal,

it means that u® has been defined, w? is defined.

32 Chapter 2 Grammars and Languages

We will make use the definition to illustrate how mathematical induction
proof depends on the definition. We will prove that for arbitrary w and u,
(wu)? = uRwh,

For example, (textbook)® = (book)R(text)® = koobtxet. We now prove

this via mathematical induction over the length of u.

The basic step

For |u|=0, u=c¢, and (wu)? = (we)? = wh = eBwl = eBwh = ultwh.

Induction hypothesis
If | u |[< n, then (wu)? = ufwh.
Induction proof

Suppose that | u |= n + 1, and there exists some a € ¥ and x € ¥* so
that u = xa, and | x |=n, then

(wu)R = (w(xa))k for u =xa
= ((wx)a)® for the concatenation is associative
= a(wx)R from the definition of reversal of (wx)a
= axPwl from the induction hypothesis
= (xa)Rwhl from the definition of reversal of xa
= ufwh since u = xa (2.18)

Now we extend our study from individual strings to the finite sets or
infinite sets of strings.

We mentioned above that ¥*, ¢, and X are languages. As a language is
only a special kind of set, for a finite language it is feasible to determine it
via enumerating its elements—strings. For example, as we have seen that
{school, car, is, of, y, z} is a language over {a, b, ..., z}. But for a general
language, the enumeration method is no longer feasible to describe or deter-
mine a language as most of the languages are infinite. The languages that
can be considered is {0, 01, 011, 0111, ... }, {w | w € {0,1}" and in w, the
number of 0’s and the number of 1’s are equal} and {w | w € %, w = wi}.
The last language is called the palindrome. It is the same to read it forward
from the left and backward from the right. From now on we will describe our
language as

L={w|weZX* whas some properties} (2.19)
It is the same as the general form with which we describe the infinite set.

If ¥ is infinite, then definitely ¥* is infinite too. But whether it is numer-
ablely infinite or not? It is not hard to see, it is numerablely infinite. In order
to prove the point, it is necessary to establish the one to one correspondence
between integer set N and X*.In order to construct an one to one bimapping
f: N« X*, at first it needs to determine the order of the finite alphabet,
e.g., ¥ = {aj,a9,...,a,}, where, aj,...,a, are totally different. Then we
enumerate the elements of ¥* by the following method:

1) For each k > 0, the enumeration of all the strings with length k precedes
that of the strings with length k + 1.

2.4 Language 33

2) For the n¥ strings with length k, the enumeration is done according
to the lexical order, i.e., suppose for some m, 0 < m < k — 1, aj,..., a5
precedes aj1, ..., a4, if fori=1,...,m,i; = ji, then im41 < jm+1.

For example, if ¥ = {0, 1}, then the order of elements of ¥* is as follows:

e,0,1,00,01,10,11,000,001,010,011, .. . (2.20)

If ¥ is the Latin alphabet, then one may use ¥ = {a, as,...,a2} to denote
{a,b,...,z}.

The order of the strings with the same length will be the lexical order in
the common dictionary. This order is different from the order that the long
strings precede the shorter ones.

As language is a set (the set of strings), the operations union, intersection,
and difference may be carried out on languages. When from the context one
may understand that ¥ is a special finite alphabet, then we may use A to
denote the complement of A, in place of rather long notation X* — A.

Some operations only make sense for languages. At first, consider the
connection of languages. If L; and Lo are two languages over the alphabet X,
then the connection of them is L = L; o Ly or briefly L = L1Lo, where,

L={w|weX" W=xy,where x € Ly,y € Lo} (2.21)

For example, if ¥ = {a, b}, L1 = {w | w € £*, w contains even number of a’s}
and Lo = {w | w starts with a and the rest is all b’s}, then Ly oLy = {w | w
contains odd number of a and the number of b’s is uncertain}.

The other operation of languages is Kleene closure, e.g., L*, where L is a
language.

L* is the set of the connections of L itself, including that of zero L. The
connection of zero L is €, the connection of one L is itself, hence

L"={w|weX w=wwa.wk, k>0, wi,...,wx € L}. (2.22)

For example, if L = {ab, b, baa}, then bbaaabbbbaaabb € L* as bbaaabbb-
baaabb = bobaaoabobobaaobob, and here b, baa, and ab belong to the
strings of L.

Notice here that there are two concepts. On one hand, for any finite
alphabet X, we use X* to denote all the strings over . On the other hand,
we use L* to represent the Kleene closure of language L. The two notations
are exactly the same.

It is true. If we let L = X and apply the definition above, then >* rep-
resents the set of all strings w’s. that means that there exists k > 0, and
Wi,...,Wk € X so that w = wy...wy. As w; is the language over X, hence,
according to the definition, ¥* is the set of strings (language) over 3.

Example 2.4 Prove that ¢* = {e}.
Based on the definition above, let L. = ¢, then for k > 0, and wq, ..., wy € L,

the only possible connection is k = 0 and it is €. Hence the only element of
L*is e.

34 Chapter 2 Grammars and Languages

Example 2.5 Prove that if L is such a language that L = {w | w € {a, b}+,
and in w the number of a’s and the number of b’s are different}, then LT C
{a,b}".

We now prove it. At first, notice that for any languages L, Lo, if L; C Lo,
then L] C L3. This can be obtained from the definition of closure. Further-
more, as {a,b} C L, and a and b are the strings with different numbers of
a and b. So {a,b} C L, but from the definition, L. C {a,b}". Therefore,
L* C {{a,b}"}* = {a,b}". We now can denote LT as LL* and

Lt ={w|weX* and Iw;...wi € L, and k > 1 so that wi owz0...0w}

(2.23)
LT can be regarded as the closure of L under the connection operation.
Hence LT is a minimal language that consists of I and the connections of all
elements of L. It means that if there are some languages that hold the same
elements, then LT is the smallest one among them.

2.5 Language Generated by a Grammar

In Section 2.2, we defined grammar and pointed out that the only operation
for grammar is the derivation. The purpose of the derivation is to generate
the string that is composed of terminals. All the strings that are derived from
the grammar form the language. It is the language generated or accepted by
the grammar. In this section, we will exemplify a few languages generated by
their corresponding grammars [2].

Example 2.6 Consider the language generated by the grammar given in
Example 2.1.

S — ABSCD,

BA — AB,

DC — CD,

A — aA,

B — bB,

C — cC,

D — dD, (2.24)
BSC — BC,

A —e,

B —e¢,

C—e,

D—e,

S — e

At first, we have

S — ABSCD — ABCD — ec¢g¢ge— .

2.5 Language Generated by a Grammar 35

Hence we have ¢ € L(G), where L(G) means the language L generated by the
grammar G. Furthermore, S — ABSCD — ABCD — aABCD — aA — a.
So a € L(G). Similarly, we may get b, ¢, d € L(G). In addition,
S — ABSCD — ABABSCDCD
— ABABCDCD
— AABBCCDD

— ...

— a™b"cPdq.
Finally by mathematic induction proof, we may get L(G) = {a™b"cPdq |
m,n,p,q > 0}

Example 2.7 Consider the language generated by the grammar given in
Example 2.2.

S — ABCS,

S —F,

CA — AC,

BA — AB,

CB — BC,

CF — Fe, (2.25)
CF — Ec,

BE — Eb,

BE — Db,

AD — Da,

D —e.

It is easy to find out that
S — ABCS — ABCABCS — ... — (ABC)"F.
Making use the several last parts of productions, let see

S — ABCABCF — ABACBCF — ABABCCF — AABBCCF —
AABBCFc¢c — AABBEcc — AABEbce — AADbbcee —
ADabbce — Daabbcee — aabbcee.

In the process the three productions are important for obtaining the form we
desire to have. These productions are

CA — AC,
BA — AB,
CB — BC.

36 Chapter 2 Grammars and Languages

With these productions we have the following derivations

S — ABCABCABCF — ABACBCABCF — ABABCCABCF —
ABABCACBCF — ABABACCBCF — ABABACBCCF —
ABABABCCCF — AAABBBCCCEF.

Therefore, by repeatedly using these productions, we may derive S— A"B"C".
Sequentially, by using the later productions, we may conclude that the gram-
mar generates the strings with form a”b™c”(n > 1). The only way to remove
the nonterminals from the strings is to follow the process shown above. Since
all the strings generated by the grammar have the same form a"b”c™, n > 1,
thereby the language generated is

L(G) = {a"b"c" | n > 1}.

Example 2.8 Consider the language generated by the grammar given in
Example 2.3.

S — DCD,
D — B,

D — AD,
A — b,

A —c,

B —d,

B —a,

(2.26)

C—e.

At first we have
S — DCD — BCB.

As B has two productions that takes it as left part, B — d and B — a, or
B — (d]a)and C — e, hence we have S — (d |a) e (d]a) and (d|a) e (d|
a) € L(G). On the other hand, S — DCD — ADCAD — AADCAAD —
.— A™DCA"D — A™BCA"B, hence S — (b | ¢)™(d | a) e (b | ¢)*(d | a).
So the language generated by the grammar is L(G) = (b | ¢)™(d | a) e (b |
c)(d|a)|mmn=>0).
Example 2.9 Consider the grammar G = (V,,Vr,P,S), where Vy =
{Sa A}v Vr = {av b}

The production set P consists of

S — aS,

S — e,

S — bA, (2.27)
A — DbS,

A — aA.

2.6 Turing Machine 37

For the grammar, the language generated by it is simple. It is the so-called
regular language as the grammar is the regular grammar. At first, it generates
¢ and a, hence these two belong to the language it generates, €, a € L(G).
From S — bA — bbS — bbe — bb, we also have bb € L(G). Then we do
the derivations S — aS — aaS — ... — a™S — a™bA — a™bbS — ... —
a™(bb)"S. So the language generated by the grammar has the following form

a™, a™(bb)", a™(bb)"aP(bb)4,...,a™(bb)!...a",a™(bb)!. . .aP(bb)™™. (2.28)

In order to discuss the properties of the languages generated by grammars, we
need to introduce the concept of Turing machine. Thereby the next section
will devote to it.

2.6 Turing Machine

Before we formally discuss the concept of Turing machines, it is necessary to
introduce the founder of the theory — Alan M. Turing (1912-1954). Turing
is an excellent mathematician and philosopher. As a boy, he was fascinated
by chemistry, performing a variety of experiments, and by machinery. In 1931
he won a scholarship to King’s College, Cambridge. After completing his dis-
sertation which included a rediscovery of the central limit theorem, a famous
theorem in statistics, he was elected a fellow of his college. In 1935 he was fas-
cinated with the decision problem posed by the great German mathematician
David Helbert. The problem asked whether there is a general method that
can be applied to any assertion to determine whether the assertion is true.
In 1936 he published the paper entitled “On Computable Numbers, with an
Application to the Entscheidungsproblem (problem of decidability) on Pro-
ceedings London Mathematical Society, vol. 42, 1936. It was in the paper
that he proposed the very general computation model, now widely known as
the Turing machine. During World War II he joined the Foreign Office, to
lead the successful effort in Bletchley Park (then the British Government’s
Cryptography School in Milton Keynes) to crack the German “Enigma” ci-
pher, which Nazi Germany used to communicate with the U-boats in the
North Atlantic. In this undertaking his contribution to the breaking of the
code of Enigma, played an important role in winning the war. After the war
Turing worked on the development of early computers. He was interested in
the ability of machines to think, proposing that if a computer could not be
distinguished from a person based on written replies to questions, it should be
considered to be “thinking”. He was also interested in biology, having written
on morphogenesis, the development of form in organism. In 1954 Turing com-
mitted suicide by taking cyanide, without leaving a clear explanation. The
Association for Computing Machinery [3] in the U.S.A. created the Turing
Award in 1966, to commemorate Turing’s original contribution.

As we mentioned above, the Turing machine is the most general model of

38 Chapter 2 Grammars and Languages

a computing machine. Basically, a Turing machine consists of a control unit,
the soul of the machine, which at any step is in one of finitely many different
states, together with a tape divided into cells and which has a boundary in the
left hand side (the restriction can be lifted so that it can be like the right side
too, but by the removal of the restriction does not change the computation
power of the Turing machine) but stretches infinitely in the right hand side.
Turing machine has read and write capabilities on the tape as the control
unit moves back and forth along this tape, changing states depending on the
tape symbol read. At first, the input message should be written on the tape,
then the control unit reads the leftmost message, the Turing machine starts
its running in this way, it may move forth and back on the tape, as well as
change the symbols on the tape, until considers that its running comes to the
end.

Definition 2.18 Turing machine. A Turing machine is a heptatuple
M= (K,T,3,9,S,b,H).

K —the finite set of the states.

I’ —the alphabet, the symbols of the tape, including blank symbol b,
KNnT = ¢.

> —the subset of I', not including b. It is the set of input.

0 — the transfer function, a mapping from (K—H) xT" to K xI" x {L, R},
where, L represents left (it stands for the left move of the write/read head
of the tape) while R represents right (it stands for the right move of the
write/read head of the tape). Hence & represents the next state function, for
example:

(1) for Vq € K—H, if 6(q,a) = (p,R), it represents that the current state
of the Turing machine is q, with input a, it will have p as the next state and
the tape head will move right for one cell;

(2) for Vq € K — H, if 8(q,a) = (p.c, L), similarly, it represents that the
next state will be p, and the input symbol a will be changed to ¢, and the
tape head will move left for one cell.

S— € K, the initial state of the Turing machine.

b—the blank symbol on the tape. Notice that the input symbols do not
contain b.

H—C K, the set of final states. It means that the number of final states
may be more than one.

We may use o1qap to denote an instantaneous description (ID) of the
Turing machine, where q(q € K) is the current state of M, oy, ag are strings
in I'. a; means the string from the left boundary of the tape until the symbol
under the tape head, and as means the string from the right of the tape
head till the first blank symbol on the right side of tape (notice that in o4
and ag there may be the blank symbol b). The ID represents that the Turing
machine now is under control of state q, and the tape head is going to scan
the leftmost symbol in as. If ay = €, then it represents that the tape head is
scanning a blank symbol.

2.6 Turing Machine 39

More exactly speaking, suppose that oy = x1Xs...Xj_1, 0o = Xj...Xy, then
X1X3. . .Xj_10Xj. . .Xy is the current ID, and suppose that there is

8(q,xi) = (p,y,L) (2.29)

in the mapping from (K—H) xT" to K xI' x {L, R}. It indicates that the next
state is p, and y will be written on where x; is located. Meanwhile the tape
head is moved to left for one cell. In addition if i — 1 = n, then x; is taken as
b, if i = 1, as tape is on the left boundary and tape head cannot move left
again, there will be no the next ID. If i > 1, then we may use the following
expression to represent the ID:

X1X2. . Xi—10Xi. - Xn | X1X2. . .Xj_2DPXi—1YXit1- - -Xn- (2.30)

If yXit1...x, is only a blank string, then it may be deleted. It indicates
that the machine stops running, but according to the definition, only when
the machine enters one of final states then can the computation normally
finishes, otherwise, the finish can only be regarded as abnormal stop.

6(q,x;) may take another form, i.e.,

5(a, xi) = (p,y, R). (2.31)

As Eq. (2.29), the next state is p, y will be written on where x; is located,
but this time the tape head will move right for one cell. In this circumstance,
we use the following expression to represent the ID:

X1X2. . Xi—10XiXit1- - -Xn [X1X2. . Xi—1YDXit1- - -Xn- (2.32)

Notice that in this circumstance if i — 1 = n, then string x;;1...x, is a blank
string, then the next state is facing a blank.
Fig. 2.1 shows the visual model of the Turing machine.

Gl o[=51]

Read/write head
(It may move left or right but it can not move over to laft end)

4 Finite

0 control
@ device

Fig. 2.1 Turing machine model.

If two IDs are related via |-, then we say that the second ID is yielded
from the movement of the first ID. If the ID is produced from the finite
number (including zero) of movements of the other ID, then we say that they
are related via |-, and we denote it FK/I When no confusion will happen,
either |, or |, may be simplified as |- or |-".

40 Chapter 2 Grammars and Languages
Example 2.10 Consider the following Turing machine, it has

K = {qo,q1,92, 43,4},
I = {O; 17X7y7b}7

¥ ={0,1},

H = {a}.

The transition function 8 is defined as follows.

Symbols

0 1 X v b

States

qo (qi.x.R) — (@1.Y.R) —
aQ (q:.0.R) (q2.y.L) — (q;.y.L) —
Q2 (q2.0.L) (qo.x.R) (q:.y.L) —
a3 — — (q:.¥.R) (qs.b.R)
Q4 — = == =— =

At the beginning, let the tape contain 0"1", following it being the infi-
nite number of b’s, i.e., blanks. Take 021% as an example, according to the
definition of §, we have the following computation:

0011 |- — xq1011 | — x0q;111 |- — xq20y1 |- — q2x0y1 |- —
xqoOyl | — xxqiyl | — xxyaqil | — xxqayy |- — xqaxyy |- —

xXxqoyy | — xxyqsy |- — xxyyqs | — xxyybaqs (2.33)

The computation process above, i.e., machine M repeatedly substitutes
x for the leftmost 0, and move right to find the leftmost 1, then substitute
it with y. Then move left again to find the rightmost x, move one more cell
to find the leftmost 0. In this way, it forms a cycle. It then repeats the cycle
until M cannot find any 1 left. When M found that there is no any 0 left and
there is no any 1 left either, in this circumstance, it means that the number
of 0’s and the number of 1’s are equal. Then the string is accepted by M.
Otherwise if the number of 0’s is more than that of 1’s or vice versa, then M
does not accept.

The computation process commences with qq, its role is to start the whole
process. This is its unique role. After it found the leftmost 0, it changes the
state to q; making the computation entering to the cycle above. Meanwhile,
the 0 is replaced by x, and it moves right to continue the searching of the
corresponding 1. Therefore, the role of q; is to move right to continue the
search, passing 0’s and y’s to look for the leftmost 1. When it has found
the 1, its role also finished, and now it is the turn of qo. The role of gy is
to move left for searching for x. When it found x, it suddenly changes to

2.6 Turing Machine 41

qo- Under the state qg, M moves right, looks for the leftmost 0 and begins
the other cycle. When M moves right to look for 1 under the state qy, if
it meets b or x before it meets 1, that means that the numbers of 0’s and
1’s are not consistent. Hence the string is rejected. As for state qg, it is the
state that replaces qop when it found y on the tape (notice that y is not an
input symbol, the same as x, they are temporal symbols introduced during
the computation). The qs is used for scanning y and checking whether there
is 1 left or not. If there is no 1 left, that means that b follows y, then q3 is
changed to q4, and the computation comes to the end, and the input string
is acceptable. Otherwise the computation cannot finish, or the input string
cannot be accepted. Therefore, state q4 is the final state.

Example 2.11 Consider a Turing machine M = (K,T',X,9,qo, b, {q2}),
where

K= {QOa q1, q2}7

' ={u,a,b}, (u is the left boundary symbol of the tape)
Y= {a}v
H = {q2}.

The transition function & is defined as follows:

d(qo, 1) = (qo, R),
8(do, a) = (a1, b),
8(do, b) = (g2, b),
8(q1,a) = (qo, a),
(a1, b) = (qo, R).

In this machine, when M starts with state qg if it encounters the left
boundary symbol u of the tape, it does not change u but continues to move
right for one cell. When it encounters an a, the state is changed to ¢;. Mean-
while, input a is removed and the cell becomes b. When q; meets b it is
turned to qp and moves right. If q; meets a, it is also turned to qg but the
tape head does not move.

In order to more explicitly investigate the moves of the Turing machine,
assume that there are three a’s on the tape. The operations are shown in Fig.
2.2.

So far, the Turing machine enters the final state ¢, the whole computation
process terminates. As we can see that the work of the Turing machine is to
delete the a’s on the input tape. No matter how many a’s there are on the
tape, it can delete all of them, but one per time.

Example 2.12 Consider the following Turing machine,

M= (K7F7 2767q07b7 {ql})v

42 Chapter 2 Grammars and Languages

[u]alafa[b]b]-- | QuaaabbpP-uqyaaabb -
A
'
|u|a|a|a|b|b|--- | ugoaaabb -
4
i
[u]blafal[b]b]-- | f~ugq baabb -
A
¥
|u|b|a|a|b|b|--- | ~ubgaabb -
)
i
[u|h|b]a|h|b|--- | b~ubgbabb -
4
{
ODDODDE | Fubbaaby -
A
i
[ulb]b]b]b]b] - | ~ubbg bbb
A
¥
|u|b|b|h|b|h|--- | =ubbbgybb -
A
:
[u|h|b]h|b|h]--- | b~ubbbgbb -
4
Fig. 2.2 The other Turing machine.
where
K:{quql}v
' ={u,a,b}, (u stands for the left boundary symbol)
¥ ={a},
H={a}

The transition function 0 is defined by the following expressions:

d(do, a) = (qo, L),
5(010,]0) = (Q1,b)7
6((10,11) = (qO;R)

2.6 Turing Machine 43

In order to observe the operations of the Turing machine more explicitly, we
do the same as we did above. We also assume that the input on the tape is
the string uaaabb... . We have

qouaaabb |- — uqpaaabb |- — qpuaaabb |- — uqpaaabb |- —
gouaaabb |- — uqpaaabb |- — gguaaabb. (2.34)

Therefore, in this circumstance the Turing machine only moves forward and
backward between the left boundary and the first non blank character a. It
cannot move to the blank character where it enters the final state. However,
if the input string is ubabb. .., that means that the blank character follows
the left boundary symbol, then we have

goubabb |- — ugobabb | — uq;babb. (2.35)

By moving only for one cell, it has encountered the blank character and it
immediately enters the final state.

We have given the definition of the Turing machine and three examples of
the machine. From these we may see that Turing machine carries the compu-
tation directing at the input on the input tape until it enters the final state.
The input that leads the Turing machine enters the final state is regarded
as the statement of the language the machine recognized or accepted. There-
fore, we can now define the language which the Turing machine recognizes or
accepts [4].

Definition 2.19 The language accepted or recognized by the Turing ma-
chine L(M). The set of those words in Y*that cause M to enter a final
state when M starts its operation with state o and the tape head of M
is initially located at the leftmost cell. Formally, the language accepted by
M= (K,T,%,6,q0,b,H) is

{w|lweX Aqw | — apasc Ap e HA a1, a0 € T*}.

According to the definition, it is not hard to see that the three examples of
Turing machine above recognize their respective languages. The first Turing
machine recognizes {0"1" | n > 1}. The language which the second Turing
machine recognizes is {a” | n > 0}. The third Turing machine recognizes
language {b}. From these examples, we can also see that given a Turing
machine that recognizes language L, without loss of generality, we can assume
that whenever the input is accepted, the machine enters a final state and it
no longer moves. There is another possibility, however, that for the character
or statement which it does not recognize, it never stops. The third example
belongs to the case.

Definition 2.20 Recursive language. Let M = (K,I',%,9,b,qp,H) be a
Turing machine, where H = {y,n} consists of two discriminable final states
y (stands for yes) and n (stands for no). Any terminating instantaneous

44 Chapter 2 Grammars and Languages

description with the final state y is said to be a configuration accepted, while
the terminating instantaneous description with final state n is said to be a
configuration rejected. We say that M accepts input w € (X — {u,b})*, that
is, within w there is no any blank or left boundary symbol and qow yields
an acceptable configuration. And we say that M rejects the input w if qow
yields a configuration with n as the final state.

Let ¥y C ¥ — {u,b} be a finite alphabet, ¥ is called input alphabet of
the Turing machine M. By fixing ¥ as the subset of ¥ — {u, b}, we allow
that during its computation M may use additional symbols of I" apart from
the characters within the input alphabet. We say that a language L C 3§ is
decidable by M, if for any sentence w (i.e., the string) of the language L, M
will accepts it, while for any w ~& L, M will rejects it.

If there exists a Turing machine that decides L, then a language L is said
to be recursive.

Definition 2.21 Recursive function. Let M = (K, I", %, 8, b, qo, H) be a Tur-
ing machine, 3¢ C ¥ — {u, b} is a finite alphabet, and w € £§ is the input of
M. Suppose that M terminates upon input w and we have ugobw —— uhby
(h € Hyy € X), then we say that y is the output of M upon input w and
we denote it M(w). Notice that only when for input w the machine M comes
to its end state, then the M(w) makes sense. In this case, M terminates with
the configuration y, where y € .

Now we say that a function f is recursive if there exists a Turing machine
M that computes f.

For the two definitions above, one uses the Turing machine to describe
a language, while another uses the Turing machine to describe a function.
Therefore, naturally we may imagine that the Turing machine is an algorithm
that correctly and reliably implements some computational task. Thereby we
introduce a new definition.

Definition 2.22 Recursively enumerable [5] language. Let M = (K, T, %3, §,
b, qo, H) be a Turing machine, ¥y C ¥ — {u, b} be a finite alphabet, and let
L C ¥* be a language. We say that M semi-decides language L, if for any
string w € 3§ the following fact holds: w € L if and only if M terminates
when it computes on input w. A language is said to be recursively enumerable
if and only if there exists a Turing machine M that semi-decides L.

Before we present the important conclusion of the language which a gram-
mar generates we need to present another concept.

Definition 2.23 Nondeterministic Turing machine. A nondeterministic
Turing machine, as its deterministic peer, is a heptatuple M = (K, T", ¥, A, b,
qo, H), where K, T', ¥ have the same meaning as in its corresponding peer, qo
is also the same as in the original one. The difference happens on A and §: A
is not a function like § that uniquely maps (K—H) x X to Kx (XU{L,R}), in-
stead, it maps to a subset of K x (XU{L, R}). That means that for an element

2.6 Turing Machine 45

of (K—H) x X there are arbitrary numbers of elements from K x (X U{L,R})
that can be its mappings. Now the configuration and the relations 5 and

% are defined naturally, but they are not necessarily unique. That means

that a configuration may have arbitrary numbers of the configurations in the
next step.

Definition 2.24 The language which the nondeterministic Turing machine
semi-decides. Let M = (K, T', X, A, b, qo, H) be a nondeterministic Turing ma-
chine. We say that M accepts an input w € (X — {u, b})* if uqobw »ﬁ uvhas,

where h € H,a € 3, v,s € ¥*. Notice that a nondeterministic Turing machine
accepts an input as long as for the input at least there exists a computation
of M that terminates although there may be many non-terminable computa-
tions. We say that M semi-decides a language L C (X — {u, b})*, if for any
w € (X — {u,b})*, the following condition holds: w € L if and only if M
accepts w.

The definition talks about semi-deciding, we may further define a Turing
machine deciding a language, or deciding a function, although it is more
subtle.

Definition 2.25 The language which a nondeterministic Turing machine
decides. Let M = (K, T', X, A, b, qo, {y,n}) be a nondeterministic Turing ma-
chine, where y,n € K, we say that M decides a language L. C (X — {u,b})* if
for all w € (¥ — {u,b})* the following conditions hold:

1) Depending on M and w, there exists a natural number N such that in

N steps, there exists no configuration C of M that satisfies uqobw»ﬁ C (C

stands for the instantaneous description (ID) mentioned above).
2) w € L if and only if uqobw%uvyas, where v,s € ¥* a € 3.

The definition reflects the difficulty which the nondeterministic Turing
machine meets when it carries out the computation. At first for a nonde-
terministic Turing machine that decides a language, we require that all its
computation terminate. Thereby we assume that after N steps there will be
no computation going on, hence N is the upper bound that relates the ma-
chine and the input. Secondly, for machine M that decides a language, we
only require that among all the possible computations, there will be at least
one that terminates with accepting the input, here y stands for the termi-
nate state (yes). Other computations will terminate with the reject state (n).
This is an extremely unusual, anti-symmetric and anti-perceivable conven-
tion. Similarly, we have the following definition.

Definition 2.26 A function which a nondeterministic Turing machine com-
putes. We say that a nondeterministic Turing machine M = (K,T'} ¥, A,
b, qo, H) computes a function f: (¥ — {u,b})* — (£ — {u,b})*, if for all
w € (X — {u,b})* the following two conditions hold:

46 Chapter 2 Grammars and Languages

1) Depending on M and w, there exists a natural number N such that
after N steps there exists no configuration C of M that satisfies uqgbw % C.

C has the same meaning as in Definition 2.25.
2) uqobw |, uvhas, where v, s € ¥*, a € X if and only if va=ub and
v =f(w).

For a nondeterministic Turing machine that computes a function, we re-
quire that the results of all the possible computations be consistent, other-
wise we cannot determine which one is correct. In deciding or semi-deciding
a language, we solve this problem via the assumption that the positive result
predominates.

Now we present the important conclusion on the language generated by
a grammar.

Theorem 2.1 A language is generated by a grammar if and only if it is
recursively enumerable.

Before the proof of the Theorem 2.1 is given, we need to extend the
concept of the Turing machine, introducing the concept of multitape Turing
machine.

Definition 2.27 The k tape Turing machine. Suppose that k > 1 is an
integer.

The k tape Turing machine M = (K, I', 3,8, b, qo, H) is almost the same
as the ordinary Turing machine, where the meanings of K,I", ¥ qo,H are
exactly the same as in the definition of ordinary Turing machine. However,
now for the 8, as the transition function, it is the mapping from (K —H) x %k
to K x (¥ — {L, R})*. In other words, given each state q and input symbols
(a1,...,ak) on k tapes, then there will be 8(q, (a1, ...,ax)) = (p, (b1, ..., bk)),
where p stands for the next state of state g, and b; is that on jth tape the
result of the operation of M in place of a;. Naturally, for some j < k, if
a;=u then the tape head on the tape j will move right, that means that the
operation is R.

From the definition we know that for any integer k > 1, a k tape Tur-
ing machine is a Turing machine with k tapes and corresponding heads for
each tape and its control unit deals with the information on each tape. The
computation is performed with the input on all the k tapes. Therefore, the
configuration of the Turing machine must contain all the information on these
tapes.

Definition 2.28 The configuration of the k tape Turing machine. Let M =

(K,T,%,8,b,q0,H) be an k tape Turing machine. The configuration of M is
an element of

K x (uZ* x (2(2 — {b}) U {e}))*

where e € Y that is, a configuration identifies the state, the contents of the
tapes and the positions of the tape heads, e represents the possible changes

2.6 Turing Machine 47

that happens on the tail of the tape.

Having these we now prove Theorem 2.1.

Proof Necessity. By necessity if the language is generated by the grammar
G, it must be recursively enumerable. That also means that there will be a
Turing machine that accepts it. Let G = (Vy, Vi, P,S) be a grammar. We
will design a Turing machine that semi-decides the language generated by G.
In fact, M is not deterministic, but in the theory of the Turing machine, the
following facts have been established that it is feasible to transform the non-
deterministic Turing machine into deterministic Turing machine, and both
the Turing machines semi-decide the same language.

The Turing machine which we construct is a 3 tapes Turing machine. The
first tape contains the input denoted by w and the content keeps unchanged.
On the second tape, M intends to reconstruct the derivations of G that starts
from S and carries out on input w. Hence, M starts with writing S on the
second tape, then according to the production M replaces S with the right side
of the production of which the left side is S. The sequential step is to replace
the nonterminal on the tape with the right side of the production of which the
nonterminal occupies the left side. Every step is just the repeat of the process
until w occurs on the tape. However, since it is a nondeterministic Turing
machine, every step starts with nondeterministic transformation, and it has
to guess among | P | productions, | P | means the number of the productions.
In every step, we have to choose which production is used. Suppose that
the production selected is u — v, where u € (V, U V)T, v € (V, U V)~
Then M scans the contents on the second tape from left to right, looking
for the nonterminal on the tape. If it found one, it replaces the nonterminal
with the right side of the production of which it stands on the left side. The
meaning of the nondeterministic is that we do not know in advance which
productions should be used for a number of the productions that all have
the same nonterminals stand on the left side. If the process did not generate
w on the tape, that means that the intention of generating w on the tape
fails. And the derivation should start again with other inputs. If finally w
occurs on the second tape after several derivation steps, then we say that w
is accepted by M. In this case, we have proven that w is really generated by
a Turing machine and the language is recursively enumerable.

By the way, the third tape is used for storing the productions of the
grammar G. When the Turing machine scans the content of second tape and
found a nonterminal, it has to check the third tape to find the production of
which the nonterminal occurs on the left side.

Sufficency The task of the proof is to define a grammar from the Tur-
ing machine that accepts the language, so that the grammar also accepts the
language. Assume that M = (K,T',%,9,b,qg, H) is a Turing machine. Ac-
cording to the definition of Turing machine, of course, K and I" are disjoint.
Both of them do not contain the new terminate symbol 1. For convenience,
we further assume that if M terminates, then it always terminates on the

48 Chapter 2 Grammars and Languages

configuration uhb, i.e., it terminates after it deletes the contents of the tape.
As we have mentioned that any Turing machine that semi-decides a lan-
guage can be transformed into the equivalent Turing machine that satisfies
the same condition. We need to define a grammar that generates the language
L C (X —{u,b})* which M semi-decides. It is G = (V,,, X — {u, b}, P,S). Now
we need to specify the components of G.

The V, of nonterminal symbol set of G consists of all the states of K,
including the start symbol S (the initial state qo may be used as S), in addi-
tion, the left boundary symbol u, the blank symbol and the terminate token
1. Perceivably, the derivations of G will simulate the backward computation
of M. We will simulate the computation through the initial configuration.
Consider the string uvaqw 7. Then the productions of G are the actions that
simulate M backwardly. For each q € K, and each a € ¥, depending on d(q,a)
there are following rules:

1) If for some p € K and b € ¥, 8(q,a) = (p,b), then in G there will be
production bp — aq.

2) If for some p € K, 8(q,a) = (p,R), then the corresponding production
in G will be: for all ¢ € X, acp—aqc and abq—aq] (this rule reverses the
extension of the tape to right via a blank symbol).

3) If for some p € K and a #b € 3, 8(q,a) == (p,L), then G will have
the corresponding production pa—aq.

4) If for some p € K, 8(q,b) = (p,L), then for all ¢ € ¥, G will have the
corresponding production pab—aqc and pT—bpT. This rule is for deleting
the excessive blanks reversely.

We have to point out here that many books on the field usually assert the
equivalence of the transition function and the production, just through the
transformation from the former to the later. They did not indicate the differ-
ence between these two things. Actually, however, in grammar, the complete
derivation should be that in the final string there will be no any nonterminal,
i.e., no element of K. In the string, there are only the symbols of 3, otherwise
the derivation is called the dirty derivation.

The productions obtained from function 8, however, are unavoidably con-
taining the nonterminal symbol in K. Therefore, in order to define completely
G, it is necessary to contain extra productions that are used for deleting the
nonterminals. Hence, we stipulate that G also contains the productions used
to the transformation of the start of the computation (the termination of the
derivation) and the termination of the computation (the start of the deriva-
tion). The production

S — ubh T

forces that an cceptable computation will precisely finish the derivation at
the termination place. In addition, the production

ubs — €

will delete the last part of the left side of the input, and T— & will delete the
termination token, making only the input string left.

2.6 Turing Machine 49

The following assertion makes more precise the idea that grammar G
backwardly simulates the computation of M.

Assertion For two arbitrary configurations of M, ujqia;w; and
Usqoasweo, there will be uyqra;wy; —— usqoaswe if and only if usqoaswa
T 5 Wdiawi T.

The proof of the assertion is omitted here. We just point out that the
proof is a case analysis of the properties of the actions of M. We now almost
come to the end of the proof of the theorem. We need to prove that for
all w € (X — {u,b})*, M terminates upon w if and only if w € L(G); but
w € L(G) if and only if

S?uth?ubsz?WT?w

Since S — ubh T is a production that involves S, and the productions ubs — e
and T— e are the productions that allow to delete the state and the termi-
nation token. Through the assertion above, ubh T %ubSW 1 if and only if

ugobw nﬁ uhb, and this happens if and only if M terminates upon w.

Now the proof of the sufficency aspect of the theorem is completed. The
proof of theorem is also completed.

However, in the proof we used the idea of multitape Turing machine. We
need to show the relation between single tape Turing machine and multitape
Turing machine to make our proof reliable in terms of its base. We have the
following theorem.

Theorem 2.2 If a language L is accepted by a multitape Turing machine,
it is accepted by a single tape Turing machine.

Proof Let L be accepted by My, a multitape Turing machine with k tapes.
We can construct M, a single tape Turing machine with 2k tracks (for this
concept, we will explain it later). Half these tracks simulate the tapes of My,
and other half of the tracks each holds only a single marker that indicates
where the head for the corresponding tape of M is presently located. The
finite control of My stores the state of My, along with a count of the number
of head markers to the right of Msy’s tape head.

To simulate a move of M, My must visit the k head markers so that M
knows where are the tape heads of M;. It must remember how many head
markers are to its left at all time. After visiting each head marker and storing
the scanned symbol in a component of its finite control, Mo knows what tape
symbols (the input of M;) are being scanned by each of M; heads. My also
knows the current state of My, which it stores in Ms’s own finite control. Thus
Ms knows how will Mymove. Ms revisits each of the head markers on its tape
changes the symbol in the track representing the corresponding tapes of My,
and moves the head marker left or right if necessary. Finally, Ms changes
the state of M; as recorded in its own finite control. Until now, Ms has been
simulated one move of M;.

50 Chapter 2 Grammars and Languages

We select as My’s accepting states all those states that record M ’s state as
one of the accepting states of M;. Thus whenever the simulated M; accepts,
Ms also accepts. Otherwise My does not accept.

Now we turn to the concept of track which we mentioned above. We can
imagine that the tape of the Turing machine is divided into k tracks, for
k > 1 being integer. In this way, the tape can be considered as k tuples, one
component for each track. A 3-track Turing Machine is shown in Fig. 2.3.

el]ol i]s[n]b].
o lo]o] vt folt[b]b]|n].
el]olol i fo[t[b]b]n]-
f
Finite control

Fig.2.3 A 3-track Turing machine.

From the design of the multi track Turing machine, we can see that the
Turing machine with k-tracks is not much different from a Turing machine
with k tapes. Actually in the theorem we just proved above, we used the
same idea. We also have the following definition.

Definition 2.29 The Turing machine with two-way infinite tape. A Turing
machine with a two-way infinite tape is denoted by M = (K, T, %, 8, b, qo, H)
as in the original model. As the name implies that the tape is infinite both to
the left and to the right. The way we denote an ID of such a Turing machine
is the same as for the one-way (to the right) infinite Turing machine. We
imagine, however, that there is an infinity of blank cells both to the left and
right of the current nonblank portion of the tape.

The relation vl which relates two ID’s if the ID on the right is obtained

from the one on the left by a single move, is defined as follows. The original
model with the exception that if 8(q,X) = (p,Y,L), then arprYa

(in the original model, for this situation, no move could be made). And if
6(q,X) = (p,b,R), then qXa —— pa (in the original model, the b would
appear to the left of p).

The initial ID is qw. While there is a left end tape in the original model,
there is no left end of the tape for the Turing machine to “fall off”. So it can
proceed left as far as it wishes. The trick behind the construction is to use
two tracks on the semi-infinite tape. The upper track represents the cells of
the original Turing machine that are at or to the right of the initial portion.
The lower track represents the positions left of the initial position, but in
reverse order. The exact arrangement can be as shown in Fig. 2.4.

2.6 Turing Machine 51

.|x0|x1‘xg

Telol=]

Fig.2.4 A semi-infinite tape can simulate a two-way infinite tape.

In Fig. 2.5, the two-way infinite tape has been transformed into one-way
2-track infinite tape. The first cell of the tape holds the symbol € in the lower
track, indicating that it is the leftmost cell and the following symbols are
the adjacent left symbols from right to left. The finite control of the Turing
machine tells whether it would scan a symbol appearing on the upper track
(corresponding to the original right-side of the two-way infinite tape) or the
lower track (corresponding to the original left-side of the two-way infinite
tape).

We now give a formal construction of My = (Ky,T'1,%4,01,b,q1,Hy). The
states Ky are all objects of the form [q, U] or [q, D], where q € Ky, and the
symbol q; is in Ky too. The second component will indicate whether M; will
work on the upper (U stands for upper) or lower (D stands lower) track. The
tape symbols in T'; are all objects of the form [X, Y], where X and Y € T
In addition, Y may be €, a symbol not in T". 3; consists of all symbols [a, b],
where a is in ¥. Hy is {[q, U], [q, D] | q is in H}. it should be evident that M;
can simulate M in the sense that while M moves to the right of the initial
position of its input head, M; works on the upper track. While M moves to
the left of its tape head position, M; works on its lower track, moving in the
direction opposite to the direction in which M moves. The input symbols of
M; are input symbols of M on the upper track with a blank on the lower
track. Such a symbol can be identified with the corresponding input symbol
of M. b is identified with [b, b].

We summarize the idea and omit the formal proof with the following
theorem.

Theorem 2.3 Language L is recognized by a Turing machine with a two-
way infinite tape if and only if it is recognized by a Turing machine with a
one-way infinite tape.

We now almost come to the end of the discussion of the Turing machine.
In the discussion, we introduced the original concept of the Turing machine
that is one tape and deterministic, and then sequentially we modified or
extended it to nondeterministic and multitape Turing machine, including
extended it from one-way infinite tape to two-way infinite tape. However,
finally we found that all these extensions or modifications do not change
or extend the functions of the original Turing machine. Therefore, it also
means that the basic fact is Theorem 2.1 that a language is generated by
a grammar if and only if it is recursively enumerable, if and only if it is
accepted by a Turing machine. In this way, the Turing machine can be used

52 Chapter 2 Grammars and Languages

in the syntactic analysis. This is the reason why we like to introduce the
concept of Turing machine in the book compilation-oriented. The following
result is also important for us. Based on the Turing machine, we can identify
grammar with more useful computational model.

Definition 2.30 The grammar computation function. Let G = (Vn, Vr,
P,S) be A grammar, and let f: ¥* — X* be a function. We say that G
computes F if for all w’s and v’s € ¥*, the following expressions holds:

SwS v
G

if and only if v = f(w). That is, the string that consists of input w with a
start symbol of G in both sides of w would generate a string of ¥* under G,
and it is just the correct value v of the f(w).

Function f: ¥* — ¥* is called grammatically computable [6, 7] if and
only if there exists a grammar G that computes it. Similar to Theorem 2.1,
we have the following theorem.

Theorem 2.4 A function f: ¥* — ¥* is recursive if and only if it is gram-
matically computable.

2.7 Issues Concerning Grammars and Languages

In this chapter, we have discussed several issues concerning grammars and
languages. We now summarize them as follows:

1) Given a grammar, derive the language generated by the grammar.

If one wants to solve the problem, it must use the productions of the
grammar exhaustively to derive all possible statements of the grammar. As
it is impossible to do the exhaustive derivations, the feasible solution is to
use the mathematical induction. After deriving the necessary statements as
the basic ones and making the hypothetical one, one uses the mathematical
induction method to prove the general one — the language generated by the
grammar.

2) Given a language, search for a grammar that generates it.

This problem is the inverse problem of 1). If the problem above may be
solved with the derivations from the production given, then this problem is to
establish the grammar through the language, i.e., to establish the production
set of the grammar. Obviously, it is a difficult problem.

3) Given a grammar and a sentence (statement), decide whether the state-
ment is generated by the grammar.

The problem may have different layers. If the grammar given is the gram-
mar of words, then the statements of the grammar are the words. The problem
reduces to decide whether the word can be derived from the productions of
the grammar. More specifically, to decide whether the word belongs to the
vocabulary of the grammar.

Problems 53

If the grammar given is the grammar of statements or sentences, then
the statement or sentence given is a string of words. Hence the problem is
transformed into deciding whether the statement can be generated by the
grammar.

A grammar that defines the words may define many words in its vocabu-
lary. That means that the number of words may be very large. In this case, in
order to decide whether a word belongs to the grammar or not, the grammar
may need to make much effort to obtain the decision.

Similarly, a grammar that defines the statement may define many legal
statements. The grammar of the programming language is exactly the case,
as it can generate lots of legal programs. Therefore, the other task of the
compilation is to decide whether the statement (the program) belongs to
the language generated by the grammar. This is the topic of the syntax
analysis. Both lexical analysis and syntax analysis are the major topics of
the compilers, and are the major topics of the book.

4) Given two grammars, analyze whether the two are equivalent or not,
i.e., whether the languages they generate are the same or not.

As for the investigation of the problem, there are two methods. One is, to
analyze the grammars themselves, to see whether they are equal. However,
this can be very difficult. It is hard to perceive the equality or the difference
of the grammars. Therefore, in general this is not a feasible solution. The
second one seems more practical. We derive both the languages from both
the grammars. After we generate the languages, we may compare them to
see whether they are equal or not. Although this is not an easy thing either,
it can be carried out.

Centering on each one of these issues, the research methods may be dif-
ferent. In the book, we will concentrate on each one as more as possible. Of
course, the concerning problems are not limited to these. The issues that are
worth investigating include the relation between languages and the Turing
machines, the simplification of the grammars, etc. But for the goals of the
book we are not concerned very much about these issues and we will not
discuss them.

Problems

Problem 2.1 Prove that any grammar can be transformed into an equiv-
alent grammar that has the form uAv — uwv of production rule, where
A eVyand u,v,we (VyUVp)™

Problem 2.2 Prove Theorem 2.1. For the only if direction, given a gram-
mar, how to construct a Turing machine so that when it has input w, it
outputs a string u¥* such that SwS %u, if such a string u exists. For

if direction, use a proof that is similar to the proof of Theorem 2.1 but
with forward (rather than backward) direction.

54 Chapter 2 Grammars and Languages

Problem 2.3 Design and completely write a Turing machine that scans
towards right until it found two consecutive 0’s. The set of characters on
the tape is {0, 1, b, u}, and the input set is {0, 1}.

Problem 2.4 Find out the grammars that generate the following languages:

1) {ww | we {a,b}"};

2) {(x?) 1 |n >0}

3) {@) 120> 0};

4) {a' | I is not a prime}.

Problem 2.5 Under what condition, the kleene closure of a language L is
equal to its positive closure?

References

[1] Chomsky N (1956) Three models for the description of language. IRE Trans
Inf Theory 2(3): 113-124.

[2] Hopcroft J E, Ullman J D (1969) Formal languages and theit relation to
Automata, Addison-Wesley, Reading, Mass.

[3] Hopcroft J E, Ullman J D (2007) Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, Reading, Mass.

[4] Knuth D E Trabb Pardo L (1977) Early development of programming lan-
guages. In Dekker M (ed) Encyclopedia of computer science and technology
7. Marcel Dekker, New York.

[5] Ledgard H f (1971) Ten mini-languages; a study of topical issues in program-
ming languages. Computing Surveys 3(3): 115-146.

[6] Simon M (1999) Automata theory. World Scientific, Singapore.

[7] Simovici D A, Tenney R L (1999) Theory of formal languages with applica-
tions, World Scientific, Singapore.

Chapter 3 Finite State Automata and Regular
Languages

Aspects of automata theory are essential tools in a va-
riety of new disciplines, ...

John E. Hopcroft, Rajeev Motwani
and Jeffrey D. Ullman

3.1 Motivations of the Chapter

One of the most important functions of a computer is to recognize specified
patterns. For example, a text-editing software often needs to replace a string
of symbols with another string of symbols, whereas a compiler system must
scan the symbols of a program to locate a certain key-word. In fact, the
fastest string search algorithm is based on pattern recognition, which is in
turn, based on automata theory.

Automata theory and formal languages are the most fundamental topics
in all subjects of modern computer science, especially in e.g., compiler con-
structions, artificial intelligence, computability and complexity theory. This
chapter, together with the later chapter on push-down automata and Tur-
ing machines, provide a theoretical foundation for compiler construction in
particular and for modern computer science in general.

3.2 Languages, Grammars and Automata

In this section, we shall provide an account of some basic concepts of lan-
guages, grammars and automata, which are fundamental to finite automata
in this chapter and the push-down automata in a later next Chapter 5.

Definition 3.1 An alphabet X is a finite set of symbols. A word or a string
over an alphabet ¥ is a finite sequence of symbols from 3. An empty word (or
string), denoted by A, is the sequence consisting of no symbols. The length
of a word w, denoted by |w]|, is the number of symbols in w.

56 Chapter 3 Finite State Automata and Regular Languages

Example 3.1 Let ¥ = {a,b,c}. Then w; = acb and ws = aababc are two
words over ¥, and |wy| = 3 and |wy| = 6. Let w = A, then |w| = 0. Suppose
o = ab, then \ab = ab\ = ab.

Definition 3.2 Let X be an alphabet, and A the empty word containing no
symbols. Then ¥* is defined to be the set of words obtained by concatenating
zero or more symbols from X. If the set does not contain A, then we denote
it by ¥*. That is,

=" —{A}. (3.1)

A language over an alphabet X is a subset of ¥*.

Example 3.2 Let ¥ = {a,b}. Then

¥* ={\ a,b,aa, ab, ba, bb, aaa, aab, aba, baa, abb, bab, bba, bbb, .. .},
Y+ = {a,b, aa, ab, ba, bb, aaa, aab, aba, baa, abb, bab, bba, bbb, .. .}.

The sets Ly and Lo given by

L; = {a,b,aa, bb, aaaba},
L, = {a"b" :n € N}

are all languages over 3, where N denotes the set of positive integers (ZV is
also used to represent the set of positive integers).

Definition 3.3 Let w; and ws be two words, and Ly, Ly and L be sets of
words.

1) The concatenation of two words is formed by juxtaposing the symbols
that form the words.

2) The concatenation of L; and Lo, denoted by LiLs, is the set of all
words formed by concatenating a word from L; and a word from Ls. That is,

LiLy = {031(1)2 OIS Ll,(DQ S Lg}. (32)

3) Powers of L are defined by the concatenation of L with itself the ap-
propriate number of times, e.g.,

(1) L0 = X\
(2) L' =L;
(3) L2 = LL;
(4) L = LLL;
(5) Lk =LL---L
~
k times

4) The complement of a language L, denoted by L is defined by
L= -L. (3.3)

Example 3.3 The following are some examples of concatenation of two
words, two sets of words, and powers of a set of words:

3.2 Languages, Grammars and Automata 57

1) If w1 = abc and wy = aabab, then w;wo = abcaabab.
2) If Ly = {a, aba, cab, A\} and Ly = {ca, cb}, then

L1Ly = {aca, ach, abaca, abacb, cabca, cabcb, ca, cb}.

3) If L = {a b}, then

)

(1) L

(2) Ll = {a b};
(3) L? = LL = {aa, ab, ba, bb};

(4) L3 LLL = {aaa, aab, aba, abb, baa, bab, bba, bbb}.

Definition 3.4 Let L be a set of words. Then L*, the Kleene closure of L,
is defined by

L*=LoULjULyu---=J L (3.4)
i=0
and L¥, the positive closure of L is defined by
o .
Lt=Liulyul,u---= |J L. (3.5)
i=1

Example 3.4 If ¥ ={0,1} and L = {0, 10}, then L* consists of the empty
word A and all the words that can be formed using 0 and 10 with the property
that every 1 is followed by a 0.

Definition 3.5 A grammar G is defined as a quadruple
G=(V,T,S,P), (3.6)

where
V is a finite set of objects called variables;
T is a finite set of objects called terminal symbols;
S € V is a special symbol called start variables;
P is a finite set of productions.

Definition 3.6 Let G = (V,T,S,P) be a grammar. Then the set
LG)={weT :S=w} (3.7)

is the language generated by G, where S == w represents an unspecified num-

ber of derivations (including zero, if not including zero, we then use S =+ w)
that can be taken from S to w.

Example 3.5 Find the grammar that generates the language
L(G) ={a"b" :n € N}.
Both grammar G; defined by

Gl - ({S}v {a7 b}v S7 Pl)

58 Chapter 3 Finite State Automata and Regular Languages

with Py consisting of the productions

S — aSh,
S — A,

and grammar Gy defined by
G2 = ({S,A},{a,b},S,Psy),
with Po consisting of the productions

S — aAb|,
A — aAb|A

will generate the language L = {a"b™ : n € N}.

Automata are abstract (mathematical) machines, that can read informa-
tion from input and write information to output. This input/output process
is controlled by its finite state control unit (see Fig. 3.1). An automaton can
be thought as a model of algorithm, or a compiler of a language, or even a
general computer. In artificial intelligence, for example, automata are em-
ployed to model both behavioral situations and intelligent systems, including
game playing, human intelligence, machine learning, nervous system activity,
and robotic motion systems.

Input File

Y
Finite-State
Control Unit

Output File

Storage

Fig.3.1 A general automaton.

An automaton whose output is limited to a simple answer “yes” or “no”
is called a (decision) problem solver or a language accepter. On an input with

3.3 Deterministic Finite Automata 59

a string, the accepter either accepts (recognises) the string or rejects it. A
more general automaton, capable of producing strings of symbols as output,
is called a function transducer.

There are essentially two different types of automata: deterministic au-
tomata and nondeterministic automata. In deterministic automata,each move
is uniquely determined by the current internal state, the current input symbol
and the information currently in the temporary storage. On the other hand,
in nondeterministic automata, we cannot predict the exact future behaviour
of a automaton, but only a set of possible actions. One of the very impor-
tant objectives of this chapter and the next chapter is actually to study the
relationship between deterministic and nondeterministic automata of vari-
ous types (e.g., finite automata, push-down automata, and more generally,
Turing machines).

3.3 Deterministic Finite Automata

Finite-state automata or finite automata for short, are the simplest automata
(see Fig. 3.2). In this and the subsequent sections, we shall study the ba-
sic concepts and results of finite automata (both deterministic and non-
deterministic), and the properties of regular languages, with an emphasis
on the relationship between finite automata and regular languages.

Input File

Finite—State

Control Unit

Fig. 3.2 Finite automaton.

Definition 3.7 A deterministic finite automaton (DFA), denoted by M, is
a quintuple algebraic system (more specifically, a semigroup):

M = (Q,%,8,q0,F), (3.8)

where
Q is a finite set of internal states;
¥ is the input alphabet;
qo € Q is the initial state;
F C Q is the set of final states, or accepting states;

60 Chapter 3 Finite State Automata and Regular Languages
9 is the state transition function
6:QxX—Q. (3.9)

Remark: The above DFA is defined without output; we can, of course,
define it with additional output as follows:

M= (QazaUa670a QO7F)7

where
U is the output alphabet;
0 is the output function

0:QxX¥X—T. (3.10)
Example 3.6 Let M be a DFA defined by

M= (Q,%,9,qo,F)
= ({A7B>C}’ {0’ 1}’6’A’ {B})v

where the transition function 0 is given by the following formulas:

5(A,00=A 8(A,1)=B
5(B,0)=C &B,1)=B
5(C,0)=C §(C,1)=C

or alternatively by the following table, called a transition table:

0 1
® A B
C B
© C C
Initial state: A Final state: B

Then the DFA can be represented by a directed graph shown in Fig. 3.3,
where the initial state A has a starting right arrow, and the final state B has
been double circled.

The machine defined above can read a given finite input tape containing
a word and either accepts the word or rejects it. The word is accepted if after
reading the tape, the machine is in any one of the accepting states.

Example 3.7 Consider the machine defined in Example 3.6. Suppose now
that the machine reads the word 00011. Then the following are the actions
of the machine as it reads 00011:

A
1

[ofofofr]r]

3.3 Deterministic Finite Automata 61

A
!

Lofofofu]r]

A

!
Lofofofu]r]

A
l
Lofofofut]r]
B
!
[oJoToJu1]1]
B
[ofJofofr]u]

w%“%

Fig.3.3 A DFA that accepts strings 0™1" with m > 0 and n > 1.

Since the machine is in the final state B after having read the input word, then
the word 00011 is accepted by this machine. However, the machine cannot
accept the word 000110, because

A
!
[ofofofr]rfo]
B
!
[ofofofr]rfo]

B

!
[ofofoJt]r]o]

62 Chapter 3 Finite State Automata and Regular Languages

c

[oJoJoJ1J1]o]

That is, the machine does not stop at the final state B after having read the
word 000110. In fact, it stopped at the state C which is not a final state.

There are several other ways to describe actions of an automaton. One
very useful way can described as follows (for the same automaton defined
above and the same word 00011):

0 0 0 1 1

7N 7N 7N 7N 7N
A A A A B B

It is plain to verify that the automaton described in Fig. 3.3 can accept
the following words:

Oa

1,

01,

001,

011,
0000011,
00111111111,

0™1", withm >0 and n > 1.
In set notation, the set of words L that can be accepted by the DFA is
L={0"1":m >0,n>1}.

Example 3.8 Fig. 3.4 shows another example of a DFA, M, which has two

Fig. 3.4 A DFA that accepts strings with two consecutive 0’s or 1’s.

3.3 Deterministic Finite Automata 63
final states D and E. The DFA, M is defined by

M= (Q7 Z,(S,CK),F)
= ({A,B,C,D,E}, {0,1},6,A,{D,E}),

where the transition function is given by the following transition table:

0 1
® B C
D C
© B E
D D
E E

Initial state: A Final states: D and E

It is clear that the following strings can be accepted by this DFA:

00,
11,

0011110,
01001111000,
110111101001010,
1010101010101010100,
0101010101010101011

But the followings strings cannot be accepted by this DFA:

01,
10,
010101010101010101,
0101010101010101010,
1010101010101010101.

An automaton is finite in the sense that there are only finite states within
the automaton. For example, in the automaton in Fig. 3.3, there are only
three states: A,B and C. A finite automaton is deterministic in the sense
that for a given state and a given input, the next state of the automaton
is completely determined. For example, again in the automaton in Fig. 3.3,
given state A and input 0, the next state can only be A.

64 Chapter 3 Finite State Automata and Regular Languages

3.4 Nondeterministic Finite Automata

In contrast to deterministic automata, nondeterminism allows a machine to
select arbitrarily from several possible responses to a given situation, includ-
ing the possibility of selecting from several initial states. If one of the various
responses to a word leaves the machine in an accepting state, then the word
is said to be accepted. In this subsection, we study non-deterministic finite
automata.

Definition 3.8 A Non-deterministic finite automaton (NFA), M, is a quin-
tuple algebraic system:
M=(Q,%,s,S,F), (3.11)

where

Q is a finite set of states;

¥ is the input alphabet;

S C Q is the set of initial states, usually S = {qo} as DFA, but it may be
the case that it contains more than one state;

F C Q is the set of final states;

the transition function is defined by

§:Qx (ZUN) — 29 (3.12)

where 29 is the set of all subsets of Q.

Example 3.9 Let M be the non-deterministic finite automaton defined by
M =(Q,%,9,S,F)
- ({Aa B,C,D, E}, {Oa 1}a 9, {A> B}> {E})7

where 0 is given by

5(A,0) = {A,C}, 8(A,1) = A,
5(B,0) = B, 5(B,1) = {B,D},
5(C,0) =E, 5(C,1) = A,
5(D,0) = A, 5(C,1) = E,
5(E,0) = E, 5(D,1) = E.

Then the NFA can be represented by the directed graph in Fig. 3.5, or alter-
natively, by the following transition table:

0 1
® {A, C} A
B (B, D}
© E A
) A E
E E

Initial state: A Final state: E

3.5 Regular Expressions 65

0.1

Fig.3.5 A NFA that accepts strings with two consecutive 0’s or 1’s.

3.5 Regular Expressions

We have seen that finite-state automata can be used as language recognisers
(or accepters). But what sets can be recognised (or accepted) by these ma-
chines? In this and the next a few sections, we shall answer this question by
showing that the sets which can be recognised by finite-state automata are
regular sets.

Definition 3.9 Let X be an alphabet. The regular expressions over ¥ are
defined recursively as follows:

1) @ is a regular expression;

2) A (empty string) is a regular expression;

3) x is a regular expression if x € ¥;

4) r1 Ury is a regular expression if r; and ro are regular expressions;

5) riry is a regular expression if r1 and ry are regular expressions;

6) r* is a regular expression if r is a regular expression.

Each regular expression represents a set specifically by the following rules:

1) & represents the empty set, i.e., the set with no string;

2) A represents the set {\} containing the empty string;

3) x represents the set {x} containing the string with one symbol x;

4) r1 Ury represents the union of the sets represented by r1 and ro;

5) riry represents the concatenation of the sets represented by ry and ra;

6) r* represents the Kleene closure of the set represented by r.

Definition 3.10 The language generated by a regular expression, denoted
by L(r), is defined recursively as follows:

o) =;

A) =\

{r},ifres;

2) = L(r1) U L(r2);

c
=

66 Chapter 3 Finite State Automata and Regular Languages

5) L(rirz) = L(r1) ® L(ra);
6) L") = (L(r))".

So it is natural now to give a definition for regular languages:

Definition 3.11 The regular languages are defined recursively as follows:
1) & is a regular language;
2) {\} is a regular language;
3) {x} is a regular language if x € ¥;
4) Ly ULy is a regular language if L1 and Ly are regular languages;
5) L1Ls is a regular language if L; and Lo are regular languages;
6) L* is a regular language if L is a regular language.

Thus, regular expressions are a shorthand way of describing regular lan-
guages.

Example 3.10 Let ¥ = {a,b}. Then the following regular expressions rep-
resent the indicated sets of strings:

1) a: represents the set {a};

2) a* : represents the set {a}* = {),a, aa, aaa,---};

3) b : represents the set {b};

4) ab : represents the set {a}{b} = {ab};

5) aUb : represents the set {a} U{b} = {a,b};

6) (a) : represents the set {ab}* = {\, ab, abab, ababab,---};

7) a* U (ab)* : represents the set

{a} U {ab}* = {), a,aa,aaa, - ,ab,abab, ababab, - - - };

8) a*b : represents the set {a}*{b} = {b, ab, aab, aaab,---};

9) b(ab)* : represents the set {b}{ab}* = {b, bab, babab,---};

10) a*b(ab)* : represents the set of all strings that begin with any number
(possibly 0) of a, followed by a single b, followed by any number (possibly 0)
of pair ab.

Example 3.11 Let ¥ = {a,b}. By definition, & and A are regular sets. In
view of the previous example, the following sets are also regular:
1) {a};
2) {\, a, aa, aaa,---};
3) {b};
4) {a,b};
5) {), ab, abab, ababab,---};
6) {b, ab, aab, aaab,---}.

3.6 Regular Grammar

The second way of describing regular languages is by means of a certain
grammar, the regular grammar.

3.6 Regular Grammar 67

Definition 3.12 A grammar G = (V,T,S,P) is said to be right-linear if
all productions are of the form
A — xB, (3.13)
A —x,
where A,B € V and x € T*.
A grammar G = (V, T, S, P) is said to be left-linear if all productions are
of the form
A — Bx, (3.14)

A —x.

A regular grammar is one that is either right-linear or left-linear.

Example 3.12 The grammar G; = ({S}, {a,b},S,P1), with Py given by

S — abS,

S—a

is right-linear, whereas the grammar Go = ({S, S1,S2}, {a, b}, S, P2), with Py
given by
S — Sjab,

S1 — Siab,
Sl - 827
SQ — a

is left-linear. Both G; and Gg are regular grammars.
By Gi, we can have the following derivations:

S = abS
= aba

S = abS
= ababS
— ababa
= (ab)?a

S == abab$
= ababab$S
= abababa
= (ab)®a

= (ab)"a,for n > 1.

68 Chapter 3 Finite State Automata and Regular Languages

The regular language L, denoted by L(G1), generated by the regular grammar
G is thus
L(Gy) ={(ab)"a: forn >1}.

Similarly, by G2, we have

S = S;ab
= Ssab
= aab

S = S;ab
— Sjabab
= Ssabab
= aabab
= a(ab)?

S == S;abab
=— S;ababab
= Ssababab
—> aababab
= a(ab)?

= a(ab)®, forn > 1.

The regular language L, denoted by L(Gaz), generated by the regular grammar
G is thus

L(Gsy) = {a(ab)" : for n > 1}.
Theorem 3.1 Let G = (V,T,S,P) be a regular grammar (either right-
linear or left-linear). Then L(G) is a regular language.

Theorem 3.2 A language L is regular if and only if there exists a regular
grammar (either left-linear or right-linear) G, such that L = L(G).

Thus, regular languages and regular grammars are, in fact, equivalent
concepts. From a regular language, we can get it’s regular grammar. From a
regular grammar, we can also generate it’s regular languages.

3.7 Kleene’s and Moore’s Theorems

The third way to describe regular languages is by finite automata (FA). In
1956, Stephen Kleene proved that regular sets are the sets that are accepted
by a finite automaton. Consequently, this result is called the Kleene’s Theo-
rem.

3.8 Pumping Theorems and Closure Properties for Lrga 69

Theorem 3.3 (Kleene’s Theorem) A language L over an alphabet ¥ is
regular if and only if it is acceptable (recognisable) by a finite automaton FA,
M= (Qa Ev 67 qo, F)

The proof of the only if part of the theorem involves showing that

1) & is accepted by a finite automata;

2) {A} is accepted by a finite automata;

3) For each x € ¥, x is accepted by a finite automata,;

4) AB is accepted by a finite automata if both A and B are;

5) A UB is accepted by a finite automata if both A and B are;

6) A* is accepted by a finite automata if A is.
The proof of the if part of the theorem can be done by induction on the
number of states in a finite automaton FA that accepts L.

The Kleene’s theorem is one of the central results in automata theory.
It outlines the limitations as well as the capabilities of finite automata, be-
cause there are certainly many languages that are not regular, and hence not
accepted by finite automata.

Finally, we introduce another important result about regular sets, the
equivalence theorem, discovered by E. F. Moore in 1956:

Theorem 3.4 (Moore’s Theorem) There exists an algorithm to deter-
mine whether or not two given regular sets over 3 are equivalent.

The Moore’s theorem is one of the results of decidability for regular lan-
guages. There are some more decidability results for regular languages. How-
ever, we do not study them here due to the limitation of space.

3.8 Pumping Theorems and Closure Properties for Lrgg

As we have seen, a language L is regular if and only if there exists a finite
automata (FA) to accept it; if no FA can accept it, it is then not a regular
language. Our next result will provide another technique showing languages
nonregular.

Theorem 3.5 (Pumping Theorem for Regular Languages) Let L be
a regular language. There exists a positive integer N (depending on L) such
that for any x € L and |x| > n, there exist strings u,v and w, satisfying the
following conditions:

X = uvw, (3.15)
[v] >0, (3.16)
[uv| <N, (3.17)
uwiw e L,Vi > 0. (3.18)

The number N is called the pumping number for the regular language L.

70 Chapter 3 Finite State Automata and Regular Languages

This theorem describes a property that is common to all regular lan-
guages. So we can use it to show that a language is nonregular if we can show
that the property fails to hold for the language.

Example 3.13 Use the pumping theorem to show that
L={a"b":neZ"}

is not a regular language.
Suppose that

L={a"b":n€Z"'} =aa---abb---b
N IS N S
n times n times

is regular and let N be the pumping number for L. We must show that no
matter what N is, we may find x with |x| > N, that produces a contradiction.
Let x = aVbN. According to Theorem 3.5, there are strings u, v, and w, such
that Egs. (3.15)—(3.18) in the theorem hold. From Egs. (3.15) and (3.16) we
can see that uv = a* for some k. So from Eq. (3.17) we have v = aJ form for
some j > 0. Then Eq. (3.18) says that uv™w € L,Vm > a. But

ww = (uv)v™lw

_ ak(aj)rn—laN—kbN
= aNFi(m=DpN (w = ON"KDHN since uv = a¥)

— G NN (let t = j(m — 1) when m > 1)

Clearly, there are t more consecutive a’s than there are consecutive b’s in x.
Since this string is not in the form a”b", then it is not regular.

Finally we present some closure properties for regular languages.

Theorem 3.6 The family of regular languages is closed under the opera-
tions union, intersection, difference, concatenation, right-quotient, comple-
mentation, and star-closure. That is,

L; and Ly are regular = L;ULg, L1 NLy, Ly — Ly, L1Lo, Ly, LT are regular.
(3.19)

3.9 Applications of Finite Automata

One of the applications of automata theory in computer science is compiler
construction. For instance, a compiler must be able to recognize which strings
of symbols in the source program should be considered as representations of
single objects, such as variables, names, numerical constants, and reserved
words. This pattern-recognition task is handled by the lexical analyzer within
the compiler. The design of lexical analysers depends more or less on au-
tomata theory. In fact, a lexical analyzer is a finite automaton.

3.9 Applications of Finite Automata 71

Example 3.14 Suppose that we wish to design a lexical analyzer for iden-
tifiers; an identifier is defined to be a letter followed by any number of letters
or digits, i.e.,

identifier = {{letter}{letter, digit}*}.

It is easy to see that the DFA in Fig. 3.6 will accept the above defined
identifier. The corresponding transition table for the DFA is given as follows:

state/symbol letter digit
® B C
B B
© C C

Initial state: A Final state: B

letter

letter

letter
Fig.3.6 DFA that accepts identifier.

For example, all the elements in set S; are acceptable identifiers by the DFA,
whereas all the elements in set So are unacceptable identifiers:

Sy = {C, A21,x2w101, 513579},
S, = {87, 2add, Tw101}.

Example 3.15 Suppose that we now want to design a lexical analyzer for
real numbers; a real number can be either in decimal form (e.g., 45, 79) or in
exponential form (e.g., 34. 0E-9). The DFA described in Fig. 3.7 will accept
the real numbers just defined. The corresponding transition table for the DFA
is given as follows:

72 Chapter 3 Finite State Automata and Regular Languages

State/symbol Digit . E + —
@
® 2 3 5
® 4
4 5
® 7 6 6
® 7 5
7

Initial state: 1 Final state: 4 and 7

Fig. 3.7 DFA that accepts real numbers.

For example, all elements in the set
S = {54.3,54.3E7,54.3E+ 7,54.3E — 7,54E7,54E + 7,54E — 7}

are acceptable real numbers by the DFA defined above.

3.10 Variants of Finite Automata

In this section, we shall provide a brief introduction to some variants of finite-
state automata, including stochastic automata, fuzzy automata, Petri nets,
connectionist machines, and cellular automata. These automata are the nat-

3.10 Variants of Finite Automata 73

ural extensions of the classical finite automata (particularly nondeterministic
finite automata) and are very useful in certain areas of computer science.

Stochastic Automata

Intelligent behavior is very often characterised by a lack of deterministic
predictability. Given the same input, an intelligent being (e.g., a robot’s
brain) might appear to act in varying ways. The apparent uncertainty in
behavior requires models that reflect that uncertainty. One way of achieving
such a model is through the use of probability. Stochastic automata are types
of probabilistic automata, which are, in fact, very similar to nondeterministic
automata (NFA) discussed in the previous sections.

Definition 3.13 A stochastic automaton, M, is a six-tuple:
M = (Q,Z,V,é,QQ,F), (320)

where

1) Q is a finite set of states;

2) qo € Q is the initial state;

3) F C Q is the set of final states or accepting states, denoted by a double
circle;

4) ¥ is a finite set of inputs or instructions;

5) V is the valuation space [0, 1J;

6) 0 is transition function

0:QxY¥xQ—V. (3.21)
It isrequired that for any fixed non-final state q and any fixed instruction a
> d(qa,q) =1. (3.22)
q'eQ
This requirement allows us to interpret
8(q,a,q") =x (3.23)

as meaning that x is the probability of the machine going from state q to
state q’ utilising the instruction a and the sum of the probability must be 1.

Example 3.16 Let M = (Q,X,V,d,qp,F) be a stochastic automaton with

Y ={a,b}

Q={A,B,C} qo=A F=C
O0(A,a,A)=0.7 O(B,a,A) = 0(C,a,C) =1
0(A,a,C) =0.1 4(B,b,B) =0.6 o(C,b,C) =1
5(A,a,B) =02 8(B,b,C) =04

O(A,b,B)=0.9

O0(A,b,C) =0.1

74 Chapter 3 Finite State Automata and Regular Languages

where Z d(q,a,q") = 1. This stochastic automaton can be diagrammati-

q'€eQ
cally shown in Fig. 3.8. Suppose that we now wish to calculate the probability
that the automaton will go to state C from A given instructions a and b:

&'(A,ab,C} =) " 8(A,a,q) - 8(q, b, C)
qeQ
= 8(A,a,A) - 8(A,b,C) +8(A,a,B) - 8(B,b,C) +
8(A,a,C) - 8(C, b, C)
=0.7x014+02x044+0.1x1
= 0.25.

a/0.1

Fig. 3.8 A stochastic automaton.

Fuzzy Automata

In stochastic automata, the uncertainty was modelled by probability. We now
introduce another similar automata in which the uncertainty was modelled
by fuzziness, rather than by probability. A fuzzy automaton is again similar
to a nondeterministic automaton in that several destination states may be
entered simultaneously; however, it is also similar to a stochastic automaton
in that there is a measure of the degree to which the automaton transitions
between states, that measure being between 0 and 1.

Definition 3.14 A fuzzy automaton, M, is a six-tuple
M= (szav767q07F)7 (324)

where

Q is a finite set of states;

qo € Q is the initial state;

Y is a finite set of inputs or instructions;

F C Q is the set of final states or accepting states, denoted by a double
circle;

3.10 Variants of Finite Automata 75

V is the valuation space [0, 1];
9 is transition function:

:QxXLxQ—V. (3.25)

Example 3.17 Let M = (Q, %, V,d,qo, F) be a fuzzy automaton with

Y ={a,b}

Q= {A,B,C} Q= A F=C
d(A,a,A) =08 8(B,a,C) =10.9 d(C,b,B) =0.4
(A, a,B) = 0.7

8(A,a,C) = 0.5

8(A,b,C) = 0.4

Then M can be graphically described in Fig. 3.9. Note that a fuzzy automata

is not necessarily stochastic, say, e.g., Z 8(C,b,q') = 0.4 # 1. Suppose that
qa'eQ

now we also wish to calculate the certainty that the automaton will go to

state C from A given instructions a and b:

&'(A,ab, C} = \/ [8(A,a,q) A d(q, b, C)]
qeQ

= [8(A,a,A) Ad(A,b,C)] V [8(A,a,B) A§(B,b, C)] v

[5(A,a,C) AS(C,b,C)]

= (0.8 0.4) V (0.7A0.4) V (0.5 0.7)

=04V 0.4V0.5

= 0.5.

a/0.5

Fig. 3.9 A fuzzy automaton.

Note that “A” (resp. “V”) means that the minimum (resp. maximum) is being
taken over all the possible states.

76 Chapter 3 Finite State Automata and Regular Languages

Fuzzy automata are an important tool for modelling uncertainty in arti-
ficial intelligence, particularly in fuzzy logic based expert systems.

Cellular Automata

Cellular automata, also known as tessellation structures, and iterative circuit
computers, is a model of parallel computation. The basic ideas for cellular
automata are due to John von Neumann (1903 -1957), who introduced them,
probably not because of interest in them, but rather as vehicles to study the
feasibility of designing automata to reproduce themselves. This is why we
call cellular automata self-reproducing automata. We shall only give a very
brief introduction to this powerful automata.

Consider a two-dimensional lattice of cells extending indefinitely in all
directions (see Fig. 3.10). Suppose that each cell (e.g., A) is a finite automaton
that can assume any one of the n states, q1,qo, - ,qn. All cells are identical
in their structure, but at any given time they may be in different states. At
each time step, every machine assumes a state which is determined by the
states of its four neighboring cells B, C,D,E and of itself at the preceding
time step. One of the possible states is a “quiescent” one and if a given cell
and its four neighbours are in this quiescent state at time t then the given
cell remains in the same state at time t 4+ 1. If all cells in the array arrive
at the quiescent state at the same instant, no further changes of state are
possible. In the following, we shall present a formal definition for a simple
linear cellular automaton:

CellA
c
Y

B Al D %

2
E

The Four Neighbours of A
(a) (b)

Fig.3.10 Two-dimensional lattice of cells.

Definition 3.15 A bi-infinite linear cellular automaton, M, is a 5-tuple al-
gebraic system defined by

M = (Z,%,q,N,), (3.26)

where
Z=A{--,—i,---,0,-+-,i,---} is the set of cells; i € Z is the location of
the cell i.

Problems 7

¥ ={0,1,2,--- ,k — 1} is a finite non-empty set of (cell-)states; At each
step of the computation, each cell is in a particular state.

N = (a1, -+ ,a,) is the neighborhood; it is a strictly increasing sequence
of signed integers for some r > 1, giving the addresses of the neighbours
related to each cell. This means that the neighbours of cell i are indexed
by i+ ag, -+ ,i+ a,. We call r = |N| the size of the neighborhood. Cells are
simultaneously changing their states at each time step according to the states
of their neighbours.

0 is the local transition function defined by

5:xN 3 (3.27)
If at a given step the neighbours of a cell are respectively in states p1,- - , pr,
then at the next step the state of the cell will be 8(p1, -, pr)-

q € X is the distinguished quiescent state, which satisfies the condition

We remark, in conclusion, that a cellular automaton is, in a way, a neural
network except that the atomic cells have the power of an arbitrary finite-
state automaton but are, on the other hand, restricted to be identical to
each other. In fact, cellular automata can be simulated by a particular neural
network defined as follows: A bi-infinite neural network is a 5-tuple algebraic
system:

M= (Z,%X,W,B,;) (3.28)
where

nwz={--,-i---,0,---,i,---} is the set of neurons. of the cell i

2) ¥=4{0,1,2,--- ,k — 1} is a finite non-empty set of (neuron-) states;

3) W = (wij)ij € Z,wyj € Ris the bi-infinite connection matrix, satisfying

Vx = (Xi)ieZ S EZ
and
VieZz= ZWinj (329)
j
is convergent;

4) B € R? is the threshold vector;
5) 0; is the activation function of neuron i, defined by

5 :R— X (3.30)

We refer interested readers to Refs. [4] and [5] for more information about
cellular automata and neural-like cellular automata.

Problems

Problem 3.1 Find the grammar that generates the language

L(G) = {a"b™" :n € N}

78 Chapter 3 Finite State Automata and Regular Languages
Find the language generated by the grammar with productions:

S — Aa
A—B
B — Aa.

Problem 3.2 Use the pumping theorem to show that
L={ab:i#jijeZ"}
and
L = {x € {0,1}" : x contains equal numbers of 0’s and 1’s}

are not regular languages.
Problem 3.3 Let L and Lo are regular languages. Show that L; /Lo and
Ly © Ly are regular, where L /Ly and Ly © Ly are defined as follows:

L1/Lo = {x:xy € Ly for some y € Ly}
Li &Ly ={x:x €L or x € Ly, but x is not in both L; and Ly}.

Problem 3.4 Pattern Matching: On UNIX operating system, we can e.g.,
use the following command
rm *sy”
to remove all the files with letters sy in the middle of their names; for
example, files with names ysy011, 100sypaper, and Olsyreport will be
removed. Design an automaton for an operating system, that can accept
all the patterns of the form:

{{letter, digit} *{letter, digit }*}.

For example, the patterns 123abd, doc311, d1f22 are all accepted by the
automaton.

References

[1] Yan S'Y (1988) Introduction to formal languages and machine computation,
World Scientific, New Jersey. (The materials in this chapter are mainly based
on this book of the second author.)

[2] Hopcraft J E, Motwani R, Ullman J D (2006) Introduction to automata the-
ory, languages and computation, 3rd edn. Addison-Wesley, Reading, Mass.
(A general reference in finite automata and regular languages.)

Chapter 4 Lexical Analysis

Our review of the underlying cognitive mechanisms in-
volved in word recognition has covered a wide range of
topics — from the contextual effects phases, to logogens,
to connectionism, to lexical decision task (LDT).

Lexicaldecision task is a priming task in which a subject
is shown a related word and asked to evaluate quickly
whether a second string of letters makes a legal word
or not.

Robert L. Solso

4.1 Motivation of the Chapter

According to the cognitive science, the understanding of the language by
mankind starts with the word recognition. Without the phase, the under-
standing of language cannot take place at all. Similarly, as the first phase of
a compiler, the main task of the lexical analyzer is to read the input charac-
ters of the source program, group them into lexemes, and produce as output
of a sequence of tokens for each lexeme in the source program. However,
before we discuss the lexical analyzer further, we would like to discuss the
language understanding in terms of intelligence first. We want to explore why
we need the lexical analysis in language understanding.

Among the various intelligences that human being possesses, language
ability no doubt is a very important one which people use to communicate
each other, to express minds and feelings, to keep the past, present, and
future things for oneself or for others. If the oral language is said also an
ability which other high-level animals possess, the written language ability
certainly is a unique characteristic of mankind.

From the perspective of intelligence, how does the human being produce
language and understand language? From the research and discovery of cog-
nitive scientists we know that the baby starts learning language from grasping
the words or vocabulary [1]. Only when one grasps enough words, can he/she
understand the real things in his/her surroundings. Some estimates (Baddele,

30 Chapter 4 Lexical Analysis

1990) showed that the number of words a person knows shall be about 20000
to 40000 and the recognition memory would be many times of that num-
ber. With these words in mind, a person is able to know the meaning of the
string of words if he/she also knows the arrangement of these words. There-
fore to understand a language starts from understanding of words. Language
is composed of sentences and each sentence is the string of words arranged
according to some existing rules. For written language, the hierarchy of a
sentence is lexeme — word or morphology — phrase — sentence. As for the
sentence expressed via sound the hierarchy is phoneme — syllable — sound
words — sound sentence. Among them each layer has to be bound by the
grammar rules. Therefore, according to the modern linguists, to understand
a language involves five layers: phonetic analysis, lexical analysis, syntac-
tic analysis, semantic analysis and pragmatical analysis. Phonetic analysis
means that according to the phoneme rules the independent phonemes are
separated one by one from the speech sound stream. Then according to
phoneme morphological rules, the syllable and its corresponding lexeme or
words are found one by one. As for the analysis of the sentence of written
language, the phonetic analysis is not necessary, because the lexical analysis
is done via the reading in order for one to understand the meaning. When
a person reads a language which he/she is familiar with, the understanding
layers are what we mentioned above, excluding the layer of phonetic anal-
ysis. When one wants to understand oral language, the phonetic analysis
must be included. Therefore, the phonetic analysis is the essential basis for
understanding oral language.

Take English as an example. In English, there are approximately 45 dif-
ferent phonemes. For example, when you hear some one saying “right” and
“light”, if you are English native speaker, you will not have any difficulty
in discerning between phonemes r and 1. But if the native language of the
speaker is Japanese, then it is likely that he/she could not pronounce them
clearly. Since in Chinese there are many words that have the same pronuncia-
tion, the same situation is likely to happen. Only when the analysis is carried
out for the whole context, may the discerning of these words be possible.

The lexical analysis, therefore, is an essential step for language under-
standing, as well as for the compilation because it is also taken as the basis
of understanding programs. This is why we have the chapter, and we also
regard it as the commencement step of the compilation.

4.2 Lexical Analyzer

Talking about the role of the lexical analyzer, we first should talk about the
role of the compiler since the lexical analyzer is part of it. The role of the
compiler is to compile or to translate a kind of languages into another, usu-
ally into a language executable on computer. In other words, it compiles or

4.2 Lexical Analyzer 81

translates a program written in a human-oriented language into a machine
code that is machine-oriented. As the implementer of the first phase of com-
pilation, the role of the lexical analyzer is to read the input characters (the
composition of the program) and produce the output as a sequence of tokens
that the syntactical analyzer (parser) uses for the syntax analysis [2].

No matter whether the program is inputted into memory via the input of
characters through key board one by one, or via the file that is stored in the
memory in advance, the source program is present in form of the character
stream.

Suppose that we have a simple C program as follows:

/* c program — 1 */

main()

{

printf (“c program — 1\n”);

}

Suppose that the length of words of memory is 32 bits (4 bytes). Then
the initial input form of the program is as follows:

/ * C

p T o
g r a m
- 1 *
/ m a
i n (

) {
p r i n
t f («
c p T
o g T a
m — 1 \
n 7) ;

}

4.2.1 Role of Lexical Analyzer

The main task of the lexical analyzer is to read these characters one by
one from the buffer, then group them into tokens according to different
situations [3]. These tokens will be encoded. In this way, the original charac-
ter string now becomes the token string or token stream, providing the input

82 Chapter 4 Lexical Analysis

to the syntax analyzer. Later we will see how the lexical analyzer works on
the input above, to form the token string from it.

Apart from the main task that transforms the input character stream into
a token string, the lexical analyzer may also perform certain secondary tasks
at the user interface [4]. Such task is to strip out from the source program
comments and white space in the form of blank, tab, and newline characters.
Another task is to correlate error messages from the compiler with the source
program. For example, the lexical analyzer may keep track of the number of
newline seen, so that a line number can be associated with an error message.
In some cases, the lexical analyzer is in charge of making a copy of the source
program with the error messages marked in it. If the source language supports
some macro-preprocessor function, these preprocessor functions may also be
implemented as the lexical analysis [5] takes place.

For some compilers, they may divide the lexical analyzer into two phases,
the first is called scanning and the second lexical analysis. The scanner is in
charge of the simple task while the lexical analyzer is really doing the more
complex operations.

Now we return to our example above. The lexical analyzer reads the input
characters one by one. Then according to the regulation of lexical grammar
of C language, the character stream is grouped into different tokens and
so, it becomes the stream of tokens. In C language, the tokens can be key
words, they are usually reserved for specific uses, not allowing to be used for
the identifiers; then identifiers, integers, real numbers, a notation of single
character, comments, and character string (user uses for printing), etc [6].
The lexical analyzer starts its work with reading the first word of the input.
It reads the “ /7 , it knows that this is not a letter, rather it is an operator.
However, here it should not have expression, so it continues its reading to
the second character to see if it is “*” or not. If it is not “*”, then it confirms
that it is wrong. Otherwise it knows that the combination of “/” and “*”
forms the identification of the start of comment line, and all the character
string before the identification of the end of comment line— the combination
of “*” and “/” is the comment. Regarding this, we have the definition that
states that

#define is-comment-starter(chch) ((ch)(ch)=="/" "x")

and

#define is-comment-stopper(chch) ((ch) (ch)=="*" "/")

These two regulations specify the starter and the stopper of a comment,
“prand k7 /7 Comment is written for programmers who wrote the
program for other in order to provide some information or memorandum to
them. Hence the comment need not to provide to the compiler. But when the
compiler prints the list of the program, it is necessary to print the comment
as it occurs in the original form. Therefore, the comments should be stored
in a specific place where they occur in the original order. Hence the comment

4.2 Lexical Analyzer 83

area needs to store the contents of the comments; in addition, it should also
retain the places or addresses where they are located in order for them to “go
home”. In the current programming languages, the comments may occur at
any place. So in a program there may be many comments.

As we have mentioned above that the main task of the lexical analyzer
is to group the input character string, it needs also to decide the end of
the input, and to discern the layout characters [7]. Therefore, in the lexical
grammar that is used by the lexical analyzer for reference of doing its job,
there is also the need to define the upper case, the lower case, etc. In the
following, we list part of it for the demonstration.

#define is-end-of-input(ch) ((ch)=="\0")
#define is-layout(ch) (!is-end-of-input (ch)&&(ch)<=")

where the first one defines the identification of the end of input while the
second defines the layout symbol.

#define is-uc-letter(ch) ("A"<=(ch)&&(ch)<="Z")

#define is-lc-letter(ch) ("a"<=(ch)&&(ch)<="z")

#define is-letter(ch) (is-uc-letter(ch)|lis-1lc-letter(ch))
#define is-digit(ch) ("0"<=(ch)&&(ch)<="9")

#define is-letter-or-digit(ch) (is-letter(ch)|lis-digit(ch))

These are the definitions of letters and digits. The first one defines the
upper case of the letters and the second defines the lower case; the third one
defines the upper case or lower case; the fourth defines digits; and the last
one defines letters or digits.

#define is—underscore(ch) ((ch)=="")
#define is-operator(ch) (strchr(+-x-),(ch))!=0)
#define is-separator(ch) (strchr(";(){ }",(ch))!=0)

These are the definitions of underscore, arithmetic operators and sepa-
rators. In addition, there are the definitions of the relation operators. The
six relation operators are <, <=,=,<>,>,>= and the followings are their
definitions:

#define is-relop-LT ((ch)=="<")
#define is-relop-LE ((ch)(ch)=="<" "=")
#define is-relop-EQ ((ch)=="=")
#define is-relop-NE ((ch)(ch)=="<" ">")
#define is-relop-GT ((ch)==">")
#define is-relop-GE ((ch)(ch)==">" "=")

The lexical analyzer needs to discern such the tokens as key words (or
reserved words), identifiers, relation operators, comments, etc. Every pro-
gramming language has the dictionary used for the reserved words that are
the words used in the statements. In the dictionary, it also contains the codes

84 Chapter 4 Lexical Analysis

of these words in machine. When the lexical analyzer found a reserved word
in the input, it checks the correctness of the word (the spelling, the exis-
tence) from the dictionary. If it can find the same word from the dictionary,
the correctness is satisfied. Then from the place of the word in the dictio-
nary, the code used in the machine for the word is also found. The code will
take place of the word in the intermediate form of the program. One of the
advantages of the intermediate form is that for every identifier as well as the
reserved word, they all have the same length and have identity bits to show
their attributes. Otherwise they have different lengths and will take time to
handle. Let us have a look at the dictionary of C language. It contains the
following words (this is not exhaustive):

auto break case char const continue
default do double else enum extern
float for goto if in long
register return short signed sizeof static
struct switch typedef wunion unsigned void

volatile while

Apart from these reserved words, there are also other data type declara-
tion words, main(), opt, #include, #define, #line, #error, #pragma etc that
need to be discerned. Notice that the dictionary must be complete that it
contains all the legal words used in the C language as the statement names
and so on. Otherwise if some are missing when the lexical analyzer found its
appearance in the program, it will not recognize it and will consider it as an
error. Notice that the list above is not the real list occurring in machine as in
machine, each one should also have its code. The sorting of these words are
not very necessary as it does not contain many words and so its searching
will not be consuming. Even by sequential searching method, the efficiency
is still acceptable.

4.2.2 Identifier analysis

We have known from previous discussion that any identifier is a string that
must start with a letter and followed by any number (but in the concrete
implementation, the number shall be limited) of letters, digits, and under-
scores. It can be seen as a regular expression. We can describe the identifiers
of C language by

[a-z A-Z][a-z A-Z 0-9]"
Then the grammar that generates the regular expressions may be written as
follows:

letter—albl...|z|AIBI|...|Z]
digit—0l1l...19

4.2 Lexical Analyzer 85

id—[a-z A-Z]JA
A—T[a-z A-Z 0-9]A
A— ¢

Notice, that the “A” as the nonterminal is not the “A” as the letter. And
the regular expression can also be written as

letter (letter |digit)”

Having the expression, we can check the correctness of the identifier via con-
trasting it with the expression to see if the identifier coincides in the structure.
But as we have mentioned that in practice, the identifier is somewhat differ-
ent from the expression that the number of components of the identifier is
limited. Hence when the lexical analyzer scanned the string of the identifier it
must count the number of the components. When the length of the practical
identifier exceeds the limit then either it cuts it off (then it needs to check the
uniqueness of the identifier) or declares that an error occurs, the identifier is
too long.

After checking the correctness of each identifier, it is stored in the table
specially used for the identifiers. It is called the symbol table in which the
identifiers are stored and each is assigned an address for storing its value.
The identifier is also replaced by its intermediate code. In general the lexical
analyzer encodes the identifiers according to the order that they occur in
the program. For example, the first identifier may be encoded as I1 (where
I stands for an identifier) and correspondingly the second one is encoded as
12, etc. Usually, the identity bits occupy two bits of the words. For example,
we use A to denote the identity, and respectively, we use A = 00 to represent
reserved words, A = 01 to represent identifiers, A = 10 to represent integers
and A = 11 to represent real constants, other bits in the word represent the
number of the identifiers or the address in the memory that stores the value
of the item.

In the lexical analysis of the identifiers, there is an important task, i.e.,
to decide the declaration of the identifier. For most programming languages,
there is such requirement, that is, the declaration of the identifier (it is called
the definition occurrence of the identifier) should precede the occurrence of it
in the program (it is called the application occurrence). Therefore, the prin-
ciple is called the definition occurrence precedes the application occurrence.
The principle implies that for an identifier there needs a declaration only,
otherwise it will commit the error of repeated definition. It does not allow
twice definitions with the two having different types. It is not allowed to use
an identifier without definition. If these regulations are violated, then the
lexical analyzer will handle it as an error case.

36 Chapter 4 Lexical Analysis

4.2.3 Handling of Constants

The handling of constants is more complicate than that of identifiers.

As for identifier; integers and real numbers may also be expressed as the
regular expression. For example, in general text books on compilers, they
usually expressed the real numbers as follows:

(+1-1)digit* .digit digit* (e(+|-|)digit digit™|)

The expression indicates that a real number may or may not contain sign
symbol (+ or —). Following the symbol (if any) is zero or many digits, then
a decimal point follows. After the decimal point, it must have at least one
digit. If the number contains the exponent part, it should start with a letter
e (implies the exponent) then a sign symbol follows again, or it is absent,
then at least one digit follows.

If an unary postfix operator 7 is introduced to mean “zero or one occur-
rence”. That is, 17 is equivalent to r|e, or put another way, L(r?) = L(r)U{e}.
Then another expression

digit(.digit)?(E[+-]17digits)?

is given [8].

These two expressions want to express the same thing, real numbers.
We cannot say that they are not correct. In terms of the structure of real
numbers, they are absolutely right. But on the other hand, if we consider some
restrictions of real numbers, they do not conclude them in the expression. We
know that in the expression of real numbers, the leading zeros should not be
allowed. It is also required that the zeros tail be eliminated. But as digit
represents any digit from 0, 1, ..., 9, that means in both the expressions
above, the leading zeros and zeros tail are included.

Apart from the two minor bugs, the two expressions above are basically
correct. Therefore, we may define a grammar that generates the regular ex-
pression.

N—+R|
-R|
digit R |
.P
R—digit R
.P
P—digit L|
digit
L—digit L|
e Al
digit
A—+ M|
-M|

4.2 Lexical Analyzer 87

digit M|
digit
M—digit M|
digit

The productions above really generates the regular expression of real num-
bers but may include the leading zeros and zeros tail. The lexical analyzer
may base on the grammar to handle real numbers [9]. The handling method
is to group the digits that represent integer or real numbers together to form
digit string, then translate the number into the binary number and put it in
the constant number table [10]. The order of handling is also according to
the order by which these constants occur. That is, after the first number had
been handled in this way and store in the constant table, when the second
number occurs, at first it is checked to see whether it has occurred or not in
the table. If it has existed in the table, then it does not need to store in the
constant table again. Otherwise it will be handled as the first number and
put into the constant table.

As for the identifier, however, constant numbers have also the properties
that are not regular. In any programming language, as the restriction of
the capacity of the memory, in general, one integer can only occupy one
word of the memory (32 bits or 64 bits), and one real number occupies the
double or two times of the integer number. Therefore, when doing spelling
and transformation of the constant number, the size or the value of the
number will be checked. When the length or the size of the number exceeds
the restriction, the lexical analyzer will report the error.

In order to present a legal expression of the real number without the
leading zeros or the tail zeros, we want to modify the expression. We introduce
the new terminal digitl to represent [1..9], the original digit still represents
[0..9]. Then the modified regular expression of real numbers now becomes
following:

(+1-1)(0ldigitl digit™).(0ldigitlldigitl digitldigit
digit1™)(e(+|-|)digitdigit1)?

The reader may check which kinds of real numbers are included in the ex-
pression.

4.2.4 Structure of Lexical Analyzer

So far, we have analyzed the works of lexical analysis on handling comments,
reserved words, identifiers and constants. By these, we have seen the role of
the lexical analyzer. Sequentially, we introduce the structure of the lexical
analyzer.

The basic task of the lexical analyzer is that given a set S that specifies

38 Chapter 4 Lexical Analysis

the tokens, and the place p in the input stream, then the lexical analyzer
decides which regular expression in S matches the input segment starting
from p, and decides the role of the segment in the program.

According to the task of the lexical analyzer, the analyzer can be con-
structed manually or automatically by computer. Both are done based on
the tokens designated by the regular expression [11]. Here we mainly explain
the structure of the manually generated lexical analyzer. Fig. 4.1 demon-
strates the heading file of the lexical analyzer lex.h that defines 7 kinds of
tokens: comment lines, identifiers, reserved words, constants, tokens with
single character, ERRONEOUS token, and EOF token. The so-called token
with single character means operators such as 4+, —, x (or x), + (or /), sep-
arators such as ; , ..., (,), {, }, etc. Fig. 4.1 shows the form of Token-types
with the extending field. The field records the starting position of the token
in the input, it also contains the definition of constants-like.

/* Define class constants;0-255 reserved for ASCII characters; =/

#define EOF 256
#define comment 257
#define constant 258
#define reserved word 259
#define identifier 260
#define ERRONEOUS 261

typedef struct {
char * file-name;
int line-number;
int char-number;
} position-in-file;
typedef struct {
int class;
char *repr;
position-in-file pos;
} token-type;
extern token-type token;
extern void start-lex (void);
extern void get-next-token (void);

Fig. 4.1 Heading file lex.h of manually generated lexical analyzer.

The main program of the lexical analyzer consists of the following parts:
the declaration of local data that manages input files; the declaration of global
variables Token; the routine start-lex() that starts the lexical analyzer; and
get-next-token(). The get-next-token(0) is used to scan the input stream,
and get the next token and put the data into Token table. Fig. 4.2 shows the
data and commencement of the lexical analyzer.

The main program of the lexical analyzer repeatedly invokes subroutine
get-next-token(). The get-next-token() and its subprogram check the current
input character to see what kind of token it belongs to, then it prints the

4.2 Lexical Analyzer 89

#include “input.h” /* for get-input() */
#include “lex.h”

/#private =%/

static char +input;

static int dot; /* dot position in input =/
static int input-char /+ character at dot position #/
#define next-char() { input-char=input [++dot])

/* public =/

Token-type Token;

void start-lex (veoid) {
input=get-input();
dot=0; input-char=input [dot];
}

Fig.4.2 Data and commencement part of manually generated lexical analyzer.

information found from the Token. When an EOF is recognized and handled,
the loop ends. Fig. 4.3 shows the main program of the lexical analyzer.

#include “lex.” /+* for start-lex (h), get-next-token ()=/

int main() {

start.lex();

do {
get-next-token();
switch(Token.class) {
case COMMENT; printf(“comment”), store-comment(); break;
case CONSTANT; printf(“constant”), handle-constant(); break;
case IDENTIFIER; printf(“identifier”), handle-identifier(), break;
case RESERVED WORD; printf (" reserved word’), handle-reserved
word(); break;

case ERRONEOUS; printf(“erroneocus”), handle-erroneocus(); break;
case EOF; printf(“end-of-file pseudo-token”); handle-ecf(); break;
default; printf(“operator or separator”); single-token(); break;
}
printf (“: %s’\n", Token.repr);

} while (Token.class != EOF);

return 0;

Fig. 4.3 Main program of manually generated lexical analyzer.

We do not introduce the details of work of get-next-token(). After jump
out from comment and layout character, get-next-token() records the posi-
tion of the token, and the position is stored in the Token-pos field. Sequen-
tially, the get-next-token() separates the first character of the token based
on the current input stored in input-char. There are five cases: letter, digit,
operator/separator, erroneous, and EOF.

What we talked about handling mainly includes two aspects. On the one
hand, we represent the source program in the intermediate language form;

90 Chapter 4 Lexical Analysis

on the other hand, we construct a variety of tables from information in the
input. For reserved words, as we have mentioned before, there is no need
to construct table, there is a dictionary stored inside the compiler already.
Each reserved word has been encoded with fixed code. Hence for the reserved
word, the only thing which we need to do with its occurrence in the source
program is to replace it with its code, then we got its intermediate form. For
the identifier, it is different story. At first, we need to group the components
into one token, then according to the order of occurrence by which it occurs
in the source program, it is assigned a number with the token sign. There is
one more thing for it, i.e., the assignment of address in memory that is used
for storing its value. As for constants, it contains integers and real numbers
(floating point numbers) and they are separately stored in different areas.
Therefore, the areas which the lexical analyzer uses include [12]:
e DRJi] retains the reserved word dictionary, i is the index;
e SA[j] source program area, j is the address;
e TA[k] Intermediate language area, it corresponds to the source program
area, but it has represented every component with its intermediate form.
Suppose that we stipulate that reserved words, identifiers, and constants
have the following identity code:

A (identity)
reserved word 0 reserved word i — the index of the reserved word
in dictionary

identifier 1 identifier id — the address of the id in LT table
integer 2 constant ct; — the address of ct; in CT1 table
real constant 3 constant cte — the address of cte in CT2 table

The handling method for reserved words is, at first the components of
the reserved word are grouped together to form a word, then check the word
contrasting the words in the dictionary to see whether it matches one of them
or not. If it matches, then take the code of the word in the dictionary and the
code is the intermediate form of the word and put it into the intermediate
language area that corresponds to the source program area. On the other
hand, if it does not match any word in the dictionary, that means that the
word does not belong to reserved word, it is an error. So an erroneous message
should be issued to the programmer about the word.

The handling method for identifiers is, like for the reserved words, at first
the components of the identifier are grouped into a token, then against the
existing identifier table (IT), the token is checked to see whether it has existed
or not [13]. Only the first identifier can meet the situation that the IT table is
empty. If the identifier is not equal to any that already exists in the IT table,
that means that this is a newly defined identifier, hence it should be put
into IT table and in the intermediate language area, then the representation
shown above will take place of the original identifier so that every identifier
now has the same length with the same identity. If the identifier has already
existed in the IT table, then it does not need to put in the table, the only

4.2 Lexical Analyzer 91

thing needed to do is to put its intermediate code into the A area. Fig. 4.4
shows this correspondence.

Identifier table (IT)

¥ addr

idj idj X2

Fig. 4.4 Intermediate form of the identifier versus the IT table.

When handling the constants, the first step is also to group the compo-
nents of it. But there is one thing that differs from that of identifiers. That is,
the constant should be converted from decimal one to binary one as the value
in machine. The handling process for integers is the same for real numbers.
But the real numbers will occupy double words as many as the integers do.
Since for integers, each occupies one word length, then the real number will
occupy two word length. Fig. 4.5 shows the difference [14].

Integer table CT,

IS

[6] [ety +— o Integer

(a) Integer constants

Real constant table CT,

Real constant First half

Real constant After half

(b) Real constants

Fig.4.5 Constant representation and constant table.

As for the handling of identifiers, after the constant is grouped, it has to
be checked against the constant table to see if the table contains the constant
already. If it does then it is not necessary to put the constant into the table
again. But if it does not occur in the table, then it is stored in the table
sequentially and the address which the constant stores in is taken as the
intermediate representation that occurs in the intermediate language area. If
it has already existed in the constant table, it does not need to be put into

92 Chapter 4 Lexical Analysis

the table. Only the corresponding address needs to be put into intermediate
language area to replace the original occurrence in the source program.

In the following a simple program in C and its corresponding intermediate
language form are given. We will make it more directly perceived through the
senses as much as possible so that the reader will be able to understand the
working process of the lexical analysis [15]. Fig. 4.6 shows the process via the
contrast of the source program with its intermediate peer.

#include <stdio.h>
main (){
int x=1,total=0,y;

Y=X*X;

++%;

}

return 0;

while (x<=10) {

printf (“% d\n", v);
total+=1;

printf (“Total is %d\n", total);

(a) C language source program

| 0 |'I'he internal code of #

” 1 |Ti|e internal repr of ¥

“ 0 |Thc internal code of *

” 0 |The internal code of printf

I 0 I'I‘he internal code of include ” 0 I'I'he internal code of ;

I I 4 I'I‘he internal code of %ed

” 0 I'I'he internal code of (

I 0 I'I'hc internal code of <

” 1] ITII!: internal code of prinef ” 4 IThc mternal code of 'n

” 0 IThc internal code of

I 0 IT'he internal code of stdio.h ” 0 I'Fhe internal code of (

” 0 I']'hc internal code of ™

” 1 I'Ihe character string total

I 0 I'I'hc internal code of =

” 0 I'['Ile- internal addr of x

” 0 I'I1n: internal code of |

” 4 I'I'.he character string 15

| 0 |T'he internal code of main{) ” 0 |The internal code of <=

| | 1 |Thc internal code of y

” 4 |T11e character string %ed

I 0 I'I‘he internal code of |

” 2 I'I'he internal addr of 10

” 0 I'I‘he internal code of)

” 4 I'n\e character string /n

I 0 I'I'he internal code of int

” 0 IThe internal code of)

” 0 I'I1\c internal code of ;

” 0 I'I'Ju: internal code of

| 1 |T'he internal repr of x

” 0 |The internal code of |

” 1 |Thc internal repr of total

” 0 |T11e internal code of |

| 0 |'I‘J1e internal code of =

” 1 |'I'he internal addr of v

” 0 |'I1\e internal code of +=

” 1 |The internal code of toral

I 2 I'I'hc internal address of 1

” 0 I'['Ile- internal code of

”1 Iﬂ\cunmrml addr of y

” 0 I'I'he internal code of }

I 0 IT'he internal code of ,

” 1 IThe internal repr of x

” 0 IThc internal code of ;

” 0 IT‘he internal code of :

| 1 |T'he internal repr of total

” 0 |'Fhe internal addre of *

” 0 |111¢ internal code of ++

” 0 |'I?1e internal code of return

| 0 |'I'hc internal code of

” 0 |Thc internal code of

” 1 |'I1n: internal repr of x

” 2 |'I'.he internal addr of 0

I 2 IT'he internal addr of 0

”] IThe internal code of printf’

” 0 IThc internal code of

” 0 IT‘he internal code of ;

| 0 |Thc internal code of |

” 0 |Thr.- internal code of (

| I 0 |Thc nternal code of |

" 0 |T}|c internal code of |

(b) The intermediate language representation of the source program

Fig. 4.6 Source programs versus intermediate language representation.

Remark in Fig. 4.6 above, the code 4 has exceeded the extent of two bits.
But it is only for the purpose of explanation. In practice we may need to use
more bits as the identity bits.

The lex works in the following manner: At first the source program is

4.2 Lexical Analyzer 93

written by lex as lex.1, then it is compiled by the compiler of lex to produce
lex.yy.c in C language. The program lex.yy.c involves transformation map
that is constructed from regular expression of lex.1 and the standard subrou-
tines that recognize lexicons. The transformation map is the state transfor-
mation obtained from each configuration definition state of the right part of
production. For example in S—ABC, it may have the following configuration
states:

S — -ABC,
S — A - BC,
S— AB - C,
S — ABC-

These configurations should be considered along with other configurations
obtained from other productions. For example, If there is another production
that has A as its left part,

A — Bp

where P is a string consisting of terminals and nonterminals, then

S — -ABC
A — -Bp

should be taken as a basic term, or considered as a state. Consequently, from
S — -ABC

to
S— A .-BC

is a state transformation. For all the productions of a grammar, we have to
write down all the state transformations. In the syntactical analysis later, we
will discuss the state transformation in more details. In lex.1 the transfor-
mation map is represented in table where the actions associated with regular
expressions are represented as code in C, they are directly moved to lex.yy.c.
Finally, lex.yy.c is compiled into object program a.out. And it is just the
lexical analyzer that transforms the input strings into token sequence.
The process above is shown in Fig. 4.7.

[lex source lex.1 | —-{ lex compiler H lex.yy.c |
‘ lex.yy.c | —-l C compiler }—»l a.out ‘

Source program ‘ T o —
input stream —-l a.out }—- Intermediate language (token) sequence

Fig. 4.7 Lexical analyzer based on regular expressions constructed by lex.

94 Chapter 4 Lexical Analysis

In order for the reader understand the lex.1 deeper, we list the skeleton of
it as shown in Fig. 4.8. It contains three parts: the first part is the definitions
of rules, the second part is the regular expressions and code segment, and
the third part is the code in C language. It is also the one directly moved to
lex.yy.c mentioned above.

% {
#include “lex.h”
Token-type Token;

int line-number=1; /* declaration part =*/
% }
whitespace [\t]
letter [a-z, A-Z]
digit [0-9] /* definition of terminals =/
underscore 52
letter-or-digit ({letter} | {digit})
underscored-tail ({underscore}{letter-or-digit}+)
identifier ({letter}{letter-or-digit}+{underscored-tail}«)
operator [+ —=\]
separator [z &« &) L 3]
% %
{digit}+ {return INTEGER}
{identifier} {return IDENTIFIER}
{cperator} | {separator} {return yytext(0);} /» definition of regular
expression =/
[+ # \ n)lx # {/* neglect comment =*/}
{whitespace} {/* neglect spacex/}

\n line-number++; linefeed, line-number increases
- {return ERRONOUS}
% %
void start-lex(wveid){ }
void get-next-token(void) {
Token.class=yytext();
if (Token.class==0) {
Token.class=EOF; Token.repr="<EOF>";return;
}
Token.pos.line-number=1line-number;
strcpy (Token.repr=(char*)malloc(strlen(yytext)+1),vytext);
}
int yywrap (void) {return 1;}

Fig. 4.8 The skeleton of lex that automatically generates lexical analyzer.

In lex, the comment is neglected. This is different from practice. In prac-
tice, the comments are kept for use in printing the list of the source program.

In addition, prominently, it does not contain the handling of reserved
words as the reserved words cannot be handled as regular expressions.

Now look at the lex itself. For input, lex produces the file in C called
lex.yy.c. The file contains a routine yylex. Routine int yylex (void) contains
an inner loop.When the routine is invoked, it begins spelling the characters
in input file according to regular expressions in the second part. For each
recognized token the related C code is executed and the following handling
is carried out. The representation form of the token can be found from array

4.3 Output of Lexical Analyzer 95

char yytext []. When C language code executes the statement with numeric
return value, the return value is just the value of the token. It represents
that they are the values of corresponding tokens. After the relative handling
is finished, the inner loop yylex ends. The class operator/separator is single
char token and it is the first character of array yytext [] (hence it is yytext
0]).
The third part is the C language code that is truly executable. The lexical
analyzer generated by lex does not need to initiate and the routine start.lex(
) is empty. The routine let-next-token() starts with invoking yylex(). This
invocation jumps over the comments and format symbols until it found the
real token. Then it returns the value of the token class and carries out the
corresponding process for the token class. When it detects the end of input,
routine yylex() returns 0. The malloc() statement in this part is used to
allocate space for array yytext [| as the space will store the result which the
execution of get-next-token() obtains, that is, to store the token obtained in
the space allocated while routine yywrap() is used to aid the processing of
the end of file.

4.3 Output of Lexical Analyzer

In the last section, we have mentioned that after the analysis of the lexi-
cal analyzer, the source program input is transformed into the program in
intermediate language and stored in intermediate language area. These iden-
tifiers, constants, and reserved words with arbitrary lengths all are replaced
by tokens with fixed lengths and with different signs. At first the reserved
words will be replaced by the corresponding code in the reserved word dic-
tionary. Secondly, the identifier is replaced by an integer, following the sign
bit (for example A = 1). Meanwhile, however, in using token to take place of
the identifier, a table is needed for storing the identifiers for check. As the
amount of identifiers in a program varies, in general, it is more than that of
constants, hence how to build the table of identifiers is a problem that causes
special concern of the compiler.

The symbol table (identifier table) may be seen as the extended record
array indexed by the character string (rather than the number) and the char-
acter string is just the identifier. The relative record contains the relative in-
formation collected for the identifier. The structure of the symbol table may
be represented as follows:

struct identifier {
char alint];
int ptr;

}

Therefore, the basic interface of the symbol table module consists of a func-

96 Chapter 4 Lexical Analysis

tion identity: function identity (identifier name).

It returns the pointer that points to the record of the identifier, i.e., the
machine code of the identifier. The pointer points to the address which stores
the information of the identifier. After this no matter how many times which
the character string is called, they always return the value. When we receive
the information that relates to the identifier, we keep the information in the
corresponding store unit.

In the compiler of C language, the symbol table module may contain the
following information:

(1) The real character strings used for printing the source program and
object program.

(2) Macro definition. A macro definition is to take the definition of iden-
tifiers as a macro, an instruction similar to a subroutine, and it takes some
character string as a value.

(3) Definition of a series of types, variables, and function.

(4) Definition of a series of structures, common body names.

(5) Definition of a series of structures, field selection symbols of common
bodies.

A simple method to implement the symbol table is the linear table, that
is, when the declaration of some identifier is met in the declaration part of
programs, then the identifier is registered in the symbol table, along with the
address for storing its value, it looks like (identifier, value). The manner for
implementing symbol tables is comparatively simple, as searching an item
needed can be done by linear search. If the size of the table is not big, the
efficiency is not a problem either. However, if the program is large and the
symbol table is very big, then the data structure may be unsuitable due to
its inefficiency. Instead the hash function may be the best substitution. Hash
function is a mapping from name space N to address space A [16], namely,
Hash N—A. In general, |[N| > |A|. In other words, given an identifier id, Hash
(id) is a value in A and it is the address for storing id. When the identifier is to
be accessed again, the function Hash (id) is computed first. When the value
results then the address is found. Since |N| > |A|, however, it is likely that
two different id; and ids compute Hash(id;) = Hash(idz). When the thing
happens, it is called conflict. Obviously conflict is not desirable. In order to
resolve conflict, two methods are available. One is to chain the identifiers with
the same hash value so that in the chain all the identifiers possess the same
hash value. As such identifiers are not many, searching the desirable item
from the chain is not difficult. Another method is called rehash. When the
conflict occurs, then another hash function Rehash is invoked to recomputed
the address assigned to the identifier. When the identifier is to be accessed,
Hash and Rehash need to be computed again.

Hence the key problem is how to design a better hash function that causes
conflicts as few as possible, this is not a simple problem. If a hash function
causes many conflicts, it is definitely not a good Hash function. McKenzie,
Harries and Bell proposed following Hash function based on the analysis of

4.4 Error Handling 97

several widely used Hash functions in 1990. After using it in practice, it
showed that it has good performance, where two parameters N and k are
used, and their best values are N =1 008 and k = 613. In addition, ¢; is the
ASCII value of ith character of identifier, n is the length of the identifier.

ho = 0
hi=kxhi_1+¢, 1<i<n
H = BITS(hy, 30) Mod N

Function BITS (h,m) produces rightmost m digits of integer h. Hence in
the computation above, we take 30 digits of the rightmost. If we take k as
4, and N as 1 403, then the speed of the iterative algorithm is fastest as
multiplying by 4 is simply left shift twice. But if the value of k is too small,
then similar identifiers will be aggregated. In contrast, if the value of N is
big, the opportunity that conflict occurs is smaller but the amount of storage
occupied will correspondingly increase. The investigation shows that when k
is 613 and N is 1 008, then we get 610 as the length hash value, 812 as the
width hash value, and 1005 as height hash value.

4.4 Error Handling

Errors which lexical analyzer discovers may be grouped into the following
classes as we described above:

1) wrong spellings of the reserved words.

2) Identifier errors.

3) number errors.

4) punctuation errors.

There are two attitudes towards errors:

One is strictly following the rules (the grammar) to treat errors, once
an error is found, then the error report is issued immediately to user or
programmer and the error type and position are also reported as one can as
possible. In general case, however, to provide such an information is not easy.
The common lexical analyzer can only report the possible error type, it is
very difficult for it to locate the specific location of the error.

Another treatment manner is more tolerant or more human nature, namely,
when the error is found, the lexical analyzer manages to correct the error it-
self, rather than to issue immediately a report to user or programmer. The
aim is to save the time of user or programmer and to improve efficiency.

For example, if the error takes place in the spelling of the reserved word, if
it is discovered that the wrong reserved word differs from the correct one only
in one letter, then the lexical analyzer will regard it as correct and correct
the wrong letter.

If the error takes place in the input of the identifier, and it is determined
that it is not another identifier, then the same treatment may be taken.

98 Chapter 4 Lexical Analysis

If for reserved words, identifiers or numbers, the errors are caused by
excess in typing or mistyping. For example for a number if it contains two
decimal points, then obviously the correction can be done by eliminating one
decimal point, but which one should be deleted needs to be decided.

If the error is caused by missing of character, it also needs to decide what
character should be added to make it correct.

If the error is caused by that the application occurrence precedes the
definition occurrence, then a definition occurrence should be added before
the application occurrence. But if for one item there are two definitions, and
they are inconsistent, then one of them should be deleted. Nevertheless which
one should be reserved needs to carefully decided.

Comparatively speaking, the types of errors in the lexical analysis are not
many and their handlings are rather simple. Most of the errors are caused
by mistyping of one or more characters, missing or excess in typing, or mis-
spelling, etc. The key points should be put on these classes. It is unnecessary
to attend to every and each aspect of the matter.

Problems

Problem 4.1 Write a program using the language which you are familiar
with that recognizes the real numbers and identifiers.
Problem 4.2 Some one gives the regular expression of real numbers as

(+1-1) digit”.digit digit*(e(+|-1)digit digit™|)

Explain what problem will the regular expression cause? If the problem
is to avoid, how should it be written?

Problem 4.3 Write a complete input scanner.

Problem 4.4 Suppose that your symbol table can admit 10—100 identi-
fiers while sometimes you need to handle 100 000 000 identifiers with
proper efficiency. Hence allocating a hash table with the size of admitting
100 000 000 is not consistent with the requirement of the problem. Design
a suitable hash table algorithm to solve the problem.

References

[1] McCullough WS, Pitts W (1943) A logical calculus of the ideas immanent
in nervous activity, Bull. Math. Biophysics 5: 115-133.

[2] Lesk ME Lex-a lexical analyzer generator, Computing Science Tech Re-
port, 39, Bell Laboratories, Murray Hill, N J. It also appears in Vol.2 of
the Unix Programming’s Manual, Bell Laboratories with the same title but
with E.Schmidt as coauthor. Murray Hill, N J. http://dinosaur.compil- er-
tool.net/lex/index.html.

3]
[4]
[5]
[6]

(7]
8]

(10]

References 99

Kleene SC Representation of events innerve nets and finite automata. In:
Shannon CE, McCarthy J (eds) Automata studies, 34, pp. 3—40.
http://www.cs.princeton.edu/~appel/modern/java/JLex. Accessed 12 Oct
2009.

Hopcroft JE, Motwani R, Ulman JD (2006) Introduction to automata theory,
languages and computation. Addison-Wesley, Boston.

Huffman DA (1954) The synthesis of sequential machines. J Franklin Inst.
257, pp 3—4, 161, 190, 275-303.

http://jflex.de/. Accessed 19 Nov 2009.

Aho AV, Corasick MJ (1975) Efficient string matching, an aid to biblio-
graphic search. Comm ACM, 18(6): 333 —340.

Free software Foundation. http://www.gnu.org/software/flex/. Accessed 19
Nov 2009.

Aho AV (1990) Algorithms for finding patterns in strings. In Laeuwen J van
(ed) Handbook of theretical computer science. MIT Press, Cambridge.
Shannon C, McCarthy J (eds) (1956) Automata Studies. Princeton Univ
Press, NJ.

Thompson K (1968) Regular expression search algorithm. Comm ACM 11
(6): 419422,

McNaughton R, Yamada H (1960) Regular expressions and state graph for
automata, Ire Trans. On Electronic Computers EC-9:1: 38 —47.

Moore EF, Gedanken experiments on sequential machines, in [15], pp. 129—
153.

Knuth DE, Morris JH, Pratt WR (1997) Fast Pattern matching in strings,
SIAM J. Computing 6:2: 323 —350.

McKenzie BJ, Harries R (1990) Bell TC. Selecting a hashing algorithm.
Software — Practice and Experience, 20(2): 672—689.

Chapter 5 Push-Down Automata and
Context-Free Languages

Contezt-free grammars have played a central role in
compiler technology since the 1960s There is an
automaton-like notation, called the “pushdown automa-
ton”, that also describes all and only the context-free
languages.

John E. Hopcroft, Rajeev Motwani
and Jeffrey D. Ullman

5.1 Motivation of the Chapter

Push-down automata (PDA) form the most important class of automata be-
tween finite automata and Turing machines. As can be seen from the previous
chapter, deterministic finite automata (DFA) cannot accept even very simple
languages such as

{x"y" [n e N},

but fortunately, there exists a more powerful machine, push-down automata,
which can accept it. Just as DFA and nondeterministic finite automata (NFA),
there are also two types of push-down automata: deterministic push-down
automata (DPDA) and non-deterministic push-down automata (NPDA). The
languages which can be accepted by PDA are called context-free languages
(CFL), denoted by Lep. Diagrammatically, a PDA is a finite state automaton
(see Fig. 5.1), with memories (push-down stacks). In this chapter, we shall
study PDA and their associated languages, context-free languages Lcpr. For
the sake of completeness of the automata theory and formal languages, We
shall also study Turing machines and their associated languages.

102 Chapter 5 Push-Down Automata and Context-Free Languages

Input File

Finite—State
Control Unit

Storage

Fig. 5.1 Push-down automata.

5.2 Push-Down Automata

We first give a formal definition of the NPDA.

Definition 5.1 A non-deterministic push-down automata (NPDA) is de-
fined by
M= (Qazvr767quZ7F)v (51)

where
Q is a finite set of internal states;
Y is a finite set called the input alphabet;
I is a finite set of symbols called the stack alphabet;
0 is the transition function, which is defined as

6:Q x (BU{A} xT — finite subsets of Q x I'*; (5.2)

z € I is the stack initial symbol;
qo € Q is the initial state;
F C Q is the set of final states.

Example 5.1 Let an NPDA, M, be M = (Q, %, T, 0, qp,2, F) with

Q = {QOthQ%QB}a

¥ ={a,b},
r={0,1},
z =0,

FZQB;

5.3 Context-Free Languages (Lcr) 103

and
d8(qo,a,0) = {(a1,10), (as, A)}
8(do, A, 0) = {(as, M)},
8(ai,a, 1) = {(a1,11)},
8(q1, b, 1) = {(az2, M)},
8(az, b, 1) = {(az2, M)},
8(az, A, 0) = {(a3, M)}

Then the automaton accepts the language
L=LM)={a"b":ne N}u{a}.

A deterministic push-down automaton (DPDA) is an automaton that
never has a choice in its move:

Definition 5.2 A push-down automata (PDA) is said to be deterministic,
if it is an automaton, M = (Q, X, T", 8, qo, 2, F), as in Definition 5.1, subject
to the following two restrictions: for every q € Q,a € YU {A} and be T,
(1) 8(q,a,b) contains at most one element;
(2) if 8(q, A, b) is not empty, then d(q, ¢, b) must be empty for every ¢ € X.

5.3 Context-Free Languages (Lcr)

This section establishes the relationship between push-down automata and
context-free languages. We first discuss context-free grammars and context-
free languages.

Definition 5.3 A grammar G = (V, T, S, P) is said to be context-free if all
productions have the form

A —x, (5.3)

where A € V, and x € (VUT)*.
A language L is said to be context-free if there is a context-free grammar
G such that L = L(G).

Example 5.2 The grammar G(V,T,S,P), with productions

S — abB,
A — aaBb,
B — bbAa,
A—)

104 Chapter 5 Push-Down Automata and Context-Free Languages
is context-free. Some typical derivations in this grammar are:

S — abB
— abbbAa
— abbba

S = abB
— abbbAa
= abbbaaBba
— abbbaabbAaba
—> abbbaabbaba

S == abbbaabbAaba
—> abbbaabbaaBbaba
—> abbbaabbaabbAababa
= abbbaabbaabbababa
= ab(bbaa)?bba(ba)?

S == abbbaabbaabbAababa
— abbbaabbaabbaaBbababa
—> abbbaabbaabbaabbAabababa
= ab(bbaa)®bba(ba)?

S = ab(bbaa)"bba(ba)", for n > 0.
Thus, the language generated by this grammar is
L(G) = {ab(bbaa)"bba(ba)" : n > 0}.

Remark: Every regular grammar is a context-free grammar, so a regular
language is a context-free language. For example, we know that

L={a"m": n>0}

is not a regular language, but this language can be generated by the grammar
G = ({S},{a,b},S,P) with P given by S — aSb and S — A, which is ap-
parently a context-free grammar. So, the family of context-free languages is
the superset of the family of regular languages, whereas the family of regular
languages is the proper subset of the family of context-free languages.

We call a string x € (VUT)* a sentential form of G if there is a derivation
S == x in G. But notice that there may be several variables in a sentential
form, in such a case, we have a choice of order to replace the variables. A

5.4 Pumping Theorems for Context-Free Languages 105

derivation is said to be leftmost if in each step the leftmost variable in the
sentential form is replaced. If in each step the rightmost variable is replaced,
then we called the derivation rightmost.

Example 5.3 Let G = ({S,A},{a,b},S,P) with P given by

(i) S — AA,
(ii) A — AAA,
(iii) A — DbA,
(iv) A — Ab,
(v) A — a.

Then we have the following three distinct derivations for string L(G) =
ababaa :

S =1 AA S =L AA S =L AA
= aA == Aa == aA
=L AAAA =L AAAa =L AAAA
2L abAAA 2% AAbAa = aAAa
= abaAA =% AAbaa 2L abAAa
2L ababAA 2 AbAbaa 2L abAbAa
= ababaA == Ababaa = ababAa
== ababaa == ababaa = ababaa
Derivation(1) Derivation(2) Derivation(3)

It is clear that derivation (1) is left-most, (2) is right-most, whereas (3) is
neither.

5.4 Pumping Theorems for Context-Free Languages

Theorem 5.1 (Pumping Theorem for Context-free Languages)

Let L be a context-free language. There exists a positive integer N € Z+
(depending on L) such that for any z € L and |z| > N, there exist strings
u, v, w, x and y satisfying the following conditions:

z = UVWXy, (5.4)
[v|+ x| > N, (5.5)
wiwx'y € L, Vi > 0. (5.6)

The number N is called pumping number for the context-free language L.

106 Chapter 5 Push-Down Automata and Context-Free Languages

Like its counter-part for regular languages, the pumping theorem for
context-free languages provides a tool for demonstrating that languages are
not context-free.

5.5 Push-Down Automata and Context-Free Languages

Now we investigate the relationship between push-down automata and context-
free languages.

Theorem 5.2 A Language L is context-free if and only if it is acceptable
(recognisable) by some PDA. A Language L is deterministic context-free if
and only if it is acceptable (recognisable) by some DPDA.

Remark: It is interesting to note that nondeterminism does not add more
computing power to deterministic finite automata (DFAs). That is, DFAs
and NFAs accept exactly the same languages. In contrast, this is not the case
for push-down automata (PDA). There are languages that can be accepted
by NPDA but that cannot be accepted by DPDA. So the class of determinis-
tic context-free languages forms a proper subclass of the class of context-
free languages. Since the languages of logic, mathematics and programming
(with some exceptions) are readily described by context-free grammars, push-
down automata provide an appropriate mechanism for parsing sentences in
programming languages.

Finally we present some closure/nonclosure properties for context-free
languages.

Theorem 5.3 The family of context-free languages is closed under the op-
erations union, concatenation, and star-closure. That is

L, and Lo are context-free = L; ULy, L1Lo, L] are context-free. (5.7)

Theorem 5.4 The family of context-free languages is not closed under in-
tersection and complementation. That is

Ly and Ly are context-free == L; N Lo, L; are not context-free. (5.8)

Theorem 5.5 Let L; be a context-free language and Ly be a regular lan-
guage. Then Ly U Ls is context-free, but not necessarily regular. That is, the
family of context-free languages is closed under regular intersection.

5.6 Applications of Context-Free Languages

Context-free grammars and languages have important applications in program-
ming language definition and compiler construction. The most popular lan-
guage definition method, Backus-Naur Form (BNF), after John Backus, who

5.7 Turing Machines 107

invented the method and Peter Naur, who refined it for the programming lan-
guage ALGOL, directly corresponds to context-free grammar. In fact, many
parts of a ALGOL-like or Pascal-like programming languages are susceptible
to definition by restricted forms of context-free grammars.

Example 5.4 The following grammar (context-free grammar, but using
BNF notation) defines a language of even, non-negative integers.

(even-integer) := (even-digit)|(integer)(even-digit)
(integer) = (digit)|(digit) (integer)

(digit) = (even-digit)|({odd-digit)
(even-digit) m= 0/2]4/6]8

(odd-digit) m= 1)3]5]7]9

With this grammar, we can easily generate the even integers, and show
their parse trees, which are useful in syntax analysis and code generation in
compiler construction.

5.7 Turing Machines

As we have seen, finite automata (FA) can recognise regular languages (Lrgra),
but not non-regular languages, such as L = {a”b"® | n € N}, which is known
to be context-free language. PDA, however, can recognise all the context-
free languages Lcop generated by context-free grammars Gep. There are lan-
guages, however, say for example, context-sensitive languages Lcg, such as
L = {a"b"c" | n € N}, that cannot be generated by context-free gram-
mars. Fortunately, there are other machines, called Linear Bounded Au-
tomata (LBA), more powerful than push-down automata, that can recognise
all the languages generated by context-sensitive grammars Gcg. However,
LBA cannot recognise all languages generated by phrase-structure grammars
Gps. To avoid the limitations of the above mentioned three special types
of automata, a Turing Machine (TM), named after the British mathemati-
cian Alan Turing is used. Turing machines can recognise all the languages
generated by phrase-structure grammars, called the recursively enumerable
languages Lrg, that includes, of course, all the regular languages, context-
free languages and context-sensitive languages. In addition, Turing machines
can also model all the computations that can be performed on any computing
machine. In this section, we shall study Turing machines and their associated
languages Lrg.

A standard Turing machine (see Fig. 5.2) has the following features:

1) The Turing machine has a tape that is unbounded in both directions.

2) The Turing machine is deterministic.

3) There are no special input and output files.

108 Chapter 5 Push-Down Automata and Context-Free Languages

Definition 5.4 A Turing Machine (TM) is defined by
M= (Q7Z7Fa67quD7F) (59)

where

Q is a finite set of internal states;

Y is a finite set of symbols called the input alphabet, we assume that
rcr-{ok

I is a finite set of symbols called the tape alphabet;

d is the transition function, which is defined as

5:QxTI —QxT x{LR}; (5.10)

[0 € T is a special symbol called the blank;
qo € Q is the initial state;
F C Q is the set of final states.

Finite State
Control Unit

Tape Read-Write Head

Fig. 5.2 Standard Turing Machine.

5.8 Turing Machines as Language Accepters

A Turing machine can be viewed as an accepter in the following sense. A
string w is written on the tape, with blanks filling out the unused portions.
The machine is started in the initial state qo with the read-write head posi-
tioned on the leftmost symbol of w. If, after a sequence of moves, the Turing
machine enters a final state and halts, then w is considered to be accepted by
the Turing machine. We shall provide a precise definition for the above de-
scriptions and present some examples of how Turing machines accept strings
that can not be accepted by a DFA or PDA.

Definition 5.5 Let M = (Q,X,T,9,qo,[J,F) be a Turing machine. Then
the languages that can be accepted by M are defined by

L(M) ={w € X" : qow F wiqswa, for qf € F,and wy,we € T*}. (5.11)

5.8 Turing Machines as Language Accepters 109

Example 5.5 Let ¥ = {a,b}. Design a Turing machine that accepts the
language
L={a"b":n>1}.

As we have seen from the preceding section that this language is a context-free
language and can be accepted by a push-down automata. In this example,
we shall see that this language can be accepted by a Turing machine as well.
Let qg be the initial state, and suppose that we use the x’s to replace a’ and
y’s to replace b’. Then we can design the transitions as follows (see Fig. 5.3):

6((13; D) = (Q4; D7 R)
So finally, the designed Turing machine is as follows:
M= (Q’ Ev F7 67 q0, Dv F)
= ({qu qd1,92,93, q4}a {av b}7 {av b» XY, D}Ba qo, Dv {q4})'

x/x. R

Fig.5.3 A Turing Machine That Accepts {a"b”|n > 1}.

110 Chapter 5 Push-Down Automata and Context-Free Languages

For a particular input aaabbb, we have the following successive instanta-
neous descriptions (IDs) of the designed Turing machine:

oaaabbb - xqjaabbb
F xaqiabbb
F xaaq; bbb
F xaqoaybb
F xqoaaybb
F qoxaaybb
F xqpaaybb
F xxqiaybb
F xxaqybb
F xxayqibb
F xxaqayyb
F xxqoayyb
F xqoxayyb
F xxqoayyb
F xxxq1yyb
F xxxyqiyb
F xxxyyqib
F xxxyqayy
F xxxqayyy
F xxqoxyyy
F xxxqoyyy
F Xxxyqsyy

F xxxyyqsy
F xxxyyyqs]

F xxxyyyUqsd

At this point the Turing machine halts in a final state, so the string aaabbb
is accepted by the Turing machine. The above successive instantaneous de-
scriptions can also be showed diagrammatically as follows:

o

!
[TaJala]b[b]b] [

q

!
[Tx[a]alv[b][b] [[—

5.8 Turing Machines as Language Accepters

qi

!
[x[aJa]b[b[b] [[~

q

!
[x[aa]b[b[b] [[

Q2

!
[x[ala |y [b[b] []

Q2

|
[xJaJa]y[b]b] [

Q2

1
[x[ala]y [b[b]]]~

Qo

|
[x[aJaly[b]b] [~

qQ

!
[x[xJaly]b[b]] [

0

l
[x[xJaly]b[b]] [

L

!
[x[xJaly[b[b[][

Q2

1
[x[xJa]y[y[b] [[~

qz

!
[xTxJaly[y[b] [[~

q2
1

[x[x[aly [y 0] [

o

1
[xTxJa]y[y[b] [[~

Qi

l
[xTxTx[y[y[b[[~

111

112 Chapter 5 Push-Down Automata and Context-Free Languages

q
1
[TxTxTx[y[y[b[] [
q
""" |]x|x[x[y|y|hl | |
qz
1

q
!

1

=]

Q2
|

I]-\-le;lylyl}:] [|
Qo
1
qs
&
[CEEELEIIT=
q3

1
I]xlxlxlylylyl [|

q3
l

[Ix[x[x[y]y]y] [[~

Q4

[GEGLLODIT

Remark: The above example shows that Turing machines can accept lan-
guages that can be accepted by push-down automata. It is, of course the case
that Turing machines can accept languages that can be accepted by finite
automata. For example, the following regular language

Lrec = {w € {a,b}* : w contains the substring aba}.

can be accepted by both Turing machines and finite automata; Fig. 5.4 gives
a Turing machine and a finite automaton that accept the above language.

Example 5.6 Design a Turing machine that accepts the language
L={a"b"c": n>1}.

As we already know that this language is not a context-free language, thus it
cannot be accepted by a push-down automata. In this example, we shall show

5.8 Turing Machines as Language Accepters

b/b. R

Fig.5.4 A TM and a DFA that accept the language {a,b}"{aba}{a,b}".

that it is possible to design a Turing machine that accepts this language.

d(do,a) = (a1, x,R),
d(ar,a) = (a1,a,R),
d(q1,y) = (a1,y,R),
d(a1,b) = (q2,y, L),
d(qz,y) = (qz2,y,L),
d(q2,a) = (qz,a, L),

d(qz2,x) = (qo,x, R),
d(qo,y) = (as,y,R)

(g3, y) = (a3,y,R)

d(q3,0) = (qs,0,R)

We design the Turing as follows:

M= (Q7 Evr767q0a Da F)v

113

114 Chapter 5 Push-Down Automata and Context-Free Languages

where

Q = {qoa q1,92,93,94, q5}a

¥ ={a,b,c},
I'= {a"b7CX7Y7Z7D}7
F= {q4}a

0: QxT' — QxTI x{L,R} is defined by

d(do,a) = (a1, x,R),
d(a1,a) = (a1,,R),
d(a1,y) = (a1,y,R),
d(q1,b) = (qz2,y,R),
8(a2,2) = (a2,2,R),
8(qz,b) = (q2,b,R),
8(qz,¢) = (as,z, L),
d(aqs,a) = (g3, a, L),
(a3, b) = (a3, b,L),
d(as,y) = (a3, v, L),
d(as,z) = (a3, 2, L),
(a3, x) = (qo,xR),
d(do,y) = (as, ¥, R)
d(as,0) = (a5,0,R).

For the particular input aabbcc, we have the following successive instan-
taneous descriptions of the designed Turing machine:

qoaabbcc F xqiabbee
F xaqbbce
F xayqsbce
F xaybqacc
F xayqsbzc
F xaqsybzc
F xqsaybzc
F qsxaybzc
F xqoaybzc
F xxqiybzc
F xxygibzc
F xxyyqezc

5.9 Equivalence of Various Turing Machines 115

F xxyyzqac
F xxyyqszz
F xxyqsyzz
F xxqsyyzz
F xqsxyyzz
F xxqoyyzz
F xxyq4yzz
F xxyyqqzz
F xxyyzqqz
F xxyyzzq4s]
F xxyyzz[qs]

Fig. 5.5 gives a Turing machine that accepts {a"b"c” :n > 1}.

x/x. R

Fig.5.5 A Turing machine that accepts {a"b"c" : n > 1}.

Theorem 5.6 The class of Turing-acceptable languages properly includes
the classes of regular languages and context-free languages.

5.9 Equivalence of Various Turing Machines

We could, of course, list many more different types of Turing machines. How-
ever, all the different types of Turing machines have the same power. This
establishes the following important result about the equivalence of the various
Turing machines.

116 Chapter 5 Push-Down Automata and Context-Free Languages

Theorem 5.7 A Language L is accepted by a multitape, or multidimen-
sional, or nondeterministic, or probabilistic Turing Machine, if and only if it
is accepted by a standard Turing machine.

We now establish another important result for Turing machines.

Let ¥ = {a,b,c}. We said the set S = X7 is countable if we can find
an enumeration procedure that produces its elements in some order, e.g.,
dictionary order.

Theorem 5.8 The set of all Turing Machines, although infinite, is count-
able.

Theorem 5.9 Let S be an infinite countable set. Then its power set 25 is
not countable.

5.10 Recursively Enumerable Languages (Lgrg)

In this section, we shall study languages associated with Turing machines.

Definition 5.6 A language L over an input alphabet ¥ is said to be re-
cursively enumerable, denoted by Lgg, if there exists a Turing machine that
accepts it. Recursively enumerable languages are also called Turing accept-
able languages, or Turing recognisable languages.

Definition 5.7 A language L over an input alphabet ¥ is said to be recur-
sive, denoted by Lrgc, if there exists a Turing machine that accepts L, and
that halts on every input w € ¥*. Recursive languages are also called Turing
decidable languages, or recursively decidable languages; we shall discuss the
concept “decidable” in Chapter 7.

The term “recursive” comes from the theory of recursive functions. It is
clear that a recursive language is also a recursively enumerable, but on the
other hand, a recursively enumerable language is not necessarily recursive.
That is:

Theorem 5.10 There exists a recursively enumerable language that is not
recursive. That is

Lrec C LrEe. (5.12)

From a Turing machine point of view, both recursively enumerable languages
and recursive languages are Turing acceptable; the only difference between
the two types of languages is that recursive languages will halt on every input
w € X7F; whereas recursively enumerable languages may not halt on every
input w € X%, that is, they may fall into an infinite loop on some input
we Xt

We list in the following some important properties about recursive and
recursively enumerable languages:

5.11 Context-Sensitive Languages (Lcgs) 117

Theorem 5.11 A language L is recursive if and only if both L and its
complement L are recursively enumerable.

Theorem 5.12 There is a recursively enumerable language L. whose comple-
ment L is not recursively enumerable.

Interestingly, recursively enumerable languages are not the highest lan-
guages; there exist languages that cannot be accepted by any Turing machine:

Theorem 5.13 For any nonempty alphabet ¥, there exist languages over
Y. that are not recursively enumerable.

There is yet another approach to studying Turing acceptable languages,
namely, the grammatical approach:

Definition 5.8 A grammar G = (V,T,S,P) is called a phrase-structure
grammar or a unrestricted grammar if all productions have the form

X =y, (5.13)

where x € (VUT)T, and y € (VUT)*.

Definition 5.9 Any language generated by an unrestricted grammar is re-
cursively enumerable.

Theorem 5.14 For every recursively enumerable language L, there is an
unrestricted grammar G, such that L = L(G).

5.11 Context-Sensitive Languages (Lcg)

The context-sensitive grammar represents an intermediate step between
context-free grammars and unrestricted grammars. No restrictions are placed
on the left-hand side of a production, but the length of the right-hand side
is required to be at least as long as the left.

Definition 5.10 A phrase-structure grammar G = (V, T, S, P) is called a
context-sensitive grammar, denoted by Gymcs, if all productions have the
form

X =y, (5.14)

where x,y € (VUT)", and length (x) < length (y) (or briefly as [x| < |y|).

A language L is called a context-sensitive language, denoted by Lcsr,,
if there exists a context-sensitive grammar G, such that L = L(G) or L =
L(G)UA.

Example 5.7 Design a context-sensitive grammar to generate the context-
sensitive language

L ={a"b"c": n > 0}.

118 Chapter 5 Push-Down Automata and Context-Free Languages

We can construct the grammar G(V, T, S, P) with the following productions:

(i) S — abc
(ii) S — aAbc
(ili) A — abC
(iv) A — aAbC
(v) Cb—bC
(vi) Cc — ce.

By Definition 5.10, it is context-sensitive. Some typical derivations in this
grammar are:

S g aAbc
0 aaAbChe
S g aAbc g aaabCbCbc
" B aabChe L aaabbCChe
S = abc))
L = aabbCec = aaabbCbCc
Derivation (1) (vi)
:; aabbcc = aaabbbCCc
Derivation (2) g aaabbbCcc

g aaabbbcce

Derivation (3)

We have examined several variants of the standard Turing machines that
do not alter the set of languages accepted by the machines. Restricting the
amount of available tape for computation decreases the capabilities of a Tur-
ing machine computation. A linear bounded automata is a restricted Turing
machine in which the amount of available tape is determined by the length
of the input string. The input alphabet contains two symbols “(” and “)”,
that designate the left and right boundaries of the tape.

Definition 5.11 A linear bounded automaton (LBA) is an algebraic struc-
ture
M= (QyE,F76,q0;<7>;F)7 (515)

where Q,X,I,9,qg, and F are the same as for a nondeterministic Turing
machine. The symbols (and) are distinguished elements of T".

Theorem 5.15 For every context-sensitive language L, denoted by Lcg, not
including A, there is some LBA, M, that accepts L¢g. That is, Les = L(M).

Theorem 5.16 If a language L is accepted by some LBA, M, then there
exists a context-sensitive grammar G that accepts L. That is L = L(G).

5.12 Hierarchy of Machines, Grammars and Languages 119

Theorem 5.17 Every context-sensitive language L is recursive. That is,
VLcs € Lrec.

Theorem 5.18 There exists a recursive language that is not context-
sensitive. That is, Lcs C Lrgc.

5.12 Hierarchy of Machines, Grammars and Languages

In this section, we shall study the Chomsky hierarchy of formal languages
and their generating grammars and their corresponding machines.

5.12.1 Hierarchy of Machines

All the classes (families) of machines we have studied so far are finite (state)
machines, but some of the machines have exactly the same power (here by
the same power, we mean they accept exactly the same language), whilst
some of the machines have more power than others. For example, deter-
ministic finite automata (DFA) have the same power as nondeterministic
finite automata (NFA); nondeterministic push-down automata (NPDA) have
more power than deterministic push-down automata (DPDA); push-down
automata (PDA) with two push-down stores have more power than the push-
down automata (PDA) with only one push-down store; but push-down au-
tomata (PDA) with more than two push-down stores have the same power as
push-down automata with two push-down stores. Interestingly enough, push-
down automata with two or more push-down stores have the same power as
Turing machines; All different types of Turing machines (such as determin-
istic, nondeterministic, probabilistic, multitape and multidimensional, etc.)
have the same power. However, restricting the amount of available tape for
computation decreases the capabilities of a Turing machine; linear bounded
automata is such a type of restricted Turing machines in which the amount
of available tape is determined by the length of the input string. The relation
between the various classes of finite machines over the same alphabet ¥ can
be summarized as follows:

Deterministic Finite Automata (DFA)

)

Nondeterministic Finite Automata (NFA)

N

Deterministic Push-Down Automata (DPDA)

N

120 Chapter 5 Push-Down Automata and Context-Free Languages

Nondeterministic Push-Down Automata (NPDA)

N

Linear-Bounded Automata (LBA)
N
Deterministic Push-Down Automata (DPDA)
with two push-down stores
(3
Nondeterministic Push-Down Automata (NPDA)
with two push-down stores

)

Deterministic Turing Machines (DTM)

0

Nondeterministic Turing Machines (NTM)

)

Probabilistic Turing Machines (PTM)

)

Multitape Turing Machines

)

Multidimensional Turing Machines

So, there are essentially four main classes of machines: finite automata (FA),
push-down automata (PDA), linear-bounded automata (LBA) and Turing
ma-chines (TM). The hierarchy of these classes of machines can be described
as follows:

Finite Automata (FA)

N
Push-Down Automata (PDA)

N

Linear-Bounded Automata (LBA)

N
Turing Machines (TM)

5.12.2 Hierarchy of Grammars and Languages

Now we move on to the study of the Chomsky hierarchy of formal grammars
and their generating languages. First let us recall that two grammars are

5.13 Relations Among Machines, Languages and Grammars 121

called equivalent if they generate the same language.

Definition 5.12 A generative grammar G = (V,T,S,P) is said to be of
type i if it satisfies the corresponding restrictions in the following list:

Type 0: No restrictions. That is, every production in P is just in the
general form x — y, where x € (VUT)" and y € (VUT)*. Type 0 grammars
are often called unrestricted grammars, or phrase-structure grammars, de-
noted by Gpg. The languages generated by Type 0 grammars are called Type
0 languages, or recursively enumerable languages, denoted by Lrg.

Type 1: Every production in P has the form x — y, where x,y €
(VUT)*", and |x| < |y|. Type 1 grammars are also called context-sensitive
grammars, denoted by G¢cg. The languages generated by Type 1 grammars
are called Type 1 languages, or context-sensitive languages, denoted by Lcs.

Type 2: Every production in P has the form A — x, where A € V,
and x € (VUT)*. Type 2 grammars are also called context-free grammars,
denoted by Gep. The languages generated by Type 2 grammars are called
Type 2 languages, or context-free languages, denoted by Lcp.

Type 3: Every production in P has the form either A — Bx and A — x,
or A — xB and A — x, where A,B € V, and x € T*. Type 3 grammars
are called regular grammars, denoted by Grgg. The languages generated by
Type 3 grammars are called Type 3 languages, or regular languages, denoted
by Lrrc.

We have, in fact, already studied all the above listed grammars and their
generating languages in the previous sections of this chapter. What we are
interested in here is the hierarchy of the grammars and their corresponding
languages, which may be described as follows:

Type 0 Grammars (Gps) < Type 0 Languages (Lrg)

N N

Type 1 Grammars (Gcs) < Type 1 Languages (L¢s)

N N

Type 2 Grammars (Gerp) < Type 2 Languages (Ler)

N N

Type 3 Grammars (Grrg) < Type 3 Languages (Lrrcg)

5.13 Relations Among Machines, Languages and
Grammars

We have already seen that languages and grammars are actually equivalent
concepts; on one hand, given a language, we can find the grammar which
generates the language; on the other hand, given a grammar, we can find the
set of languages generated by the given grammar. Remarkably enough, lan-

122 Chapter 5 Push-Down Automata and Context-Free Languages

guages also have a one-to-one correspondence with the various machines.
Fig. 5.6 shows the hierarchical relationships between various formal lan-
guages and their accepting machines. That is, regular languages (Lrrg)
generated by regular grammars (Grpg) are acceptable by finite-state au-
tomata (FA), context-free languages (Lcr) generated by context-free gram-
mars (Ger) are acceptable by push-down automata (Ppy), context-sensitive
languages (Lcg) generated by context-sensitive grammars (Geg) are accept-
able by linear bounded automata (Lpa), and recursively enumerable lan-
guages (Lgrg) generated by phrase-structure grammars (Gpg) are acceptable
by Turing machines. Thus, we finally arrive at the hierarchical relations be-
tween various languages, grammars and machines as follows:

No Corresponding Accepting Machines

Accepted by TM

. ; General Languages
(Turing Machines) guage

(No Grammatical Rules)
Typel Languages Lpg

(Type0 Grammars Gpg)

Accepted by LBA

(Linear Bounded
Automata)

Typel Languages L¢g
(Typel Grammars Ggg)

Type2 Languages Lcr
(Type2 Grammars Ger)

Type3 Languages Lrgg
Accepted by PDA (Type3 Grammars Ggeg)

(Push-Down Automata)

Accepted by FA
(Finite-State Automata)

Fig. 5.6 Hierarchical relations among various languages, grammars and their Ma-
chines.

Grammars Grea C Ger C Ges C Ggre
(i T (i T
Languages Lreg € Lo C Les C Lge

))))

Machines FA <¢ PDA ¢ LBA ¢ TM

5.13 Relations Among Machines, Languages and Grammars 123

Literally, the relationships between the various grammars, languages and
machines can also be summarized as follows:

Grammars Languages Accepting Machines
Type 0 grammars Recursively Turing Machines

(or phrase-structure grammars, enumerable

unrestricted grammars) languages

Type 1 grammars Context- Linear-bounded au-
(or context-sensitive grammars, sensitive tomata

monotonic grammars) languages

Type 2 grammars Context-free Push-down automata
(or context-free grammars) languages

Type 3 grammars Regular Finite automata

(or regular grammars, languages

linear grammars)

If we wish to include some other (small) language families such as determin-
istic context-free languages and recursive languages, we will then arrive at
an extended hierarchy as shown in Fig. 5.7.

General Languages
Recursively Enumerable Languages

Recursive Languages

Context-Sensitive Languages
Context-Free Languages

Deterministic Context-Free Languages

Regular Languages

Fig. 5.7 Extended hierarchy of formal languages.

124 Chapter 5 Push-Down Automata and Context-Free Languages

Problems

Problem 5.1 Use the above pumping theorem to show that
L ={a"b"c" :n >0}

is not a context-free language.

Problem 5.2 Show that the family of context-free languages is not closed
under the operation difference in general, but it is closed under regular
difference, that is,

L; is regular are Lo is context-free = L; — Lo is context-free.

Problem 5.3 Show that the Turing machine constructed in Example 5.5
cannot accept the language L = {a"b™ : m > 1,n > m}.

Problem 5.4 Construct Turing machines that accept the languages Ly =
{a"b® : n>1} and Ly = {a?" :n > 1} over ¥ = {a, b}.

Problem 5.5 Construct a Turing machine that accepts the language

L={a"b™c": k,m,n>0,k=mork=mnorm=n}

over ¥ = {a,b,c}.
Problem 5.6 Find a context-sensitive grammar for the languages L; =
{a"b"a?" : n > 0} and Ly = {a"b™c"d™ : n,m > 0}.

References

[1] Yan SY (1988) Introduction to formal languages and machine computation,
World Scientific, New Jersey. (The materials in this chapter are mainly based
on this book of the second author.)

[2] Hopcraft J E, Motwani R, Ullman J D (2006) Introduction to automata the-
ory, languages and computation, 3rd end. Addison-Wesley, Reading, Mass.
(A general reference in push-down automata and context-free languages.)

Chapter 6 Context-Free Grammars

Language is a process of free creation, its law and prin-
ciples are fized, but the manner in which the principles
of generation are used is free and infinitely varied. Even
the interpretation and use of words involves a process
of free creation.

Noam Chomsky

6.1 Motivation of the Chapter

In the compilation of source programs, the second phase of the process is the
syntactical analysis. Based on the lexical analysis, the syntactical analysis
checks the correctness of the source programs in terms of the grammar of
the language used. And it is well-known that most of the properties of the
programming languages are context-free. Therefore, naturally if we want to
check whether a program is correct or not in terms of syntax, we should check
if the syntax of the program is consistent with context-free, at least for most
of it. In order to do so, the basis is to know about the context-free grammars.
This chapter and Chapter 5 together form the preparation of the syntactical
analysis.

The context-free grammars generate the context-free languages, and the
context-free languages were initially introduced to provide a model of nat-
ural languages. Hence they are very important for understanding natural
language. Later the investigation of programming languages will show that
they are equally important in the area of programming language. We can
even say that the importance of programming languages is even more vital
than natural languages. Because in common conversation between people,
it is not so strictly obeying the rules of the context-free grammar so that
the counterpart of the conversation may still understand the meaning or in-
tention of the speaker. But for computer, it is not the case. Even a minor
mistake in program will affect the understanding of the compiler, so that it
will not be able to correctly compile the program and the program will not be
executable. After all, at the present time, the computer is not as intelligent
as human.

126 Chapter 6 Context-Free Grammars

Therefore, in one word, the motivation of the chapter is, together with the
last chapter, to provide sufficient knowledge for the next chapter —syntax
analysis. The three chapters provide the core knowledge for the whole course.

6.2 Context-Free Grammars

In Chapter 2, we have briefly introduced context-free grammar, i.e., Type-2
grammar. In this chapter, we will concentrate on the investigation of this
type of grammars, especially the aspects related to syntactical analysis. For
the sake of completeness, we will mention other types of grammars too in the
beginning of our discussion.

We refer to symbols Vy and V1 as nonterminal alphabet and terminal
alphabet respectively, we denote V = Vy UV, and they satisfies that Vy N
Vr = &. We refer to the symbols in Vy and Vp as nonterminal symbols (or
simply nonterminals) and terminal symbols (or simply terminals). Then we
have the following definition:

Definition 6.1 Let G = (Vn, Vr, S, P) where S is the distinguished or start
symbol of the grammar, and P is the set of productions. The production has
the form of a — 3, we denote m = o — § € P. We say that it is generative if
a (a string) contains at least one nonterminal symbol, and it is analytic if 3
contains at least one such symbol. It is clear that m is a generative production
if and only if its reverse m~1, or p — a is analytic.

Example 6.1 The productions in the following grammar
G=({XY,Z}, {x, v}, X, {xxX — xyXVYx, XxY — &, Z — yyx})
are classified as follows:
p: xxX — xyXYx analytic and generayive
m: XxY — ¢ generative
o Z — yyx generative

Definition 6.2 A grammar G is generative if all its productions are gener-
ative. G is analytic if all its productions are analytic.

If G is a generative grammar, then the language generated by G relative
to its terminal alphabet

Lo(G| V) ={a eV} | S:;Nx} (6.1)

will be referred to the language generated by G. To simplify the notation, we
just denote L(G) = {a € V1 | S==a}. If G is an analytic grammar, then
G

the language recognized by G relative to its terminal alphabet

Lg(G | VT) = {O(eVr | OL:;>S} (62)

6.2 Context-Free Grammars 127

will be referred to the language recognized by G.

If there is no risk of confusion, we may denote both the language gener-
ated by a generative grammar G, or the language recognized by an analytic
grammar G, by L(G). From now on, we just focus predominantly on genera-
tive grammars. They are classified according to the form of their productions.
The term grammar will be used for generative grammar in order to simplify
the exposition.

Definition 6.3 A derivation og = o == o, in a generative gram-
mar G = (Vn, Vr, S, P) is complete if a € V.

If S== a, we refer to a as a sentential form of G.
G

Clearly, every word in L(G) is a sentential form of G that contains no
nonterminal symbols.

Definition 6.4 Let Vy, V1 be two disjoint alphabets. A production a —
is

1) a context-free production on Vy, Vy if a consists of one nonterminal
symbol A and f € (Vx UVT)*;

2) a context-sensitive production if o = o’Ad” and f = a’ya” where
AeVy, oo’ ye (VNUVD)* and y # &.

Example 6.2 Let Vy = {X,Y,Z} and V1 = {x,y}. The following produc-
tions are of context-free over Vy and Vr:

T : X — xyXYX,
m o Y — g,

ot 2 — yyx

while the production m3: xYXy—xyXZXy is context-sensitive. Note that
7t involves replacing y by yXZ when Y is surrounded by x at left and Xy
at the right, that is, Y occurs in the context of x and Xy. This is why it
is called context-sensitive. Context-free productions of the form X — € are
called null productions or erasure productions. The effect of X — ¢ is to erase
the symbol X.

A grammar without erasure production is said to be e-free.

The classes of generative grammars that correspond to the restriction on
productions described in Definition 6.4 are introduced next. This classifica-
tion is due to Noam Chomsky and it is called Chomsky hierarchy.

Definition 6.5[1] Let G = (Vn, Vr,S,P) be a grammar.

1) Every grammar is a grammar of Type 0. That means that Type 0
grammar is most common one. There is no any restriction over it.

2) G is Type 1 (or, context-sensitive) if its productions contain context-
sensitive one with the possible exception of a production S — ¢; If P contains
S — g, then S does not occur in the right part of any production of G.

3) G is Type 2 (or, context-free) if all its productions are context-free.

128 Chapter 6 Context-Free Grammars

4) G is Type 3 (or, regular) if every production has the form X — uY or
X — u, where X, Y € Vy and u € Vi.

In addition, we shall say that G is a length-increasing grammar if all its
productions length-increasing (due to | a |[<| f | in & —) with the possible
exception of a production S — e.

It is clear that every grammar of Type 3 is also of Type 2, every grammar
of Type 2 is also of Type 1, and every grammar of Type 1 is also of Type 0
and every context-sensitive grammar is also length-increasing.

For Type 3 grammars, productions may include those of the form X — Y,
or X — &.

If G = (Vn, V7,5, P) is a grammar, then we use upper case of letters with
or without subscripts, to denote single nonterminals, lower case of letters in
the alphabet (u,v,w,x,y,z) to denote words in V%, and lower case of Greek
letters to denote words in (Vn U Vp)*. With this convention, the language
generated by G is given by

L(G)=(ueVy]|S :;>u) (6.3)
Definition 6.6 Let I be a class of grammars. A language L is a I-language
if there is a grammar G in T" such that L(G) = L.

For example, L is a context-free language if there exists a context-free
grammar G such that L = L(G). Similarly, K is a length-increasing language
if there is a grammar G; such as that K = L(Gy), etc. We denote by L; the
class of languages generated by grammars of type i for 0 < i < 3. Clearly, we
have L3 C L, C L; and L; C Lg. Actually, they are

Ly C Ly CL; C L. (6.4)

As with the grammars, the corresponding classes of language L; are referred
to as the Chomsky hierarchy. All the inclusions can be shown to be strict.
Also, it is clear that every language in L; is length-increasing. Actually, we
shall prove that L; coincides with the class of length-increasing languages.

Example 6.3 The language generated by the context-free grammar
G = ({S},{a,b},S,{S — &S — aSb})
is {a"b™ | n € N}.

We now prove it by induction on n > 0 that a”b" € L(G) for every n € N.

The case n = 0 follows from the existence of the production my: S — €

in G. Suppose now that a"b® € L(G), so S== a"b". Using the production
G

S — aSb we obtain the derivation
S== aSh== ... == aa"b"b = a"~H"*!
G G G

that shows that a®*'b"*! € L(G).

6.2 Context-Free Grammars 129

Conversely, we prove by induction on the length m > 1 of the derivation
S == u that u has the form u = a®*b" for some n € N.
G

If m = 1, S==u implies x = ¢ since S — ¢ is the single production that
G

erases S. Therefore, x = ab" for n = 0.
Suppose that the statement holds for derivation of length m and let S == u
G

be a derivation of length m+1. If we write the step of this derivation explicitly
we have .
S= aSb=u,
G G

so u = avb where S==v is a derivation of length m. By the induction
G

hypothesis, y = a®b® for some n € N, so u = a®*'b"*! that concludes our
argument.

Example 6.4 Consider the length-increasing grammar
G=({S,X,Y},{a,b.c},s,P),

where P consists of the following productions:

7 : S — abg, 71 0 S — aXbe,
7ty : Xb — bX, m3 : Xc — Ybee,
7ty :bY — Yb, 75 aY — aaX,

TTg : aY — aa.

We claim that L(G) = {a"b"c" | n € P}.

We have the induction basis abc € L(G) that corresponds to n = 1. For
a’b"c™ where n > 1, the symbol Y must be generated starting from S, and
the first production applied is S — aXbc.

Note that for every i > 1 we have alXblc! == al T Xbi+1c!+!, Actually, we
have

1
a'Xb'c' = a'b'Xc!
T2
T)
— alb'Ybclt!
e

1 . . .
a’Yb"H C1+1

Ty

=Ly it X (6.5)

5
We claim that a word o contains the infix aY (which allows us to apply the
production ms) and S== « if and only if a has the form a = alYbi=lcit!
for some i > 1. An easy argument by induction on i > 1 shows that if
a = a'Yb'tlc¢! ! then S == a. We need to prove only the inverse implication.
This can be done by strong induction on the length n > 3 of the derivation
S=a.

130 Chapter 6 Context-Free Grammars

The shortest derivation that allows us to generate the word containing
the infix aY is

S = aXbc = abXc = abYbcc = aYb?c?, (6.6)

and this word has the prescribed form. Suppose now that for derivation
shorter than n the condition is satisfied, and let S== o be a derivation

of length n such that o contains the infix aY. By theG induction hypothe-
sis the previous word in this derivation that contains the infix aY has the
form o’ = alYbitlcit!, To proceed from of we must apply the production s
and replace y by X. Thus we have

S=alYb Tt = al T X Tl t, (6.7)
G G

Next, the symbol x must be shifted to the right using the production s,
transform itself into an Y (when in touch with the ¢§) and Y must be shifted
to the left to create the infix aY. This can happen only through the applica-
tion of the productions w3 and 7wy as follows:
AITIXpitlci+l % A TIpitixeit!
w2
L iRty eit2
3
4 A TlYBI22, (6.8)
T4
That proves that a has the desired form. Therefore, all the words in the
language L(G) has the form a"b”c".

Although this grammar is not context-sensitive (only productions g, 7y,
75, and 7 are context-sensitive), we will exhibit a context-sensitive grammar
for this language. Moreover, we will show that this language is not context-
free. So it will serve to show that Lo C L.

Now we turn our attention to real programming language.

Example 6.5 Suppose that E stands for expression, T stands for term, F
stands for factor, then the following productions will generate the arithmetic
expressions that consist of +, —, x, /.

E—-E+T,
E—-E-T,
E—T,
T—TxF,
T —T/F,
T —F,
F— (B),
F—alb]ec

6.2 Context-Free Grammars 131

The language which the grammar recognizes is all the arithmetic expressions
that consist of operators 4+, —, x and / and three variables a, b, and c.
That means that all the arithmetic expressions can be derived from these
productions step by step. For example, the arithmetic expression

(axb+bxct+cexa)/(a+b+c)
may be derived from the productions above step by step

E—-T
— T/F
— F/F

— (E)/F

— (E+T)/F

— (E+T+T)/F

- (T+T+T)/F

- (TxF+T+T)/F

— (FxF+T+T)/F

— (axF4+T+T)/F
—(axb+TxF+T)/F
—(axb+FxF+T)/F
— (axb+bxF+T)/F
— (axb+bxc+T)/F
—(axb+bxc+F)/F
— (axb+bxct+cxa
= (
= (
—(
= (
= (
—(
—(
= (
= (
= (

)/F
axb+bxc+cxa)/(E)
axb+bxc+cxa)/(E+T)
axb+bxct+cexa)/(E+T+T)
axb+bxct+cexa)/(T+T+T)
axb+bxct+cecxa)/(F+T+T)
— (axb+bxc+exa)/(a+T+T)
— (axb+bxc+exa)/la+F+T)
axb+bxc+cxa)/(a+b+T)
axb+bxc+cxa)/(a+b+TF)
axb+bxc+cxa)/(a+b+c).

Therefore, we may claim that (axb+b xc+c¢xa)/(a+b+c) is a sentence
which the grammar aforementioned recognizes.

In the derivation above, the reader may find out that in each step or
each derivation, only one nonterminal was replaced or only one action was

132 Chapter 6 Context-Free Grammars

done. And the step always changes the leftmost nonterminal either by a new
nonterminal or by a terminal. The derivation done in this manner is called
leftmost derivation. On the other hand, if the derivation always changes the
rightmost nonterminal, then the derivation is called rightmost derivation.
The so-called change nonterminal, actually it replaces the nonterminal with
the right part of the production of which the left part is the nonterminal.

Using derivation tree may make the derivation more directly perceived
through the sense. Corresponding to the derivation given above, we draw the
derivation tree as shown in Fig. 6.1.

T
I:/ \)
LN 1N
(E) E + 1
}-‘/ il—\l l/i\l Il"
1IN AINE L
E + T T xXFT F ¢
oI b
T T X FF a F b
ZINT 1 |
T X FF cc a
| b
F b b
|

Fig.6.1 Derivation Tree.

The derivation tree may be formally described as follows:

Let G = (Vn, V1, S, P) be a context-free grammar. The derivation tree of
a sentence of G is as follows:

1) Every vertex has a label that is a symbol in Vy UV Ue.

2) The label of the root is S.

3) If a vertex is an inner vertex and its label is A, then A € V. In other
words, All the inner vertices of the tree are of nonterminals.

4) If a vertex n has label A and vertices ny, no, ..., ng are the subnodes
of n from left to right, and their labels are Xy, Xs, ..., Xy respectively. Then
A — XX, Xy (6.9)

must be a production of P.

5) If a vertex n has the label €, then n must be a leaf, and it is the only
child of its parent node.

6) All the leaf nodes of the tree from left to right form the sentence.

6.2 Context-Free Grammars 133

In the formal description of the derivation tree, we did not involve leftmost
derivation. Actually, the derivation tree may also be constructed through the
rightmost derivation. The key is whether the leftmost derivation tree is the
same as the rightmost derivation tree? It may also be asked whether the
leftmost derivation and rightmost derivation of a sentence are the same? as
derivation completely corresponds to derivation tree.

Definition 6.7 [2] Grammar G = (Vx, V1, S, P) is called non-ambiguous if
for all the sentences which it recognizes each only has one derivation tree.

There exists ambiguous grammar. The following is an example of ambigu-
ous gramimar.

Example 6.6 The production set P of grammar G = (Vn, VT, S,P) con-
sists of the following productions:

E—-E+T,
E—-T,
T—TxF,
T —F,
F o (E),
F—al|b]lec.

For example, sentence (expression) a X b +b x ¢ 4+ ¢ x a has two different
derivation trees as shown in Fig. 6.2.

E + E E
/N LN
LA s £ &
SN LN /N
TXF TXF F a F b T x F I X F
b | lr | ! L
F b F ¢ C a l C l
ill }1 b c
(a) (b)

Fig. 6.2 The two derivation trees of a x b+ b X c+c¢ X a.

For two derivation trees, it looks like that their derivations are the same.

E—-E+E
—E+E+E
—-T+E+E

134 Chapter 6 Context-Free Grammars

—-TxF+E+E
—-FxF+E+E
—axF4+E+E
—axb+E+E
—axb+T+E
—axb+TxF+E
—axb+FxF