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« L'accés au savoir n'est plus le seul fait des scientifiques. La connaissance
devient le bien sans cesse grandissant d’'un nombre croissant d'individus : des
individus plus humains, conscients des possibilités de la science contemporaine,
exigeant sans cesse plus fermement de pouvoir en bénéficier. »

Willy Peers (1924-1984)

Gynécologue (ULB, 1956), militant pour
'accouchement sans douleur et la législation de
'avortement.



Le label FSC: la garantie d’'une gestion responsable des foréts
Les Presses Universitaires de Bruxelles s'’engagent !

Les PU.B.impriment depuis de nombreuses années les syllabus sur du papier recyclé. Les différences de qualité
constatées au niveau des papiers recyclés ont cependant poussé les P.U.B. a se tourner vers un papier de meilleure
qualité et surtout porteur du label FSC.

Sensibles aux objectifs du FSC et soucieuses d’adopter une démarche responsable, les P.U.B. se sont conformé aux
exigences du FSC et ont obtenu en avril 2010 la certification FSC (n° de certificat COC spécifique aux P.U.B. : CU-COC-
809718-HA).

Seule l'obtention de ce certificat autorise les PU.B. a utiliser le label FSC selon des régles strictes. Fortes de leur
engagement en faveur de la gestion durable des foréts, les P.U.B. souhaitent dorénavant imprimer tous les syllabus
sur du papier certifié FSC. Le label FSC repris sur les syllabus vous en donnera la garantie.

Qu'est-ce que le FSC?

FSC signifie “Forest Stewardship Council” ou
“Conseil de bonne gestion forestiere”. Il s'agit d'une
organisation internationale, non gouvernementale,
a but non lucratif qui a pour mission de promouvoir
dans le monde une gestion responsable et durable
des foréts.

Se basant sur dix principes et critéres généraux,

le FSC veille a travers la certification des foréts au
respect des exigences sociales, écologiques et
économiques tres poussées sur le plan de la gestion
forestiere.

Les 10 principes et critéres du FSC

1.

|

i’

N

L'aménagement forestier doit respecter les lois nationales,
les traités internationaux et les principes et critéres du FSC.
La sécurité fonciere et les droits d'usage a long terme sur
les terres et les ressources forestiéres doivent étre claire-
ment définis, documentés et |[également établis.

Les droits Iégaux et coutumiers des peuples indigenes a la
propriété, a l'usage et a la gestion de leurs territoires et de
leurs ressources doivent étre reconnus et respectés.

La gestion forestiere doit maintenir ou améliorer le bien-
étre social et économique a long terme des travailleurs fo-
restiers et des communautés locales.

La.gestion forestiere doit encourager I'utilisation efficace
des multiples produits et services de la forét pour en ga-
rantir la viabilité économique ainsi qu'une large variété de
prestations environnementales et sociales.

[——

Quelles garanties ?

Le systeme FSC repose également sur la tracabilité du
produit depuis la forét certifiée dont il est issu jusqu’au
consommateur final. Cette tracabilité est assurée

par le controle de chaque maillon de la chaine de
commercialisation/transformation du produit (Chaine
de Contréle : Chain of Custody — COC). Dans le cas du
papier et afin de garantir cette tracabilité, aussi bien le
producteur de pate a papier que le fabricant de papier,
le grossiste et I'imprimeur doivent étre controlés.

Ces controles sont effectués par des organismes de
certification indépendants.

6. Les fonctions écologiques et la diversité biologique de la
forét doivent étre protégées.

7. Un plan d'aménagement doit étre écrit et mis en ceuvre.
Il doit clairement indiquer les objectifs poursuivis et les
moyens d'y parvenir.

8. Un suivi doit étre effectué afin d'évaluer les impacts de la
gestion forestiére.

9. Les foréts a haute valeur pour la conservation doivent étre
maintenues (par ex : les foréts dont la richesse biologique
est exceptionnelle ou qui présentent un intérét culturel ou
religieux important). La gestion de ces foréts doit toujours
étre fondée sur un principe de précaution.

10.Les plantations doivent compléter les foréts naturelles,
mais ne peuvent pas les remplacer. Elles doivent réduire
la pression exercée sur les foréts naturelles et promouvoir
leur restauration et leur conservation. Les principesde 1 a
9 s'appliquent également aux plantations.

® Lelabel FSC apposé sur des produits
en papier ou en bois apporte la garan-
tie que ceux-ci proviennent de foréts
gérées selon les principes et critéres
FSC.

F SC ® FSC A.C. FSC-SECR-0045

FSC, le label du bois et du papier responsable

Plus d’informations ?
www.fsc.be

A la recherche de produits FSC ?
www.jecherchedufsc.be
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Chapter 1: Introduction

0 Aims of the course

e Order of the chapters

e What is language theory?
G What is a compiler?

e Compilation phases

@ Some reminders and mathematical notions

0 Aims of the course

Q Order of the chapters

o What is language theory?
0 What is a compiler?

Q Compilation phases

Q Some reminders and mathematical notions
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Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

What are you going to learn in this course?

@ Reminder on
@ how to formally define a model to describe

@ alanguage (programming or other)
@ a (computer) system

e How to deduce properties on this model

© What is

e acompiler?
e atool for data processing?

© The notion of metatool = tool to build other tools
Example: generator of (part of) a compiler

© How to build a compiler or a tool for data processing

e through hard coding
e through the use of tools

Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Approach

Show the scientific and engineering approach, i.e.

@ Understanding the (mathematical / informatical) tools available to solve
the problem

@ Learning to use these tools
© Designing a system using these tools
©Q Implementing this system

The tools used here are
@ formalisms to define a language or model a system
@ generators of parts of compilers
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Outline

Aims of the course

Order of the chapters

What

is language theory?
What is a compiler?
Compilation phases

Some reminders and mathematical notions

Q Order of the chapters

Order of the chapters

1. Introduction

\ 4

v

2. Regular languages
and finite automata

4 Grammars

\ 4

N

5 Regular Grammars

3. Scanners

6 Context-free
grammars

\ 4

»| 7. Pushdown automata

DR

8. Parsers

P N

10. LR(k) parsers

9. LL(k) parsers )

13. Turing machines

N rd

11. Semantic analysis

v

12. Code generation

Legend :

Ais a prerequisite of B

Examples of reading
sequences
@ Everything: 1-13
in sequence

@ Parts pertaining to
“‘compilers”:
1-2-3-4-6-7-8-9-
10-11-12

@ Parts pertaining to

“language theory”:
1-2-4-5-6-7-13
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Outline

e What is language theory?

11

The world of la

Goal of language theory
Formally understand and process languages as a way to communicate. l

Definition (Language - word (string))
@ A language is a set of words.
@ A word (or token or string) is a sequence of symbols in a given alphabet.
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Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Alphabets, words, languages

Example (alphabets, words and languages)

Alphabet Words Languages
> ={0, 1} €,0,1,00, 01 {00,01,1,0,¢},{e}, 0
{a,b,c,..., 2z} bonjour, ca, va {bonjour, ca, va, €}
{"héron”, “petit”, “pas” | “héron” “petit” “pas” {€, “héron” “petit” “pas”}
{a, B,7,6, u, v, 7,0, T} Tayado {e,Tayada}
{0, 1} €,01,10 {¢,01,10, 0011, 0101, ...}
Notations

We usually use the standard notations:

@ Alphabet: >
@ Words: x,y,z, ...
@ Languages: L, L, ...

Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

The world of language theory (cont’d)

Studied

(example: ¥ ={0,1})
(example: x = 0011)
(example: L = {¢,00,11})

@ The notion of (formal) grammar which defines (the syntax of) a language,

@ The notion of automaton which allows us to determine if a word belongs
to a language (and therefore to define a language as the set of

recognized words),

@ The notion of regular expression which allows us to denote a language.
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Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Motivations and applications

Practical applications of language theory
@ formal definition of syntax and semantics of (programming) languages,
@ compiler design,

@ abstract modelling of systems (computers, electronics, biological
systems, ...)

Theoretical motivations
Related to:

@ computability theory (which determines in particular which problems are
solvable by a computer)

@ complexity theory which studies (mainly time and space) resources
needed to solve a problem

Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Outline

Q@ What is a compiler?
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General definition

Definition (Compiler)
A compiler is a computer program which is a translator CLLSC_> Lo with

@ L. the language used to write the compiler itself
Q Ls the source language to compile
©Q Lo the target language

Example (for CfSCQLO)
Lc Ls Lo
C RISC Assembler RISC Assembler
C C P7 Assembler
C Java C
Java [ATeX HTML
C XML PDF

If Lc = Ls : bootstrapping can be needed to compile C°_,

Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

General structure of a compiler

Usually an intermediate language L, is used.
The compiler is composed of a:

@ front-end Ls — L,
@ back-end L; — Lo
Eases the building of new compilers.

Java Haskell Prolog

A

Image

R TN

P7 RISC
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Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Features of compilers

@ Efficiency

@ Robustness

@ Portability

@ Reliability

@ Debuggable code

Compiler vs. Interpreter

Single pass

n passes (70 for a PL/I compiler!)
Optimizing

Native

Cross-compilation

Interpreter = tool that does analysis, translation, but also execution of a

program written in a computer language.

An interpreter handles execution during interpretation.

Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Outline

Q Compilation phases

20
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Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

A small program to compile

Example (of a C++ program to compile)

int main()
// Collatz Conjecture
// Hypothesis : N > 0

{
long int N;

cout <<
cin >> N;
while (N != 1)
{
if (N%2 == 0)
N = N/2;
else
N = 3*N+1;

}

cout << N << endl;

Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

"Enter A Number :

"o,
4

//Print 1

21

6 phases for the compilation: 3 analysis phases - 3 synthesis phases

Scanning
Parsing
Semantic

Vg

Analysis Symbol
table

Errors
management

Intermediate
code generation

™~

Optimisation

generation

Pad
Synthesis
Final code

j
j

Analysis

22
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Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Compilation steps

Compilation is cut into 2 steps

@ Analysis decomposes and identifies the elements and relationships of
the source program and builds its image (structured representation of
the program with its relations),

@ Synthesis builds, from the image, a program in the target language

Contents of the symbol table

One entry for each identifier of the program to compile: contains its attributes
values to describe the identifier.

Remark

In case an error occurs, the compiler can try to resynchronize to possibly
report other errors instead of halting immediately.

23

Lexical analysis (scanning)

@ A program can be seen as a “sentence”; the main role of lexical analysis
is to identify the “words” of that sentence.

@ The scanner decomposes the program into tokens by identifying the
lexical units of each token.

Example (of decomposition into tokens)

[dD]

|[// Collatz Conijecture
——— = — —
// Hypothesis : N > 0

* e

cout][<d["Enter A Number : " ;| ]
cinf|>>[N[];

hllﬁ' (1~ |E||1__|

\w M::. = @D
NENAEE

HEEEE0E
cou S end.lr.l |Z| /7Print T
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Lexical analysis (scanning)

Definition (Lexical Unit (or type of token))

Generic type of lexical elements (corresponds to a set of strings with a
common semantic).
Example: identifier, relational operator, “begin” keyword...

Definition (Token (or string))

Instance of a lexical unit.
Example: N is a token of the identifier lexical unit

Definition (Pattern)

Rule which describes a lexical unit
Generally a pattern is given by a regular expression (see below)

Relation between token, lexical unit and pattern
lexical unit = { token | pattern(token) }

Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Introductory examples for regular expressions

Operators on regular expressions:

@ . : concatenation (generally omitted)
@ + :union
@ * : repetition (0,1,2, ... times) = (Kleene closure (pronounced Klayni!))

Example (Some regular expressions)
@ digit=0+1+2+3+4+5+6+7+8+9

@ nat-nb = digit digit*

@ operator = << + I= + == + ...

@ open-par = (

@ close-par =)

@ letter=a+b+..+z

@ identifier = letter (letter + digit )*
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Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Scanning result

Example (of lexical units and tokens)

lexical unit | token
identifier int
identifier main
open-par (
close-par )

Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Other aims of the scanning phase

Other aims of the scanning phase

@ (Possibly) put the (non predefined) identifiers and literals in the symbol

table @

@ Produce the listing / link with clever editor (IDE)
@ Clean the source code of the source program (suppress comments,

spaces, tabulations, ...)

4can be done in a latter analysis phase

PUB Cours-Librairie, av. P. Héger 42, B-1000 Bruxelles / INFO-F-403_A
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Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Syntactic analysis (parsing)

@ The main role of the syntactic analysis is to find the structure of the
“sentence” (the program): i.e. to build an image of the syntactic structure
of the program that is internal to the compiler and that can also be easily
manipulated.

@ The parser builds a syntactic tree (or parse tree) corresponding to the
code.

The set of possible syntactic trees for a program is defined by a (context-free)
grammar.

Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Grammar example (1)

Example (Grammar of a sentence)

sentence

@ sentence = subject verb
@ subject = “dohn” | “Mary”
@ verb = “eats” | “speaks”
can provide subject verb
@ John eats
@ John speaks
@ Mary eats

Mary eats
@ Mary speaks

Syntactic tree of the sentence
Mary eats

PUB Cours-Librairie, av. P. Héger 42, B-1000 Bruxelles / INFO-F-403_A
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Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Grammar example (2)

Example (Grammar of an expression)

o A="id”“="E

@E=T|E“+"T

@T=F|T“*”F

o F="id” | “cst” | “(" E
oy

can give:

o id=id

o id=id +cst*id

o ...

Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Grammar example (2 cont’'d)

Example (Grammar of an expression)

o A="id” “="E

OE=T|E“+"T

@T=F|T“”F

@ F="id”| “cst” | “(" E
y

can give:

@ id=id

@ id=id+cst*id

o ...

E

I
-

NN
AN

-l‘— ‘
F

id

id cst

Syntactic tree of the sentence
id=1id + cst * id

id

s
%

AN

d
15.15
o]

i

Table des symboles

Abstract syntax tree
with references to the symbol table
for the sentencei=c + 15.15*d

PUB Cours-Librairie, av. P. Héger 42, B-1000 Bruxelles / INFO-F-403_A
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Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Semantic analysis

Roles of semantic analysis

For an imperative language, semantic analysis (also called context
management) takes care of the non local relations; it also takes care of:

@ visibility control and the link between definition and use of identifiers
(with the construction and use of the symbol table)

Q@ type control of the “objects”, number and types of the parameters of the
functions

© flow control (verify for instance that a goto is allowed - see example
below)

©Q construction of a completed abstract syntax tree with type information
and a flow control graph to prepare the synthesis step.

Example of result of the semantic analysis

Example (for the expressioni=c + 15.15 * d)

cst int->real

id

var | int | scopel
cst | real
var | real | scope2
i var | real | scopei

Symbol table

Modified abstract syntax tree
with references to the symbol table
for the sentencei=c + 15.15*d

PUB Cours-Librairie, av. P. Héger 42, B-1000 Bruxelles / INFO-F-403_A
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Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Synthesis

Synthesis steps

For an imperative language, synthesis is usually made through 3 phases:

@ Intermediate code generation in an intermediate language which
@ uses symbolic addressing
@ uses standard operations
e does memory allocation (results in temporary variables ...)
@ Code optimisation
@ suppresses “dead” code
@ puts some instructions outside loops
@ suppresses some instructions and optimizes memory access
© Production of the final code

@ Physical memory allocation
o CPU register management

Synthesis example

35

Example (for the code i =c + 15.15 * d)

@ Intermediate code generation

templ <- 15.15

temp2 <- Int2Real (id3)
temp2 <- templ x temp?2
temp3 <- id2

temp3 <- temp3 + temp2
idl <- temp3

© Code optimization
templ <- Int2Real (id3)

templ <- 15.15 % templ
idl <- id2 + templ
© Final code production
MOVF id3,R1
ITOR RI1
MULF 15.15,R1,R1
ADDF id2,R1,R1
STO R1,id1l
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Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Outline

Q Some reminders and mathematical notions

Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Used notations

@ Y : Language alphabet

@ X, Yy, 2zt x;(letter at the end of the alphabet) : symbolises strings of ¥
(example x = abba)

@ ¢ : empty word

@ |x| : length of the string x (|¢| = 0, |abbal = 4)

@ a = aa...a (string composed of i times the character a)
@ x' = xx...x (string composed of i times the string x)

e L', L; A B:languages
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Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Operations on strings

@ concatenation: ex: lent .gage = lentgage
@ cW=W= We

o w’: mirrorimage of w (ex: abbd”™ = dbba)

@ prefix of w. E.g. if w=abbc

o the prefixes are: ¢, a, ab, abb, abbc
o the proper prefixes are ¢, a, ab, abb

@ suffix of w. E.g. if w=abbc

o the suffixes are: ¢, ¢, bc, bbc, abbc
o the proper suffixes are ¢, ¢, bc, bbc

Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Operations on languages

Definition (Language on the alphabet %)
Set of strings on this alphabet

Operations on languages are therefore operations on sets
e UN,\,Ax B,24
@ concatenation or product: ex: Ly.Ly = {xy|x € Li ANy € Ly}
0 (0% e}
o Li=L"11L

f .
@ Kleene closure: L* & Uien L

ieEN
@ Positive closure: L* OﬁfU,GN\{O} L

@ Complement: L= {w|w e £* A w¢ L}
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Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Relations

Definition (Equivalence)
A relation that is:
@ reflexive (Vx : xRx)
@ symmetrical (Vx,y : xRy — yRXx)
@ fransitive (Vx,y,z : xRy A yRz — xRz)

Definition (Closure of relations)

Given P a set of properties of a relation R, the P-closure of R is the smallest

relation R which includes R and has the properties P

Example (of reflexo-transitive closure)

The transitive closure R™, the reflexo-transitive closure R*

*@—‘@—’@ gives for R* *@Z@B@

Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Closure property of a class of languages

Definition (Closure of a class of languages)

A class of languages C is closed for an operation op, if the language resulting

from this operation on any language(s) of C remains in this class of
languages C.
Example: suppose op is a binary operator

C is closed for op
iff
Vi, LbeC=Liopl, eC
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Aims of the course

Order of the chapters

What is language theory?

What is a compiler?

Compilation phases

Some reminders and mathematical notions

Cardinality

Definition (Same cardinality)

Two sets have the same cardinality if there exists a bijection between both of
them.

@ Ny denotes the cardinality of the countably infinite sets (such as N)
@ XNy denotes the cardinality of the uncountably infinite sets (such as R)

We assume that uncountably infinite sets are continuous.

Cardinality of ¥* and 2%
Given a finite non empty alphabet X,
@ Y ": the set of strings of ¥, is countably infinite

@ P(X*) denoted also 2%": the set of languages from ¥, is uncountably
infinite

Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

43

Chapter 2: Regular languages and finite automata

0 Regular languages and regular expressions
9 Finite state automata

Q Equivalence between FA and RE

@ Other types of automata

e Some properties of regular languages
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Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

Outline

0 Regular languages and regular expressions

Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

Introduction

Motivation
@ Regular expressions allow us to easily denote regular languages

@ For instance, UNIX-like systems intensively use extended regular
expressions in their shells

@ They are also used to define lexical units of a programming language
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Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

Definition of regular languages

Preliminary remark

@ Every finite language can be enumerated (even if it can take very long)
@ For infinite languages, an exhaustive enumeration is not possible

@ The class of regular languages (defined below) includes all finite
languages and some infinite ones

Definition (class of regular languages)

The set L of regular languages on an alphabet ¥ is the smallest set which
satisfies:

QoerL

Q {cteL

Q vacy {alcL

Q ifABec LthenAUB,AB A" c L

Notation of regular languages

Definition (set of regular expressions (RE))

The set of reqular expressions (RE) on an alphabet ¥ is the smallest set
which includes:

@ 0 : denotes the empty set,
Q@ ¢ : denotes the set {¢},
Q@ Va e 1, a: denotes the set {a},

Q with r and s which resp. denote R and S:
r+s,rsandr* resp. denote RU S, R.S and R*

We suppose * < . < + and add () if needed

Example (of regular expressions)
e 00
@ (0+1)
@ (0+1)"00(0+1)"
@ 0*10* notation for 000010000
@ (01)" +(10)* +0(10)" +1(01)"
@ (e+1)(01)"(e +0)
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Q@ cW =W = We

o fw=0=wb

@ D+r=r=r+0
Q¢ =¢

00" =¢

@ (e+nr)=r"

Q Regular languages and regular expressions

@ Finite state automata
© Eauivalence between FA and RE
Q Other types of automata

Q Some properties of regular languages

50
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Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

Automata

Informal presentation

An automaton M is a mathematical model of a system with discrete input and
output.
It generally contains

@ control states (at any time, M is in one of these states)
@ a data tape which contains symbols
@ a (read/write) head

@ a memory

Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

Automata

51

Informal presentation

[bfofnfifofulr] . J.J.] | | | ||

SON
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Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

Example: an e-commerce protocol with e-money

Example (Possible events)

@ pay: the customer pays the shop

@ cancel: the customer stops the transaction

Q@ ship: the shop sends the goods

© redeem: the shop asks for money from the bank
@ transfer: the bank transfers money to the shop

Remark
The example is formalized with finite automata (see below)

Example: an e-commerce protocol with e-money (2)

Example (Protocol for each participant)

Start redeem transfer

ship ship ﬁ)shlp
(a) Store

(=l )—=()

redeem transfer
cancel
cancel
T T redeem transfer
Start Start
(b) Customer (c) Bank
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Example: an e-commerce protocol with e-money (2)

Example (Complete protocol)

cancel  pay,cancel pay,cancel pay,cancel

St ~ T~ T~ B~
pay redeem transfer
ship ship ship
(a) Store C redeemctransfer
g O O

pay,cancel pay,cancel pay,cancel

pay, ship
ship. redeem, transfer, pay,redeem, pay,redeem,
pay, cancel cancel cancel, ship cancel, ship
AT
CT) ship T redeem transfer
Start Start
(b) Customer (c) Bank

Example: an e-commerce protocol with e-money (2)

Example (complete system)

Start
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Finite Automaton (FA)

Remark

Finite automata are used in this course as a formalism to define sets of
strings of a language

Restrictions of finite automata
A finite automaton (FA):
@ has no memory
@ can only read on the tape (input)
@ The reading head can only go from left to right

3 kinds of FA exist
@ Deterministic finite automata (DFA)
@ Nondeterministic finite automata (NFA)

@ Nondeterministic finite automata with epsilon transitions (e-NFA)
-> an e symbol is added to denote these transitions

Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

Finite automaton: formal definition

Definition (Finite automaton)

M={(Q,%,6,q,F)
with
@ Q: afinite set of states
Q X : alphabet (allowed symbols)
Q ¢: transition function
Q qo : initial state
@ F C Q: set of accepting states
0 is defined for
@ MDFA:6:Qx X — Q
@ MNFA:§:Qx X —29
@ Mc-NFA:§:Qx (ZU{e}) — 2°
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Examples of finite automata

Example
A deterministic automaton A which accepts L = {x01y : x,y € {0,1}"}

A= <{q07 Q17Q2}, {07 1 }7 67 Qo, {q1}>

with transition function ¢ :

o |1
q2 | 90

q1 | 91
q2 | 91

— 40
*q1
g2

Graphical representation (transition diagram with labelled transitions):

1

0
SEE | @0—> 0.1

Accepted strings

A string w = ajaz . .. an is accepted by the FA if there exists a path in the
transition diagram which starts at the initial state, terminates in an accepting
state and has a sequence of labels aja. . .. an

Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

Configuration and accepted language

Definition (Configuration of a FA)
Couple (q,w) € Qx X"

@ Initial configuration : (qo, w) where w is the string to accept
@ Final (accepting) configuration : {(q, e) withq € F

Definition (Configuration change)
(g, aw) & (', w) if
@ 4(g,a) =q' fora DFA

@ q €4(q, a) foran NFA
@ g €4(q,a) forane-NFA witha € ¥ U {¢}

60
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Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

Language of M: L(M)

Definition (L(M))

LMy ={w|weX* A 3IgeF.(q,w)

ST *

(9,6)}

where
; is the reflexo-transitive closure of ;

Definition (Equivalence of automata)

M and M' are equivalent if they define the same language (L(M) = L(M"))

61

Example of DFA

Example

The DFA M accepts the set of strings on the alphabet {0, 1} with an even
number of 0 and 1.

M = ({qo, g1, G2, g3}, {0,1},6, qo, {qo})

with § Corresponding transition diagram:
|

|
1
S TN
o @ O®
0

*—qo || 92 | 91 | 0
q1 1493|1490 = ---|--- —— - - __
q2 || 90 | 43 I 0
0 |
g3 || 491 | 92 (T\
O
\_:_/
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Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

Example of NFA

Example

The NFA M accepts the set of strings on the alphabet {0, 1} which end with
01.

M = ({qo, %1, 9}, {0,1},6, 9o, {q})

with § Corresponding transition diagram:
o |1 oA
~ o] o} o @ ~(®)
q1 92
*qD @ @

Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

Example of NFA (cont'd)

Example
For the string 00101 the possible paths are :

49 —» 9 ——» 99— 9 ——» 99— 9

N N

91 9 q;

(stuck)
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Example of e-NFA

Example

The e-NFA M accepts the set of strings on the alphabet {0, 1,2}
corresponding to the regular expression 0*1*2*.

M = <{q07 a1, q2}7 {07 1, 2}7 9, Qo, {q2}>

with ¢
| o | 1t | 2 | e
—q || {9} 0 0 {a1}
(of] 1] {C]1} 0 {qZ}
*Qo 0 0 {g2} 0

Corresponding transition diagram:

LR

Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

Example of e-NFA (cont’d)

T

For the string 022, the possible paths are :

Example

PUB Cours-Librairie, av. P. Héger 42, B-1000 Bruxelles / INFO-F-403_A




Constructive definition of L(M)

Definition (4: Extension of the transition function)

If one defines for a set of states S : 6(S,a) = | d(p, a)

For DFA:§: Q@ x £* — Q
@ basis: §(q,¢) = q
@ ind.: §(q, xa) = §(5(q, x), a)

pES

L(M) = {w | 5(qo, w) € F}

For NFA: 6 : Q x ¥* — 2%
@ basis: §(q,¢) = {q}
@ ind.: §(q, xa) = §(5(q, x), a)

L(M) = {w | §(qo, w) N F # 0}

Fore-NFA: 6 : Q x £* — 29
@ basis: 6(q,€) = eclose(q)
@ ind.: §(q, xa) =
eclose(6(0(q, x), a))
with eclose(q) = | eclosée'(q)
ieN
@ eclose’(q) = {q}
@ eclose’™'(q) =
d(eclose'(q), €)

Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

Outline

L(M) = {w | 6(qo, w) N F # 0}

0 Equivalence between FA and RE

PUB Cours-Librairie, av. P. Héger 42, B-1000 Bruxelles / INFO-F-403_A




Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

Equivalences between finite automata (FA) and regular expressions
(RE)

For every

e DFA

@ NFA

@ «-NFA

e RE
it is possible to translate it
into the other formalisms.

= The 4 formalisms
are equivalent and
define the same
class of languages: Arrows 2 and 4:
the regular straightforward

languages

69

Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

C(NFA) C C(DFA)

Arrow 1:

70
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Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

Equivalence between DFA and NFA

@ Defining an NFA suppresses the determinism constraint

@ but we show that from every NFA N one can build an equivalent DFA D
(i.e. L(D) = L(N)) and vice versa.

@ the technique used is called subset construction: each state in D
corresponds to a subset of states in N

C(NFA) C C(DFA)

Theorem (For each NFA N, there exists a DFA D with L(N) = L(D))

Proof:
Given an NFA N:
N = (Qn, %, N, Qo, Fn)

let us define (build) the DFA D:
D = <QD, >, dp, {qO}v FD>
with
® Qp={S|SCQu}(ie Qp=2%)
@ Fp={SCQn|SNFn#D}
@ VSCQnvandackxk,

60(S, @) = 6n(S, a) (= | Jon(p, @)

peS

Notice that |Qp| = 2!9! (however, many states are generally useless and
unreachable)
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C(NFA) C C(DFA) (contd)

Example (NFA N and equivalent DFA D)

h
_>

5 states are unreachable b

Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

C(NFA) C C(DFA) (end)

Theorem (For each NFA N, there exists a DFA D with L(N) = L(D))

Sketch of proof:
One can show that L(D) = L(N)
It is sufficient to show that:

0o({q0}, w) = dn(qo, w)

74
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Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

C(NFA) C C(DFA) (contd)

Example (NFA N with n + 1 states with an equivalent DFA D with 2" states)

0,1

O 1 0,1 0,1 0,1 0,1
(@@ —— () »Q_.

Start

Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

C(e-NFA) C C(DFA)

+ Arrow 3:
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Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

C(e-NFA) C C(DFA)

Theorem (For all e-NFA E, there exists a DFA D with L(E) = L(D))

Sketch of proof:
Given an e-NFA E:

E = <QE7 27512_7 Qo, FE>
let us define (build) the DFA D:

D = (Qp, X, dp,qp, Fp)
with:
@ Qp ={S|SC Qe NS = eclose(S)}
@ qp = eclose(qo)
@ Fp ={S|Sc QpASnNFe# 0}
@ ForallSe Qpandacx,

op(S, a) = eclose(6e(S, a))

C(e-NFA) C C(DFA) (contd)

Example (e-NFA E and equivalent DFA D)

0,1,...9 0,1,....9

" oufgl

.....

St

0,1,....9
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C(e-NFA) C C(DFA)

Theorem (For all e-NFA E, there exists a DFA D with L(E) = L(D))

Sketch of proof (contd):
To show that L(D) = L(E), it is sufficient to show that :

de({qo}, w) = bp(qo, w)

Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

C(DFA) C C(RE)

+ Arrow 5:

80
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C(FA) C C(RE) : by state elimination

Technique:
@ replace symbols labelling the FA with regular expressions
@ suppress the states (s)

Ry + Q) S*P

Ry, + Q,S*P,

m

C(FA) C C(RE) : by state elimination (cont'd)

Method

@ For every accepting state q, a 2 states automaton with go and q is built
by removing all the other states

@ For each g € F we obtain
o either Ag:

b &

Start A @
—

T

with the corresponding RE : Eq = (R + SU*T)*SU*
e or Ag:

R

Start
—

with the corresponding RE : E; = R*

@ Thefinal REis: + E4
qeF
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Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

C(FA) C C(RE) : by state elimination

Example (let us build a RE for the NFA A by state elimination)

NFA A
0,1

StaLm 1 e 0,1 ‘ 0,1

Transformation of A :

0+1

Start_»ﬁ 1 e 0+1 ' 0+1

C(FA) C C(RE) : by state elimination

Example (cont'd)
A modified:

0+1

StaLm 1 0+1 ' 0+1

Elimination of the state B

StaL@ 10+ 1) ‘@ 0+1 ‘@

Elimination of the state C to obtain Ap

0+1

Start o 10+ D0+ D
—@ -©

Corresponding RE: (0+1)*1(0+1)(0+ 1)
PUB Cours-Librairie, av. P. Héger 42, B-1000 Bruxelles / INFO-F-403_A

83



C(FA) C C(RE) : by states elimination

Example (Let us find a RE for the FA A by states elimination)
From the automaton with B suppressed:

0+1

Start m 10 + 1) @ 0+1
— ©——©@

Elimination of the state D to obtain A¢

0+1

Start m 100 + 1)

Corresponding RE: (0 +1)*1(0 + 1)
Final RE: (0+1)*1(0+1)(0+ 1)+ (0+1)*1(0+ 1)

Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

C(RE) C C(e-NFA) = C(FA)

+ Arrow 6:
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C(RE) C C(e-NFA)

Theorem (For all RE r, there exists an e-NFA R with L(R) = L(r))
Construction
@ Base cases: automata fore, ) and a:

(a)

4%@ © ’
(b)

4%@ NG) ’
(©)

Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

C(RE) C C(e-NFA) (contd)

Theorem (For all RE r, there exists an e-NFA R with L(R) = L(r))
@ /nduction: automaton for r + s:

¢ P R O\ e
NG /\
—0 /@
e >0 s o1°
(a)
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C(RE) C C(e-NFA) (cont'd)

Theorem (For all RE r, there exists an e-NFA R with L(R) = L(r))

@ /nduction: automata for rs and r*:

I )
(b)

8 ()

C(RE) C C(e-NFA) (contd)

Example (e-NFA corresponding to (0 + 1)*1(0 + 1))

OO
@) O
g\o—l»o/!
(a)
€
0
. [ OO0 e .
5 \S~Q—1>O/8'
(b)
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Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

C(RE) C C(e-NFA) (contd)

Example (e-NFA corresponding to (0 + 1)*1(0 + 1) (contd))

C(RE) = C(e-NFA) = C(NFA) = C(DFA)

In conclusion,

@ The 4 formalisms are equivalent and define the class of regular
languages

@ One can go from one formalism to the other through automatic
translations
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Q Regular languages and regular expressions

Q Finite state automata
© Eauivalence between FA and RE
° Other types of automata

Q Some properties of regular languages

@ Moore machines: one output for each control state
@ Mealy machines: one output for each transition
Found in UML

@ statecharts
@ activity diagrams
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Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

Example of UML statechart

Event with
parameter(s)

Action on
tooHot(desTemp) / TurnCoolOn transition

e

rightTemp / TurnCoolOff
tooCold(desTemp) / TurnHeatOn

rightTemp / TurnHeatOff

. 95
Regular languages and regular expressions
Finite state automata
Equivalence between FA and RE
Other types of automata
Some properties of regular languages
Example of UML statechart (2)
/ | Self-
. transition Event
Guard
Idle :
~ | Action
all(p) [conAllowed] / add(p)
/ Connecting N
Entry / conMode(on)
exit / conMode(off)
do / connect(p)
Transmit / defer
/ 96
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Q Regular languages and regular expressions

Q Finite state automata
© Eauivalence between FA and RE
Q Other types of automata

Q Some properties of regular languages

Is L regular?

For which operators are regular languages closed?
weL?

Is L empty; finite, infinite?

Li C Ly, Ly = Lo?
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Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

Is L regular ?

Example (Proving L is regular)
L = {w | w has an even number of 0 and 1}

1
m
One can, e.g. define the Stagw
DFA M and prove ‘ 0
. . 0\ |
(generally by induction) - -- S -
that L = L(M) 0 R

Proving L is not regular

Proving that L is not regular requires use of the pumping lemma for regular
languages (not seen in this course).

Regular languages and regular expressions
Finite state automata

Equivalence between FA and RE

Other types of automata

Some properties of regular languages

For which operators are regular languages closed?

Theorem

If L and M are regular, then the following languages are regular:
@ Union:LUM

Concatenation : L.M

Kleene closure : L™

Complement : L

Intersection : LN M

Difference : L\ M

°
°
°
°
°
@ Mirror image : LF
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Chapter 3: Lexical analysis (scanning)

@ Roles and place of lexical analysis (scanning)
@ Elements to deal with

Q Extended regular expressions (ERE)

° Construction of a scanner “by hand”

e Construction of a scanner with (f)lex

0 Roles and place of lexical analysis (scanning)
Q Elements to deal with

Q Extended regular expressions (ERE)

Q Construction of a scanner “by hand”

Q Construction of a scanner with (f)lex
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Roles and place of lexical analysis (scanning)

@ Identifies tokens and corresponding lexical units (Main role)

Q@ (Possibly) puts (non predefined) identifiers and literals in the symbol
table'

© Produces the listing / is linked to an intelligent editor (IDE)

© Cleans the source program (suppresses comments, spaces, tabulations,
upper-cases, etc.): acts as a filter

can be done in a later analysis phase

Roles and place of lexical analysis (scanning)
Elements to deal with

Extended regular expressions (ERE)
Construction of a scanner “by hand”
Construction of a scanner with (f)lex

Token, Lexical Unit, Pattern

Definitions

@ Lexical Unit: Generic type of lexical elements (corresponds to a set of
strings with the “same” or similar semantics).
Example: identifier, relational operator, “begin” keyword...

@ Token : Instance of a lexical unit.
Example: N is a token from the identifier lexical unit

@ Pattern : Rule to describe the set of tokens of one lexical unit
Example: identifier = letter (letter + digit)*

Relation between token, lexical unit and pattern
lexical unit = { token | pattern(token) }

PUB Cours-Librairie, av. P. Héger 42, B-1000 Bruxelles / INFO-F-403_A

104



Place of the scanning

yyleng

—’ Scanner 1 Parser
- <«

Symbol
table

y

@ work with the input = reading the input must be optimized (buffering) to
not spend too much time

@ co-routine of the parser which asks the scanner each time for the next
token, and receives:

@ the recognized lexical unit
@ information (name of the corresponding token) in the symbol table
© values in specific global variables (e.g.: yylval, yytext, yyleng in lex/yacc)

Roles and place of lexical analysis (scanning)
Elements to deal with

Extended regular expressions (ERE)
Construction of a scanner “by hand”
Construction of a scanner with (f)lex

Boundary between scanning and parsing

The boundary between scanning and parsing is sometimes blurred

@ From a logical point of view:

e During scanning: tokens and lexical units are recognized
e During parsing: the syntactical tree is built

@ From a technical point of view:

e During scanning: regular expressions are handled and the analysis is local
e During parsing: context free grammar is handled and the analysis is global

Remarks:
@ Sometimes scanning counts parentheses (link with an intelligent editor)

@ Complex example for scanning: in FORTRAN
DO 5 T = 1,3isnotequivalenttopo 5 1 = 1.3
= look-ahead reading is needed
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Roles and place of lexical analysis (scanning)
Elements to deal with

Extended regular expressions (ERE)
Construction of a scanner “by hand”
Construction of a scanner with (f)lex

Outline

9 Elements to deal with

107
Roles and place of lexical analysis (scanning)
Elements to deal with
Extended regular expressions (ERE)
Construction of a scanner “by hand”
Construction of a scanner with (f)lex
Elements to deal with
@ Lexical units: general rules:
@ The scanner recognises the longest possible token :
@ For <= the scanner must not stop at <
@ For a variable called x361isa, the scanner must not stop at x
e The “keywords” (if, then, while) are in the “identifier” pattern
= the scanner must recognize keywords in priority (i £36x must of course
be recognized as an identifier)
Q@ Separators: (space, tabulation, <CR>), are either discarded, or treated
as empty tokens (recognized as tokens by the scanner but not
transmitted to the parser)
© Errors: the scanner can try to resynchronize in order to possibly detect
further errors (but no code will be generated)
108
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Roles and place of lexical analysis (scanning)
Elements to deal with

Extended regular expressions (ERE)
Construction of a scanner “by hand”
Construction of a scanner with (f)lex

Outline

Q Extended regular expressions (ERE)

109

In Lex Oor UNIX

Regular expressions in Lex use the following operators:

X the character "x"

"x" an "x", even if x is an operator.

\x an "x", even if x is an operator.

[xy] the character x or y.

[x-2] the characters x, y or z.

["x] any character but x.

. any character but newline.

~x an x at the beginning of a line.

x$ an x at the end of a line.

x? an optional x.

X* 0,1,2, ... instances of x.

X+ 1,2,3, ... instances of x.

x|y an X or a y.

(x) an X.

x/y an X but only if followed by vy.

{xx} the translation of xx from the
definitions section.

x{m,n} m through n occurrences of x
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Roles and place of lexical analysis (scanning)
Elements to deal with

Extended regular expressions (ERE)
Construction of a scanner “by hand”
Construction of a scanner with (f)lex

Example of pattern of lexical units

Example (of patterns of lexical units defined as extended regular expressions)

spaces [\t\n ]+
letter [A-Za—z]
digit [0-9] /% base 10 x/

digitle [0-9A-Fa-f] /* base 16 x/
keywords—-if if

identifier {letter} (_|{letter}|{digit}) *
integer {digit}+

exponent [eE] [+-]?{integer}

real {integer} ("."{integer}) ?{exponent}?

All these extended regular expressions can be translated into basic regular
expressions (hence into FAs)

Roles and place of lexical analysis (scanning)
Elements to deal with

Extended regular expressions (ERE)
Construction of a scanner “by hand”
Construction of a scanner with (f)lex

Outline

0 Construction of a scanner “by hand”
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Roles and place of lexical analysis (scanning)
Elements to deal with

Extended regular expressions (ERE)
Construction of a scanner “by hand”
Construction of a scanner with (f)lex

Construction of a scanner “by hand”

Principle of the construction of a scanner

@ We start from the descriptions made using extended regular expressions
(ERE)

@ We “translate” ERE into DFA (“deterministic” finite automata)

@ This DFA is decorated with actions (possible return to the last accepting
state and return results and send back the possible last character(s)
received)

Example

Example (scanner which recognizes: if, identifier, integer and real)

return <if,->
ungetc(other)

Iel_

start

return <id,value>
ungetc(other)

return <integer,value>
ungetc(other)

other
return <real,value> c
ungetc(other)
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Roles and place of lexical analysis (scanning)
Elements to deal with

Extended regular expressions (ERE)
Construction of a scanner “by hand”
Construction of a scanner with (f)lex

Example where the last accepting configuration must be remembered

Example (scanner for abc|abcde| . . .)

recognizes abcde

For the string abcdx, abc must be accepted and dx must be sent back to
input (and read again later)

115

Roles and place of lexical analysis (scanning)
Elements to deal with

Extended regular expressions (ERE)
Construction of a scanner “by hand”
Construction of a scanner with (f)lex

Outline

e Construction of a scanner with (f)lex
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general procedure for the use of Lex (Flex) and Yacc (Bison)

(yyparse) source

bas.y —» yacc ——— y.tab.c

y.tab.h cc ——» bas.exe
bas.]| —» lex » lex.yy.c v
(yylex)

compiled output

Compilation :

yacc —-d bas.y # creates y.tab.h and y.tab.c
lex bas.l # creates lex.yy.c
cc lex.yy.c y.tab.c -11 -o bas.exe # compiles and links

# creates bas.exe

Roles and place of lexical analysis (scanning)
Elements to deal with

Extended regular expressions (ERE)
Construction of a scanner “by hand”
Construction of a scanner with (f)lex

Lex specification

definitions

o\°
o\°

les

=
c

o\°
o\°

additional code

The resulting scanner (yylex ()) tries to recognize tokens and lexical units
It can use global variables :

Name function

char *yytext | pointer to the recognized token (i.e. string)
yyleng length of the token

yylval value of the token

Predefined global variables
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Lex example (1)

Example (1 of use of Lex)
{

o\°

int yylineno;

o\
—

o\°
o\°

>

.x)\n printf ("%$4d\t%s", ++yylineno, yytext);

o\°
o\

int main(int argc, char xargv([]) {
yyin = fopen (argv[1l], "r");
yylex();
fclose (yyin) ;

Remark:

In this example, the scanner (yylex () ) runs until it reaches the end of the
file

Lex example (2)

Example (2 of use of Lex)
digit [0-9]
letter [A-Za-z]

5 {

int count;

o\°
—

o\°
o\°

/* match identifier =*/
{letter} ({letter}{digit}) * count++;

o\
o\

int main(void) {
yylex();
printf ("number of identifiers = %d\n", count);
return O;
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Lex example (3)

Example (3 of use of Lex)

S {

int nchar, nword, nline;

o\
—

o\
o\

\n { nline++; nchar++; }
[* \t\n]+ { nword++; nchar += yyleng; }
{ nchar++; }

o\
o\°

int main (void) {
yylex();
printf ("$d\t%d\t%d\n", nchar, nword, nline);
return 0;

Roles and place of lexical analysis (scanning)
Elements to deal with

Extended regular expressions (ERE)
Construction of a scanner “by hand”
Construction of a scanner with (f)lex

Lex example (4)

Example (4: scanner and simple expressions evaluator)

/* expressions evaluator with '+’ and ’"-' x/
/* Thierry Massart - 28/09/2005 «*/
S {

fdefine NUMBER 1
int yylval;

%}

[0-9]+ {yylval = atoi (yytext); return NUMBER; }

[ \t] g /* ignore spaces and tabulations x/
\n return 0; /+ allows to stop at eol x/

return yytext[0];
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Lex example (4 (cont'd))

Example (4 (cont'd))

o\°
o\

int main () {
int wval;
int tot=0;

int sign=1l;

val = yylex();
while (val !=0) {
if (val=="-") sign x=-1;
else 1if (val != '+’) /x number =/
{
tot += signexyylval;
sign = 1;
}
val=yylex () ;
t
printf ("$d\n", tot);
return O;

Role of grammars

Informal grammar examples
Grammar: formal definition
The Chomsky hierarchy

Chapter 4: Grammars

Q Role of grammars
9 Informal grammar examples
e Grammar: formal definition

e The Chomsky hierarchy
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Role of grammars

Informal grammar examples
Grammar: formal definition
The Chomsky hierarchy

Outline

0 Role of grammars

125

Role of grammars

Informal grammar examples
Grammar: formal definition
The Chomsky hierarchy

Why do we use grammars?

Why do we use grammars?

@ A lot of languages we want to define / use are not regular

@ Context-free languages are used since the 50’s (1950) to define the
syntax of programming languages

@ In particular, the BNF syntax (Backus Naur Form) is based on the notion
of context-free grammars

@ Most of the formal languages are defined with grammars (example:
XML).
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Role of grammars

Informal grammar examples
Grammar: formal definition
The Chomsky hierarchy

Outline

9 Informal grammar examples

Role of grammars

Informal grammar examples
Grammar: formal definition
The Chomsky hierarchy

Example of a grammar

Example (Grammar of a sentence)

@ sentence = subject verb

@ subject = “dohn” | “Mary”

@ verb = “eats” | “speaks”
can provide

@ John eats

@ John speaks

@ Mary eats

@ Mary speaks

sentence

subject verb

Mary eats

Syntactic tree of the sentence
Mary eats
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Role of grammars

Informal grammar examples
Grammar: formal definition
The Chomsky hierarchy

Grammar example (2)

Example (Grammar of an expression)

o A=“id”“="E d/T\
/

E

@ E=T|E“+"T

N

@ T=F|T*“”F

E + T
@ F="id” | “cst” | “(" E )” ‘ /‘\
can give: T‘ T ‘F
@ id=id E & id
@ id=id +cst*id iL L
o ...

Syntactic tree of the sentence
id=id + cst * id

129

Role of grammars

Informal grammar examples
Grammar: formal definition
The Chomsky hierarchy

Other example

Example (The palindrome language)

Given Ly = {w € T*|w = wf}
For instance (abstracting upper/lower cases and spaces):
A man, a plan, a canal: Panama
Rats live on no evil star
Was it a car or a cat i saw
Ressasser
Hannah
Et la marine va, papa, venir a Malte
A Cuba, Anna a bu ¢a
A Laval elle I'avala
Aron, au Togo, tua Nora
SAT ORA REPO TENETO PERARO ... TAS
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The last example is the sacred Latin magic square :

T O 4 >» o»
Ol m I|>»
—H|m|=Z |m| -+
> m TV|O
w > 4 O T

Possible literal translation: "The farmer Arepo has [as] works wheels [a
plough]" Traduction littérale possible: Le semeur subreptissement tient
I'oeuvre dans la rotation (des temps)

Role of grammars

Informal grammar examples
Grammar: formal definition
The Chomsky hierarchy

Other grammar example

Example (The palindrome language)
Let us limitto X = {0, 1}. The grammar follows an inductive reasoning:
@ basis: ¢ 0 and 1 are palindromes
@ induction: suppose w is a palindrome: Ow0 and 1w1 are palindromes

QP—e
Q@ P—-0
Q P—1
Q@ P—0PO
Q@ P—1P1
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Role of grammars

Informal grammar examples
Grammar: formal definition
The Chomsky hierarchy

Another grammar’s example

Terminals and variables
In the previous example:
@ 0 and 1 are terminals (symbols of the terminal alphabet)

@ Pis avariable (also called nonterminal symbol) (additional symbol used
to define the language)

@ Pis also the start symbol (or start variable)

@ 1-5 are production rules of the grammar

133

Role of grammars

Informal grammar examples
Grammar: formal definition
The Chomsky hierarchy

Outline

Q Grammar: formal definition
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Grammar: formal definition

Definition (Grammar)
Quadruplet:
G=(V,T,P,S)
where
@ V is afinite set of variables
@ T is a finite set of terminals
@ P is a finite set of production rules of the form oo — 3 with

ac(VUT)"'V(VUT) andpg e (VUT)"

@ S is avariable (€ V) called start symbol
Formally Pis arelaton P: (VUT)*"V(VUT)* x (VUT)*

Remark

The previous examples use contexi-free grammars i.e. a subclass of
grammars where the production rules have the form A — g with A€ V

Role of grammars

Informal grammar examples
Grammar: formal definition
The Chomsky hierarchy

Formal definition of the set of palindromes on {0, 1}

Example (The palindrome language)

G = ({A},{0,1}, P, A)
with P={A—¢A—0,A— 1, A— 0A0,A— 1A1}

One compactly denotes the rules with the same variable as left part (here, all
5 rules) as such:

@ A—¢€|0]|1|0A0| 1A

Definition (A-production)

The set of rules whose left-part is the variable A is called the set of
A-productions
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Derivation (relation)

Definition (Derivation)
Given a grammar G = (V, T, P, S) Then

=0
’YG

iff
@ dJa—p€P
@ v=yiaye foryi,y2€ (VUT)*
@ 0 =vP7

Remarks:
@ Grammars are rewrite systems: the derivation v = yiay2 =7 By =6
rewrites the « part into 3 in the string v which becomes §
@ When G is clearly identified, one, more simply, writes: v = §
@ = is the reflexo-transitive closure of =
° o= £ is a notation for a derivation of length i between « and

@ every string o which can derived from the start symbol (S = «) is called
sentential form

Derivation (cont'd)

With G= ({E, T,F},{i,c,+,%(,)},P,E)and P:
@ E-STI|E+T
T —>F|TxF
@ F—i|c|(E)
One has
E=i+cxi
Several derivations are possibles: examples:

QE=E+T=T4+T=F+T=i+4T
=i+ T*xF=i+FxF=i+cxF=1i+cCcxi

Q E—-—E+T=E+Tx«xF=E+Txi
=E+Fxi=E+cxi=T+cxi=F+cCc*xi=i+cCx*i

QE=-E+T=T+T=T+T*xF=T+FxF
=T+cxF=F+c«F=F+cxi=i+cCxi

Q ..
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LG)={weT"|S=w}

Fora grammar G= (V,T,P,S) withAec V

LA ={weT |AS w}

139

0 Role of grammars

Q Informal grammar examples
0 Grammar: formal definition

° The Chomsky hierarchy
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Noam Chomsky

Noam Chomsky (www.chomsky.info) (born December 7, 1928) is Institute
Professor and Professor Emeritus of linguistics at the Massachusetts Institute
of Technology. Chomsky is credited with the creation of the theory of
generative grammars, often considered the most significant contribution to
the field of theoretical linguistics of the 20th century. He also helped spark
the cognitive revolution in psychology through his review of B. F. Skinner’s
Verbal Behavior, which challenged the behaviorist approach to the study of
mind and language dominant in the 1950s. His naturalistic approach to the
study of language has also impacted the philosophy of language and mind
(see Harman, Fodor).

He is also credited with the establishment of the
so-called Chomsky hierarchy, a classification of
formal languages in terms of their generative power.
Chomsky is also widely known for his political
activism, and for his criticism of the foreign policy of
the United States and other governments. Chomsky
describes himself as a libertarian socialist, a
sympathizer of anarcho-syndicalism.

Role of grammars

Informal grammar examples
Grammar: formal definition
The Chomsky hierarchy

The Chomsky hierarchy

Definition (The Chomsky hierarchy)
This hierarchy defines 4 classes of grammars (and of languages).

@ Type 0: Unrestricted grammars
The most general definition given above

@ Type 1: Context-sensitive grammars
Grammars where all the rules have the form:

e S— ¢ andS does not appear in a right part of a rule
o a— B withla| < ||

142
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Role of grammars

Informal grammar examples
Grammar: formal definition
The Chomsky hierarchy

The Chomsky hierarchy

Definition (The Chomsky hierarchy (cont'd))

@ Type 2: Context-free grammars
Grammars where the rules have the form:
o A— witha € (TU V)*
@ Type 3: Reqgular grammars
Class of grammars composed of the following 2 subclasses :

@ the right-linear grammars, where all the rules have the form :

Ao with ABe VAwe T*
A—w

Q the left-linear grammars, where all the rules have the form :
o= 0 with ABe VAwe T*
A—w
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Role of grammars

Informal grammar examples
Grammar: formal definition
The Chomsky hierarchy

The Chomsky hierarchy

Remarks - properties (cont'd)

@ A language is of type n if there exists a grammar of type n which defines
it.

@ We have type 3 C type 2 C type 1 C type 0
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Chapter 5: Regular grammars

@ Reminder (definition)

e Equivalence between regular grammars and regular languages

145

@ Reminder (definition)

Q Equivalence between regular grammars and regular languages
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Reminder (definition)
Equivalence between regular grammars and regular languages

Regular grammars (definition)

Definition (Type 3: Regular grammars)
Class of grammars composed of the following 2 subclasses :

@ the right-linear grammars, where all the rules have the form :

A— wB withABe VAwe T
A—-w

Q the left-linear grammars, where all the rules have the form :

A— Bw withABe VAwe T
A—w

Reminder (definition)
Equivalence between regular grammars and regular languages

Outline

Q Equivalence between regular grammars and regular languages
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Equivalence between regular grammars and regular languages

One can show that
@ Every language generated by a right-linear grammar is regular
@ Every language generated by a left-linear grammar is regular
© Every regular language is generated by a right-linear grammar
© Every regular language is generated by a left-linear grammar

Right-linear grammars

Left-linear grammars

Regular grammars

Which implies that the class of languages generated by a right-linear
grammar is the same that the one generated by a left-linear grammar i.e. the
class of regular languages

Reminder and definitions
Derivation tree
Cleaning and simplification of context-free grammars

Chapter 6: Context-free grammars

o Reminder and definitions
e Derivation tree

Q Cleaning and simplification of context-free grammars
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0 Reminder and definitions

Q Derivation tree

0 Cleaning and simplification of context-free grammars

151

Grammar where the rules have the form:
e A—a witha € (TU V)*

LisaCFLifL = L(G) fora CFG G
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Reminder and definitions
Derivation tree
Cleaning and simplification of context-free grammars

Examples of context-free grammars

Example (The palindrome language on the alphabet {0, 1})

G=({P},{0,1}, A, P)
with A= {P —¢|0|1|0PO0|1P1}

Example (Language of arithmetic expressions)
G=({E,T,F},{i,c,+,*(,)}, P, E) with P
@ E-T|E+T
T —F|TxF
°© F—ilc|(E)

153

Derivations

Given G= ({E, T,F},{i,c,+,%,(,)},P,E) and
@ E-ST|E+T
e T —F|TxF
@ F—i|c|(E)
We have
E=i+cxi
Several derivations are possible, such as:

QE-E+T=>T+T=F+T=i+T
=i+ T*xF=i+FxF=i+c+xF=i+cCcxi

Q E=E+T=E+TxF=E+T=xi
=E+Fxi=E+4+cxi=T+cxi=F+cxi=i+Cx*xi

QE=E+T=T+T=T+T*xF=T+FxF
=T+cxF=F+c«F=F+cxi=i+cCcxi

Q ..

Definition (Left-most (resp. right-most) derivation)

Derivation of the grammar G which always first rewrites the left-most (resp.
right-most) variable of the sentential form.

@ derivation 1. (of the example) is left-most (one writes S ¢ = «)
@ derivation 2. is right-most (one writes S = o)
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Reminder and definitions
Derivation tree
Cleaning and simplification of context-free grammars

Outline

9 Derivation tree

Reminder and definitions
Derivation tree
Cleaning and simplification of context-free grammars

Derivation tree

For a context-free grammar G, one can show that w € L(G) using a
derivation tree (or parse tree).

Example (derivation tree)
with the derivation tree:

The grammar with the rules: 0
o A — “id” “=” E /l \
@E=T|E“+" T N /T\

@T=F|T“”F E * T
o F="id”| “cst” | “("E “)” l T/l\F
can give: ‘ ‘ ‘
o id=id + cst* id T | °
id cst
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Construction of a derivation tree

Definition (Derivation tree)
Givena CFG G= (V,T,P,S). A derivation tree for G is such that:
@ each internal node is labeled by a variable

@ each leaf is labeled by a terminal, a variable or e.
Each leaf € is the only son of its father

© Ifaninternal node is labeled A and its sons (from left to right) are labeled
X1,X2,...,Xk then A — X1X2...Xk e P

Example (derivation tree)
For the grammar on slide 156

-

T

E

N

i

Yield of a derivation tree

Definition (Yield of a derivation tree)

String formed by the concatenation of the labels of the leaves in the left-right
order (corresponds to the derived sentential form).

Example (of yield of a derivation tree)
The yield of the following derivation tree:

-

T

E

N,

+

id=T+T
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Reminder and definitions
Derivation tree
Cleaning and simplification of context-free grammars

Complete derivation tree and A-derivation tree

Definition (Complete derivation tree)

Givena CFG G= (V, T, P,S), a complete derivation tree for G is a
derivation tree such that:

@ The root is labeled for the start symbol
© Each leaf is labeled by a terminal or e (not a variable).

Example (of complete tree)
See slide 156

Definition (A-derivation tree)
Derivation tree whose root is labeled by a variable A

Reminder and definitions
Derivation tree
Cleaning and simplification of context-free grammars

Why these grammars are called context-free

A= XiXz...Xx = w corresponds to a derivation tree of the form :

@ Each X is derived independently of the other X;.

@ Therefore X; = w;

@ Note that left-most and right-most derivations handle each variable one
at atime
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Reminder and definitions
Derivation tree
Cleaning and simplification of context-free grammars

Outline

Q Cleaning and simplification of context-free grammars

Reminder and definitions
Derivation tree
Cleaning and simplification of context-free grammars

Ambiguous context-free grammars

Ambiguous context-free grammar

@ For a CFG G every string w of L(G) has at least a derivation tree for G.

@ w € L(G) can have several derivation trees for G: in that case the
grammar is ambiguous.

@ I|deally, to allow proper parsing, a grammar must not be ambiguous.
Indeed, the derivation tree determines the code generated by the
compiler.

@ In that case, we try to modify the grammar to suppress the ambiguities.

@ There is no algorithm to suppress the ambiguities of a context-free
grammar.

@ Some context-free languages are inherently ambiguous!
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Reminder and definitions
Derivation tree
Cleaning and simplification of context-free grammars

Ambiguous context-free grammar

Example (of inherently ambiguous context free language)
L={a"b"c™d” |n>1,m>1} u{ a"b"c™d" |n>1,m> 1}
Example of CFG for L

S—AB|C
AﬁaAb|ab
B — cBd | cd
C — aCd | abd
D — bDc | bc

With G, for all i > 0 a'b'c'd’ has 2 derivation trees. One can prove that any
other CFG for L is ambiguous
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Removal of ambiguities

Priority and associativity

When the language defines strings composed of instructions and operations,
the syntactic tree (which will determine the code produced by the compiler)
must reflect

@ the priorities and
@ associativity

Example (of trees associated to expressions)

at+b+c at+bxc
AN 7N
AN I\

a b b c
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Ambiguity removal

Priority and associativity

To respect the left
hand-side
associativity, one
does not write

E—-E+E|T
but
E—-E+T|T

Ambiguity removal

To respect priorities, we define
several levels of variables /
rules (the start symbol has
level 0): the operators with
lowest priority are defined at a
smallest level (closer of the
start symbol) than the one with
more priority.

We should not write

E—T+E|T+E|T
T — id| (E)

but use 2 levels instead:

E-T+E|T
T F«T|F
F—id| (E)

Example (Associativity of the “if” instruction)

The grammar:

instr — if expr instr | if expr instr else instr | other

is ambiguous

/in‘str
if expr instr

if expr instr

other

instr

if expr instr else instr

if expr instr other

other

In usual imperative languages, the left tree is the adequate one.
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Reminder and definitions
Derivation tree
Cleaning and simplification of context-free grammars

Ambiguity removal

Example (Associativity of the “if” instruction)
One can, e.g., transform the grammar into:

instr — open | close

close — if expr close else close | other
open — if expr instr

open — if expr close else open

167

Removal of useless symbols

Definition ( useful / useless symbols)
Fora grammar G= (V,T,P,S),
@ a symbol X is useful if there exists a derivation

S=>aXf>w
G G

for strings o, 3 and a string of terminals w
Otherwise X is useless.

@ a symbol X produces something if X :G> w for a string w of terminals.

@ a symbol X is accessible if S % aXp for some strings «, 3

Theorem (For CFGs: useful symbols = (accessible + produce something))
In a CFG,
every symbol is accessible and produces something

=
every symbol is useful

PUB Cours-Librairie, av. P. Héger 42, B-1000 Bruxelles / INFO-F-403_A



Reminder and definitions
Derivation tree
Cleaning and simplification of context-free grammars

Removal of useless symbols

Theorem (Removal of useless symbols of a CFG)
LetG=(V,T,P,S) beaCFG.
IfG = (V' T' P',S) is the grammar provided after the 2 following steps:

@ Removing the symbols that produce nothing and the rules where they
appear in G (we obtain G, = (V,, T;, P;, S)),

@ Removing inaccessible symbols and productions where they appear in
G.

then G’ is equivalent to G and has no useless symbols.

169

Algorithm to compute the set of symbols which produce something

Algorithm to compute the set g(G) of symbols which produce something in
G=(V,T,P,S)

@ Basis: g(G) «— T
e Induction: If & € (9(G))* et X — a € P then g(G) < {X}

Example (of computation of g(G))
Given G with the rules S — AB| a,A— b
@ Initially g(G) «— {a, b}
Q S — athen g(G) < {S}
@ A— bthen g(G) < {A}
Q Finally g(G) = {S,A, a, b}

Theorem (At saturation, g(G) contains the set of all symbols which produce
something)
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Algorithm to compute the set of accessible symbols

Algorithm to compute the set r(G) of accessible symbols of G= (V, T, P, S)
@ Base: r(G) — {S}
@ Induction: If A€ r(G) and A — a € P then
r(G) < {X | 3oy, 2 : @ = a1 Xaz}

Example (of computation of r(G))
Given G with the rules S — AB| a,A— b
@ Initially r(G) — {S}
Q@ S— ABr(G) < {A B}
@ S — athen r(G) < {a}
Q A — bthen r(G) < {b}
@ Finally r(G) = {S, A, B, a, b}

Theorem (At saturation, r(G) contains the set of accessible symbols) ‘

Reminder and definitions
Derivation tree
Cleaning and simplification of context-free grammars

Removal of left-recursion

Definition (Left-recursion)

A CFG G is left-recursive if there exists a derivation A :;> Aa

Note:

We will see, in the chapter on parsing, that left-recursion is a problem for
top-down parsing. In this case, one replaces left-recursion by another kind of
recursion.

172
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Reminder and definitions
Derivation tree
Cleaning and simplification of context-free grammars

Removal of left-recursion

Algorithm to remove left-recursion

Let
A— Aaq |- | Aar

be the set of directly left-recursive A-productions and

A= Bi|--- | Bs
the other A-productions.

All these productions are replaced by:

A— BA || BA
A —aAl-|aA e

where A’ is a new variable

Reminder and definitions
Derivation tree
Cleaning and simplification of context-free grammars

Removal of left-recursion

General algorithm to remove left-recursion
With V = {A¢, Az, ..., An}.

Fori=1to ndo
Forj=1toi—1do
For each production of the form A; — Aja do
Remove A; — Aja from the grammar
For each production of the form A; — 3 do
Add A; — Ba to the grammar
od
od
od
Remove direct left-recursion of the A;-productions
od
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Removal of left-recursion

Example (of removal of left-recursion)
Given G with the

e Treatment of C :

B — Ac ‘ d A — bA | ¢

¢ = Bglre| s B — aAc|CfAc|d
Treatment of A: C — aAcg|dg|aAe]

CfA'cg | CfA’e | Cc

A — aA | CA

A — bA e Treatment of C (direct

B — Ac|d recursion):

C — Bg|Ae]|Cc

A — aA|CA
Treatment of B: A — bA e
, , B — aAc|CfAc|d

2, : Zﬁ, I ECfA C — aAcgC' |dgC' |aAeC

B — aAc|Clc|d C' — fAcgC |fAeC’ | cC'|e

C — Bg|Ae]|Cc

Left-factoring

Definition (Rules that can be factored)
In a CFG G, various productions can be left-factored if they have the form

A—api| | afhy

with a common prefix o # €
Remark: G can have other A-productions.

Note:
For top-down parsers, we will see that rules must be left-factored.

Algorithm for left-factoring

Replace:

A— apy |- | aps
by

A — oA

A =B Bn
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Removal of unit productions

Definition (Unit production)
A unit production has the form :

withB e V

Note:

Unit productions are seen as rules that make no “progress” in the derivation:
it is hence better to remove them

Algorithm to remove unit productions

For all A= B using only unit productions, and B — «a a non unit production
Add:

A— «

At the end remove all unit productions.

Pushdown automata (PDA)
Equivalence between PDA and CFG
Properties of context-free languages

Chapter 7: Pushdown automata and properties of context-free
languages

0 Pushdown automata (PDA)
@ Equivalence between PDA and CFG

e Properties of context-free languages

178
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Pushdown automata (PDA)
Equivalence between PDA and CFG
Properties of context-free languages

Outline

0 Pushdown automata (PDA)

Introduction

Informal presentation

A pushdown automaton (PDA) is, in short, an e-NFA with a stack.

During a transition, the PDA
@ Consumes an input symbol (or not if it is an e-transition)
@ Changes its control state

© Replaces the symbol T on top of the stack by a string (which, in
particular can be € (pop), “T” (no change), “AT” (push a symbol A))

olofnfifofulrel T.T.T T T T ]]

Lol
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Example

Example (PDA for Lyw = {ww” | w € {0,1}*})

Corresponds to the “grammar” P — 0PO | 1P1 | e.
One can build an equivalent PDA equivalent with 3 states, which works as
follows:

In qo
In qo
In g

In g

It can guess we are in w: push the symbol on the stack
It can guess we are in the middle (at the end of w): it goes to state gy

It compares what is read and what is on the stack: if both symbols are
identical, the comparison is correct, it pops the top of the stack and
continues (otherwise it is stuck)

If it meets the initial symbol on the stack, it goes to state g» (accepting).

. 2,102,

L2112,

,0/00

. 1/01

,0/10 0,0/¢
L1711 1. 1/¢

Strt 3 Q (7.

e, Zo/Z, , Z /Z0
€, O/O
e, 1/ 1

—_—— O O = O

Pushdown automata (PDA)
Equivalence between PDA and CFG
Properties of context-free languages

PDA: formal definition

Definition
A PDA is a 7-tuple:

where

(%]
(*]

Q is a finite set of states

> is the input alphabet

[ is the stack alphabet

§:Qx (ZU{e} xT)— 29" s the transition function
go € Q is the initial state

Zy €T is the initial symbol on the stack

F C Q is the set of accepting states
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Example of PDA

Example (of formal definition of the following PDA P)

L Zy102Z,

. Zy /12,

,0/00

L 1/01

,0/10 0,0/¢
L1711 l,l/s

Stgm

Z/z0 AR
e, 0/0
e 1/ 1

—_—_- O O = O

P= <{CI0, a1, q2}7 {O) 1}7 {Oa 1 ; ZO}’ 5) Qo, ZO; {CIQ}>

— qo || {(90,02)} | {(90,120)} [ {(a0,00)} | {(90,00)} [ {(a0,10)} | {(qo,11)}
a1 0 0 {(a1,¢)} 0 0 {(a1,€)}
*Qp 1] 1] 0 (1] 1]

S|l (%) | (60 | (e1)
—q || {(a1,2%)} | {(a1,0)} | {(a1,1)}
a4 {(a2, Z)} 0 0
*q2 0 0

Other example of PDA

Example (of formal definition of the following PDA P’)

0,2,/ 0Z,

1,2,/ 1Z,

0,0/00

0,1 /01 €7 /€
1,0 /10 0,0 /€
1,1 /11 1,1 /€

€7,/€
O 0,0/ € O

11/ ¢
—> qo > q1

= <{q07Q1}7 {07 1}7 {07 1720}757 q07207®>

sl 0% | (1,.Z%) | (0,0) | (1)
—>Olo H {(qo,OZo)} ‘ {(qo,1Zo)} ‘ {(qo,OO) (q1,e)} ‘ {(qo,01}
{(91,€)
S|l (1o | a.1 | (e, %)
—>qo H {(00 10)} ‘ {(qO 11),(q1,€)} | {(aq1,€)}
{(a1, €)} {(a1,€)}
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Pushdown automata (PDA)
Equivalence between PDA and CFG
Properties of context-free languages

Accepting condition

A string w is accepted:
@ By empty stack: the string is completely read and the stack is empty.

@ By final state: the string is completely read and the PDA is in an
accepting state.

Remark
@ For a PDA P, 2 (a priori different) languages are defined:
- N(P) (acceptation by empty stack) and
- L(P) (acceptation by final state)
@ N(P) does not use F and is therefore not modified if one defines F = ()

185

Pushdown automata (PDA)
Equivalence between PDA and CFG
Properties of context-free languages

Configuration and accepted language

Definition (Configuration of a PDA P = (Q, %, T, 6, Qo, 2o, F))
Triple (q,w,~) € QxX* xT*
@ Initial configuration: (qo, w, Zo) where w is the string to accept

@ Final configuration using empty stack acceptation: (q, e, €) (with any q)

@ Final configuration using final state acceptation: (q, €,~) with q € F (with
any~y erlr”)

Definition (Configuration change)
(q.aw, XB) & (q',w,ap)
iff
(9", ) € 6(q,a X)

186

PUB Cours-Librairie, av. P. Héger 42, B-1000 Bruxelles / INFO-F-403_A



Pushdown automata (PDA)
Equivalence between PDA and CFG
Properties of context-free languages

Languages of P: L(P) and N(P)

Definition (L(P) and N(P))

*

LP)={w|weX" A3qeF,yel” (q,w, %) b (ge7)}

N(P)={w|weT" A3qeQ:(gw2) [ (6}
where

,'3 is the reflexo-transitive closure ofII;
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Example of “runs”

Example (PDA P with L(P) = Lywr = {ww" | w € {0,1}*} and possible runs

for the string 1111)
0,z,/0z,
1,27Z,/1Z,
0,0/00
0, 1/01
1,0/10 0,
1, 1/11 1

sequences (see next slide)
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(g 1111,Z )

Ve

(g 111,1Z) (q - LZy) == (4, 111L,Z)

-

(g 1,11Z ) (g » L1Z ) == (q .11, Zg)

i\ :

(g, 1, 111Z, ql’ 11,117, (% .11, Z,)
(o€ 111Zy) (g, L111Z}) (g . 1L1Z))
i | !

(g e, 1111Zy ) (g .e.11Z;) (g ¢ 29)
!
(qz,s,ZO)

Pushdown automata (PDA)
Equivalence between PDA and CFG
Properties of context-free languages

Example of languages accepted by a PDA

Example (The PDA P on slide 183)
L(P) = {ww" |w e {0,1}'} N(P)=

Example (PDA P’ on slide 184)
L(PY=0 N(P)={ww”|we{0,1}"}
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Deterministic PDA (DPDA)

Definition (deterministic PDA (DPDA))

APDAP=(Q,%,T,6,q, 2, F) is deterministic iff
@ 4(q, a, X) is always either empty or a singleton (forac ¥ U {¢})
Q Ifé(q, a, X) is not empty then 6(q, €, X) is empty

Example (Deterministic PDA P with L(P) = {wew” | w € {0,1}*})

0,2,/02,
1.2Z,/1Z,
0,0/00
0,1/01
1,0/10 0,
1. 1/11 1

Pushdown automata (PDA)
Equivalence between PDA and CFG
Properties of context-free languages

Deterministic PDA

Theorem (The class of languages defined by a deterministic PDA is strictly
included in the class of languages defined by a general PDA)

Proof sketch:

One can show that the language Lww: defined on slide 183 cannot be defined
by a deterministic PDA
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Pushdown automata (PDA)
Equivalence between PDA and CFG
Properties of context-free languages

Outline

© Equivalence between PDA and CFG

Pushdown automata (PDA)
Equivalence between PDA and CFG
Properties of context-free languages

PDA-CFG equivalence

One can show the following inclusions (each arrow corresponds to an
inclusion)

PDA by
empty stack

PDA by final
state

which proves that:

Theorem (The following three classes of languages are equivalent)
@ The languages defined by CFGs (i.e. CFLs)
@ The languages defined by a PDA with acceptation by empty stack
@ The languages defined by a PDA with acceptation by final state
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Q Pushdown automata (PDA)

© Equivalence between PDA and CFG

e Properties of context-free languages

195

Is L context-free?

For which operators are context-free languages closed?
weL?

Is L empty, finite, infinite?

Li C Ly, Ly = Lo?
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Pushdown automata (PDA)
Equivalence between PDA and CFG
Properties of context-free languages

For which operators are context-free languages closed?

Theorem (If L and M are context-free, then the following languages are
context-free)

Union: LUM
Concatenation: L.M

@ Kleene closure: L*
@ Mirror image: LF

Theorem (If L and M are context-free, then the following languages may not

be context-free)

Complement: L
Intersection: LN M
Difference: L\ M

Pushdown automata (PDA)
Equivalence between PDA and CFG
Properties of context-free languages

Undecidable problems for CFL

197

The following problems on CFL are undecidable (there is no algorithm to
solve them in a general way)

Is the CFG G ambiguous?

Is the CFL L inherently ambiguous?
Is the intersection of 2 CFLs empty?
Isthe CFL L =%*?

Ly C L7

Ly = L,?

Is L(G) a CFL?

Is L(G) deterministic?

Is L(G) regular?
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Chapter 8: Syntactic analysis (parsing)

0 Roles and place of parsing
e Top-down parsing

© Bottom-up parsing

199

0 Roles and place of parsing

Q Top-down parsing

0 Bottom-up parsing

200
PUB Cours-Librairie, av. P. Héger 42, B-1000 Bruxelles / INFO-F-403_A



Roles and place of parsing
Top-down parsing
Bottom-up parsing

Roles and place of the parser

Main role of the parser

@ Verify that the structure of the string of tokens provided by the scanner
(typically the program) belongs to the language (generally defined by a
context-free grammar)

@ Build the syntactic tree corresponding to that string of tokens

@ Play the role of conductor (main program) of the compiler
(syntax-oriented compiler)

Place of the parser
Between the scanner and the semantic analyzer:
@ It calls the scanner to ask for tokens and

@ It calls the semantic analyzer and then the code generator to finish the
analysis and generate the corresponding code

Roles and place of parsing
Top-down parsing
Bottom-up parsing

Token = terminal of the grammar

Note:
In the following, each token is symbolized by a terminal of the grammar.

$ in the end of the string

In the grammar which defines the syntax, one will add systematically a new
start symbol S’, a new terminal $ (which symbolizes the end of the string)?
and the production rule S" — S$ where S is the old start symbol.

aWe suppose that neither S’ nor $ are used anywhere else
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Example (Grammar of a very simple language)

Rules Production rules
0 S’ — program$
1 program —  begin st-listend
2 st-list — st st-tail
3 st-tail — st st-tail
4 st-tail — €
5 st — Id:= expression;
6 st — read (id-list) ;
7 st —  write( expr-list);
8 id-list — Id id-tail
9 id-tail  — , Id id-tail
10 id-tail — €
11 expr-list —  expression expr-tail
12 expr-tail — , expression expr-tail
13 expr-tail — ¢
14 expression —  prim prim-tail
15 prim-tail  —  add-op prim prim-tail
16 prim-tail  — €
17 prim —  ( expression)
18 prim — Id
19 prim — Nb
20| 21 add-op — +|-

Example of syntactic tree

Example (Syntactic tree corresponding to begin Id :=Id - Nb ; end $)

Sl

/ \$
TN

begin st-list end
st st-tail
SN
Id := expression " ; €
prim prim-tail

N

Id add-op prim prim-tail

- Nb €
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Example of syntactic tree and of left-most / right-most derivation

Example (Left-most / right-most derivation corresponding to the syntactic
tree)

S'

/ \$
TN

begin st-list end
st st-tail
SN~
Id = expression €
prim prim-tail

N

Id add-op prim prim-tail

Nb €

Left-most derivation S’ = begin Id := Id - Nb ; end $:
0125141815211916 4

Right-most derivation S’ = ¢ begin Id :=Id - Nb ; end $:
01245141516 1921 18

Roles and place of parsing
Top-down parsing
Bottom-up parsing

Left-most derivation

Example (Complete corresponding left-most derivation)

Rule longest prefix € T*  last part of the sentential form
S’ =
0 program $ =
1 begin st-list end$ =
2 begin st st-tail end$ =
5 beginId :=  expression ; st-tail end$ =
14 beginId :=  prim prim-tail ; st-tail end$ =
18 beginld :=Id  prim-tail ; st-tail end$ =
15 beginld :=Id  add-op prim prim-tail ; st-tail end$ | =
21 beginld :=1d -  prim prim-tail ; st-tail end$ =
19 beginld :=1d - Nb  prim-tail ; st-tail end$ =
16 beginid :=Id - Nb ; st-tail end$ =
4 beginId :=1d - Nb ; end $
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Roles and place of parsing
Top-down parsing
Bottom-up parsing

Right-most derivation

Example (Complete corresponding right-most derivation)

Rule

sentential form

S
program $

begin st-list end $
begin st st-tail end $
begin st end $

begin Id := expression ; end $
begin Id := prim prim-tail ; end $
begin Id := prim add-op prim prim-tail ; end $

begin Id := prim add-op prim ; end $
begin Id := prim add-op Nb ; end $
begin Id := prim- Nb ; end $
beginid :=1d - Nb ; end $

R 2 2 AR

Roles and place of parsing
Top-down parsing
Bottom-up parsing

General structure of a parser

Parser = Algorithm to recognize the structure of the program and build the

corresponding syntactic tree

Since the language to recognize is context-free, a parser will work as a

Pushdown automaton (PDA)
We will see two big classes of parsers:

@ The top-down parser

@ The bottom-up parser
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Roles and place of parsing
Top-down parsing
Bottom-up parsing

General structure of a parser

A parser must recognize the string and produce an output, which can be:
@ the corresponding syntactic tree
@ calls to the semantic analyzer and code generator
o ...

Remark:

In what follows, the output = the sequence of production rules used in the

derivation.
If we also know that it is a left-most (resp. right-most) derivation, this
sequence identifies the derivation and the corresponding tree (and allows to

easily build it).

209

Roles and place of parsing
Top-down parsing
Bottom-up parsing

Outline

9 Top-down parsing

210
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Reminder: building a PDA equivalent to a given CFG

From a CFG G one can build a PDA M with L(G) = N(M)

Principle of the construction: With the CFG G = (V, T, P, S), one builds a
PDA M with one state which simulates the left-most derivations of G

P={{q}, T,VUT,¢,q,S,0) with
VA— XiXo... Xk € P: <q,X1X2...Xk) € 5(q,6,A)
Vae T:46(q,aa) = {(q,€)}

@ Initially the start symbol S is on the stack

@ Every variable A on top of the stack with A — X1 X5 ... Xk € P can be
replaced by its right part X1 Xz . .. Xk with X; on top of the stack

@ Each terminal on top of the stack which is equal to the next symbol of
the input is matched with the input (the input is read and the symbol is
popped from the stack)

@ Atthe end, if the stack is empty, the string is accepted

In the construction, the rule S’ — S$ was not added

Roles and place of parsing
Top-down parsing
Bottom-up parsing

Outline of a top-down parser

Outline of a top-down parser: PDA with one state and with output

Initially S’ is on the stack
The PDA can do 4 types of actions:

@ Produce: the variable A on top of the stack is replaced by the right part
of one of its rules (numbered /) and the number i is written on the output

@ Match: the terminal a on top of the stack corresponds to the next input
terminal; this terminal is popped and we go to the next input

@ Accept: Corresponds to a Match of the terminal $: the terminal on the
top of the stack is $ and corresponds to the next input terminal; the
analysis terminates with success

@ Error: If no Match nor Produce is possible
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Left-most derivation

Example (Complete corresponding left-most derivation)

On the stack Remaining input Action Output
S’ beginid :=Id- Nb ; end $ PO €
program $- beginld :=Id - Nb ; end $ P1 0
begin st-list end$— beginld :=Id - Nb ; end $ M 01
st-list end$— Id:=1d-Nb;end$ P2 01
st st-tail end$— Id:=Id-Nb;end$ P5 012
Id := expression ; st-tail end$- Id:=Id-Nb;end$ M 0125
:= expression ; st-tail end$- :=ld-Nb;end $ M 0125
expression ; st-tail end$— Id-Nb;end $ P14 0125
prim prim-tail ; st-tail end$— Id-Nb;end$ P18 012514
Id prim-tail ; st-tail end$— Id-Nb;end$ M 01251418
prim-tail ; st-tail end$- -Nb;end$ P15 01251418
add-op prim prim-tail ; st-tail end$— -Nb;end$ P21 0125141815
- prim prim-tail ; st-tail end$- -Nb;end $ M 012514181521
prim prim-tail ; st-tail end$— Nb ; end $ P19 0125141815 21
Nb prim-tail ; st-tail end$— Nb ;end $ M 012514181521 19
prim-tail ; st-tail end$- ;end $ P16 012514181521 19
; st-tail end$- ;end $ M 012514181521 1916
st-tail end$- end $ P4 012514181521 1916
end $- end $ M 01251418152119164
$- $ A 012514181521 1916 4

where:
Pi : Produce with rule i
M : Match

A : Accept (corresponds to a Match of the $ symbol)

E : Error (or blocking which requests a backtracking) (not in this example)

Roles and place of parsing

Top-down parsing
Bottom-up parsing

Points to improve in the outline of the top-down parser

Criticism of the top-down parser outline

@ As such, this parser is extremely inefficient since it must do backiracking
to explore all the possibilities.

@ In this kind of parser, a choice must be made when several “Produces”
are possible.

@ If several choices are possible and no criteria in the method allow to
select the good one, one will talk about Produce/Produce conflicts.

@ Without guide when the choice must be done, one possibly has to
explore all the possible Produces: the parser could therefore take an
exponential time (typically in the length of the input) which is
unacceptable!

@ We will see efficient top-down parsing techniques in the next chapter.
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Roles and place of parsing
Top-down parsing
Bottom-up parsing

Outline

© Bottom-up parsing

Outline of a bottom-up parser

Outline of a bottom-up parser

PDA with one state and with output.
We start from the input string and build the tree bottom-up. In order to do so,
two actions are available:

@ “Shift”: shift the input symbols on the stack until identification of a
right-hand part « (handle) of the rule A — «

Q@ “Reduction”: replacement of « by A @
Initially the stack is empty.
The PDA can do 4 kinds of actions :
@ Shift: reading of an input symbol and push of this symbol on the stack

@ Reduce: the top of the stack a corresponding to the handle (the right
part of a rule number i : A — «), is replaced by A on the stack and the
number i of the used rule is written on the output

@ Accept: corresponds to a Reduce of the rule S — S$ (which shows that
the input has been completely read and analyzed); the analysis is
completed successfully

@ Error: If no Shift nor Reduce is possible

@Formally corresponds to || pops followed by a push of A
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Roles and place of parsing
Top-down parsing
Bottom-up parsing

Outline of a bottom-up parser

Remark:

@ One can see that the analysis corresponds to a reverse order right-most
analysis: one starts from the string and goes up in the derivation back to
the start symbol. Analysis is done in reverse order since the input is read
from left to right.

@ The output will be built in reverse order (each new output is put before all
what has been produced before) to obtain this right-most derivation.

217

Right-most derivation

Example (Corresponding complete right-most derivation)

On the stack Remaining input Act Output
= beginld :=Id - Nb ; end $ S
+ begin Id:=1d-Nb;end$ S €
+ begin Id :=ld-Nb;end $ S €
+ begin Id := Id-Nb ;end $ S €
+ begin Id := Id -Nb;end $ R18 €
 begin Id := prim -Nb;end $ S 18
 begin Id := prim - Nb;end $ S 18
+ begin Id := prim - Nb ; end $ R21 18
+ begin Id := prim add-op Nb ;end $ S 2118
+ begin Id := prim add-op Nb ;end $ R19 2118
+ begin Id := prim add-op prim ;end $ R16 192118
+ begin Id := prim add-op prim prim-tail ;end $ R15 16192118
+ begin Id := prim prim-tail ;end $ R14 1516 1921 18
 begin Id := expression ;end $ S 1415161921 18
+ begin Id := expression ; end $ R5 141516192118
+ begin st end $ R4 51415161921 18
F begin st st-tail end $ R2 451415161921 18
 begin st-list end $ S 2451415161921 18
 begin st-list end $ R1 2451415161921 18
F program $ S 12451415161921 18
+ program $ € A 1245141516 1921 18
S € 01245141516 1921 18
where:
S : Shift
Ri : Reduce with the rule i
A : Accept (corresponds to a Reduce with the rule 0)
E : Error (or blocking which requests a backtracking)
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Roles and place of parsing
Top-down parsing
Bottom-up parsing

Points to improve in the outline of the bottom-up parser

Criticism of the outline of the bottom-up parser

@ As such, this parser is extremely inefficient since it must backirack to
explore all the possibilities.

@ In this kind of parser, a choice must occur when both a “Reduce” and
“Shift” can be done, or when several “Reduces” are possible.

@ If several choices are possible and no criteria in the method allow to
choose, one can talk of Shift/Reduce or Reduce/Reduce conflicts.

@ Without guide when the choice must be done, possibly every possible
Shift and Reduce must be tried: the parser could therefore take an
exponential time (typically in the length of the input) which is
unacceptable!

@ We will show efficient bottom-up parsing techniques in a later chapter.
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Principles of top-down parsinE
Predictive parsers - First" - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

Chapter 9: LL(k) parsers

0 Principles of top-down parsing

@ Predictive parsers - First* - Follow*
© LL(k) CFGs

0 LL(1) parsers

e Strongly LL(k) parsers (k > 1)

e LL(k) parsers (k > 1)

o Error handling and resynchronization

© Recursive LL(k) parsers

220
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Principles of top-down parsink;

Predictive parsers - First

- Follow

LL(k) CFGs

LL(1) parsers
Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Outline

0 Principles of top-down parsing

Recursive LL(k) parsers

Example (Grammar of a very simple language)

Rules

Production rules

©CONOOORNWN—O

19
20| 21

g
program
st-list
st-tail
st-tail

st

st

st

id-list
id-tail
id-tail
expr-list
expr-tail
expr-tail
expression
prim-tail
prim-tail
prim
prim
prim
add-op

program $
begin st-list end
st st-tail

st st-tail

€

read ( id-list) ;
write( expr-list);
Id id-tail

, Id id-tail

€

€
prim prim-tail

€
( expression)
Id

Nb
+ |-

L A A A

Id := expression ;

expression expr-tail
, expression expr-tail

add-op prim prim-tail
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Example of syntactic tree and of left-most derivation

Example (Left-most derivation corresponding to the syntactic tree)

s'

/ \$
N

begin st-list end
st st-tail
SN
Id = expression " ; €
prim prim-tail

s

Id add-op prim prim-tail

Nb €

Left-most derivation S'¢ = begin Id :=Id - Nb ; end $:
012514181521 19164

Principles of top-down parsin[?
Predictive parsers - First" - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

Left-most derivation

Example (Complete corresponding left-most derivation)

Rule longest prefix € T*  last part of the sentential form
S’ =
0 program $ =
1 begin st-list end$ =
2 begin st st-tail end$ =
5 beginId :=  expression ; st-tail end$ =
14 begin Id :=  prim prim-tail ; st-tail end$ =
18 beginld :=Id  prim-tail ; st-tail end$ =
15 beginld :=Id  add-op prim prim-tail ; st-tail end$ | =
21 beginId :=1d -  prim prim-tail ; st-tail end$ =
19 beginld :=1d - Nb  prim-tail ; st-tail end$ =
16 beginid :=Id - Nb ; st-tail end$ =
4 beginId :=1d - Nb ; end $
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Principles of top-down parsin[c(;
Predictive parsers - First" - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

Outline of a top-down parser

Outline of a top-down parser: PDA with one state and with output

Initially S’ is on the stack

The PDA can do 4 types of actions:

@ Produce: the variable A on top of the stack is replaced by the right part
of one of its rules (numbered /) and the number i is written on the output

@ Match: the terminal a on top of the stack corresponds to the next input
terminal; this terminal is popped and we go to the next input

@ Accept: Corresponds to a Match of the terminal $: the terminal on the
top of the stack is $ and corresponds to the next input terminal; the
analysis terminates with success

@ Error: If no Match nor Produce is possible

Left-most derivation

Example (Complete corresponding left-most derivation)

On the stack Remaining input Action Output
S’ beginld :=Id - Nb ; end $ PO €
program $- beginid :=Id - Nb ; end $ P1 0
begin st-list end$— beginld :=Id - Nb ; end $ M 01
st-list end$ - Id:=Ild-Nb;end$ P2 01
st st-tail end$— Id:=Id-Nb;end$ P5 012
Id := expression ; st-tail end$- Id:=Id-Nb;end$ M 0125
:= expression ; st-tail end$- :=ld-Nb;end $ M 0125
expression ; st-tail end$— Id-Nb;end $ P14 0125
prim prim-tail ; st-tail end$— Id-Nb;end $ P18 012514
Id prim-tail ; st-tail end$— Id-Nb;end$ M 01251418
prim-tail ; st-tail end$— -Nb;end$ P15 01251418
add-op prim prim-tail ; st-tail end$— -Nb;end $ P21 0125141815
- prim prim-tail ; st-tail end$- -Nb;end$ M 012514181521
prim prim-tail ; st-tail end$— Nb ; end $ P19 012514181521
Nb prim-tail ; st-tail end$— Nb ;end $ M 012514181521 19
prim-tail ; st-tail end$— ;end $ P16 012514181521 19
; st-tail end$- ;end $ M 012514181521 1916
st-tail end$- end $ P4 012514181521 1916
end $- end $ M 01251418152119164
$- $ A 01251418152119164

where:
Pi : Produce with rule i
M : Match

A : Accept (corresponds to a Match of the $ symbol)

E : Error (or blocking which requests a backtracking) (not in the example)
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Principles of top-down parsin;(;
Predictive parsers - First" - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

Points to improve in the outline of the top-down parser

Criticism of the top-down parser outline
@ As such, this parser is extremely inefficient since it must do backiracking

to explore all the possibilities.

@ In this kind of parser, a choice must be made when several “Produces”

are possible.

@ If several choices are possible and no criteria in the method allow to
select the good one, one will talk about Produce/Produce conflicts.

@ Without guide when the choice must be done, one possibly has to
explore all the possible Produces: the parser could therefore take an
exponential time (typically in the length of the input) which is

unacceptable!

@ We will see efficient top-down parsing techniques in this chapter.

Principles of top-down parsinE
Predictive parsers - Firstk - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

Outline

© Predictive parsers - First" - Follow*
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Principles of top-down parsinﬁ;
Predictive parsers - Firstk - Follow'

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

Introduction to predictive parsers

Motivation

@ During top-down parsing, the choices the parser must make occur when
the action to achieve is a Produce and the concerned variable (on top of
the stack) has several rules.

@ In that case, the remaining (not yet matched) input can be used as a
“guide”.
@ In the example, if a produce must be done with the variable st,

depending on the fact the remaining input is Id, read or write, it is clear
that the parser must make a Produce 5, 6 or 7

229

Introduction to predictive parsers

Predictive parser

The LL(k) parsers are predictive and have k look-ahead symbols (k is a
natural number): when a variable is on top of the stack, the produce done will
depend on:

@ the variable
@ the (at most) k first input symbols

Example (Action table M)

An LL(k) parser has a 2-dimensional table M where M[A, u] determines the
production rule to use when A is the variable to develop (on top of stack) and
u is the look-ahead.

@ For an LL(1) parser the look-ahead is a terminal symbol a.

@ For an LL(k) parser, with k an integer bigger than 1, we will have
MIA, u], with u a string of size up to k symbols (limited by the final $)
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LL(k) predictive parsers

Example (LL(k) predictive parsers)

lookahead of up to k symbols
——
[nfifoful [ .T.TTTTT] input

S
<:'> Predictive parser :'> / \
a A

7N

stack
ouput

a|b|[o]|n|]
S |1 4

W | >

o

Action table M

Remark: Every unexpected combination in M gives an error during parsing

LL(k) predictive parsers

Algorithm : outline of an LL(k) predictive parser for G= (V, T, P, S’) and
rules of the form A — «;

The table M is assumed to have already been built
Parser-LL-k():=
Initially: Push(S’)
While (no Error nor Accept)
X «— Top()
u — Look-ahead
If (X =Ae Vand M[A, u] = i) : Produce(i);
Elseif( X=a#$%$e€ T)andu=av (v € T"): Match();
Else if (X = u =19) : Accept();
Else : /* not expected */ Error();
FProc

Produce(i) := Pop(); Push(«;); Endproc

Match() := Pop(); Shifts to the next input; Endproc
Accept() := Informs of the success of parsing; Endproc
Error() := Informs of an error during parsing; Endproc
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How can we predict (i.e. fill M)?

Example (1: a step of top-down parsing for S’ = begin Id := Id - Nb ; end
%)

Sl

/proTK \ $
begin st-list end

st st-tail

@ Left-most derivation already achieved S’¢ = begin st st-tailend $: 01 2
@ Remaining input (not yet matched): Id :=Id - Nb ; end $
= The Produce st — Id := expression ; must be done which starts with |d
and corresponds to the input

How can we predict (i.e. fill M)?

Example (2: a step of top-down parsing for S’ = begin Id :=Id - Nb ; end
%)

s

/ \$
RN

begin st-list end
st st-tail
NS
Id = expression
prim prim-tail

Y N

Id add-op prim prim-tail

Nb

@ Left-most derivation already achieved S’¢ = begin Id := Id - Nb ; st-tail
end$:01251418 15211916

@ Remaining input (not yet matched): end $

= The Produce st-tail — ¢ must be done since what follows st-tail starts
with end which corresponds to the input
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First*(X) — Follow(*(X)

For a symbol X, we have to know :

@ First"(X): the set of strings of terminals of maximum length but limited to
k symbols which can start a string generated from X

@ Follow*(X): the set of strings of terminals of maximum length but limited
to k symbols which can follow a string generated from X

In the following figure we have:
@ y € First"(X)
@ z ¢ Follow"(X):

€ Firsf(x) € Follow'(X)

Principles of top-down parsinlc(;
Predictive parsers - First" - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers
Firstk - Follow*

Construction of the action table M uses the First* and Follow* functions
defined for a given CFG G = (V, T, P, S'):

Definition (First*(c). For the CFG G, a positive integer k and o € (T U V)*)

First"(c) is the set of terminal strings of maximum length but limited to k
symbols which can start a string generated from o

Mathematically:
First*(a) = {W eTSH|IxeT :a= wx A

(1wl =K) v
(Jw] <k/\X:e))}

where : TSK = I, T’
236
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Principles of top-down parsinE
Predictive parsers - Firstk - Follow'

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers
First' () (or First(c))

Definition (First'(a) (or First(c)))

First'(c), also simply denoted First(«), is the set of terminal symbols which
can start a string generated from «, union e if « can generate e

Mathematically:

First(a) =
{aeT|3Ixe T :a= ax}
U
{e|a =€}

237

Principles of top-down parsinE
Predictive parsers - Firstk - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

Computation of First*(a)

First“(a) with a = X1 Xo. .. X,

First"(«) = First“(Xy) & First“(Xx) & - - - @" First*(X,)

with
Ly Ly =

{WG T=K|3Ixe T yeli,zel :wx=yzA
((wl=kK) v
(Jw| <k/\x:e)>}
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Computation of First*(X)

Computation of First(X) with X € (T U V)

Greedy algorithm: one increases the sets First“(X) until stabilisation.

Basis:
VYae T : First'(a) = {a}
VYA € V : First“(A) = ()

Induction: loop until stabilisation:

VAe V:First'(A) E{x e T*|A= YiYa... Yo A
X € First“(Yy) @ First“(Y2) @ - - @ First*(Yy,)}

Computation of First(X)

Example (of computation of First(A) (VA e V)with G=(V,T,P,S"))

where P contains:

@ S — ES$ @ 7T — FT'
@ E— TE' @ 7' —«FT' | e
OE/—>—‘,—TE"6 0F—>(E)’Id
Initially
Step 1:

Q First(S') < {id}

Q First(E') & {e}
Q First(F) < {(}

Q First(T') & {e}

Step 5:
Q First(F) < {id} Q First(T) £ {(}
Step 2: Step 6:
Q First(T) < {id} Q First(E) £ {(}
Q First(T') & {x} Step 7:
Step 3: @ First(S') < {(}
Q First(E) < {id} Step 8: stabilisation

Q First(E') £ {+}

PUB Cours-Librairie, av. P. Héger 42, B-1000 Bruxelles / INFO-F-403_A



Computation of First(X)

Example (of computation of First(A) (VA € V) with G=(V, T,P,S"))
where P contains:

o S — ES$ o T—FT

e E—TE @ T' - xFT' | ¢
@ E' - +TE' | ¢ e F—(E)|id
@ First(S") = {id,( }

@ First(E) = {id,( }

@ First(E') = {+,¢}

@ First(T) = {id,(}

@ First(T') = {*,¢}

@ First(F)={id,( }

Example (of computation of First?(A) (VA € V) with the same grammar G)
Initially Step 5:
VA € V : First?(A) =
) VAG e ) =L Q Firs2(S') £ {id-+, id«}

Step 1: 5

Q First?(E') £ {e) Q First?(T) < {(id}

@ First?(T') £ {e} © Firsti(T") = {x()
Step 6:

Q First2(F) £ {id} @ First2(E) £ {(id}

Step 2: ¥
Q Firs2(T) £ {id} L FEEE) = B
Step 7:

Q First?(T") < {xid} @ First2(S') < {(id}

Step 3:
Q Firs?(E) £ (i} @ First?(F) = {((}
Step 8:

Q Firs2(E') £ {+id} Q First?(T) £ {((}

Q First2(T) < {id*} Step 9:

Step 4: Q First2(E) < {((}
Q First2(S') & {id$} Step 10:
Q First?(E) < {id+, idx} Q First2(S') < {((}
Q First(F) 2 {(id} Step 11: stabilisation
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Principles of top-down parsin,c(g
Predictive parsers - First" - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

Computation of First?(X)

Example (of computation of First?(A) (VA € V) with G= (V, T,P,S"))
with the rules:

oS — E$ o T — FT
e E-TFE @ T — xFT' | e
0E'—>+TE'|€ e F—(E)|id
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@ First?(S') = {id$, id+, idx, (id, (( }
@ First?(E) = {id, id+, idx, (id, ((}
@ First?(E') = {¢, +id, +(}
@ First?(T) = {id, idx, (id, ((}
@ First?(T') = {e, xid, *(}
@ First?(F) = {id, (id, ((}
243
preditve parsers - Frstk - Followk
LL(k) CFGs
LL(1) parsers
Strongly LL(k) parsers (k > 1)
LL(k) parsers (k > 1)
Error handling and resynchronization
Recursive LL(k) parsers
Follow*
Definition (Follow*(3) for the CFG G, a positive integer k and 8 € (T U V)*)
Follow* () is the set of terminal strings of maximum length but limited to k
symbols which can follow a string generated from (3
Mathematically:
Follow*(3) = {w € T<¥ | 3a,~v e (TU V)* : §' = aBy A w € First“()}
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Principles of top-down parsinE
Predictive parsers - Firstk - Follow'

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

Computation of Follow*(X)

We only need to compute the Follow for variables.

Computation of Follow*(A) with A € (T U V)

Greedy algorithm: we increase the sets Follow”(B); initially empty, until
stabilisation.

Basis:
VA € V : Follow"(A) = 0

Induction:

VAc V,A—aBBecP(BeV,a,6e(VUT)):
Follow*(B) < First(3) &* Follow*(A)

Until stabilisation.

245
PredictFi‘\r/:(sgll'zZrcs)f—t?-‘F;r_Sﬁ(vv—nl:pcza;lrswE
LL(k) CFGs
LL(1) parsers
Strongly LL(k) parsers (k > 1)
LL(k) parsers (k > 1)
Error handling and resynchronization
Recursive LL(k) parsers
Computation of Follow(A)
Example (of computation of Follow(A) (VA € V) with G=(V,T,P,S’))
with rules:
o S — E$ e T — FT
@ E— TE @ 7' — xFT' | e
0E’—>—|—TE’|€ @ F—(E)|id
We obtain, using the algorithm (see figure):
@ Follow(S’) = {e}
@ Follow(E) ={),$}
@ Follow(E") ={),$}
@ Follow(T)=4),$,+}
@ Follow(T") =4),$,+}
@ Follow(F) =1),$,+,*}
246
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Computation of Follow(A)

Example (of computation of Follow(A) (VA € V) with G=(V,T,P,S’))

Principles of top-down parsin
Predictive parsers - Firstk - Follow
LL(k) CFGs
LL(1) parsers
Strongly LL(k) parsers (k > 1)
LL(k) parsers (k > 1)
Error handling and resynchronization
Recursive LL(k) parsers

Outline

© LL(k) CFGs
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LL(k) CFGs

LL(k) CFGs

@ Left scanning
LL(k) means @ Leftmost derivation
@ k look-ahead symbols

Definition (The CFG G = (V, T, P, S') is LL(k) (k a fixed natural number) if)
VYW, X1, X € T" :

o S G = WA’}/ G=—Waoa1vy G = WX

e 39 @ :*> WA’y c=Waoaovy g =*> WXo = 01 = a2

@ First"(xy) = First*(x2)

Which implies that for the sentential form wA~, if one knows First“(x;) (what
remains to be analyzed after w), one can determine with the look-ahead of k
symbols, the rule A — «; to apply

Problem

In theory, to determine if G (if we suppose it generated an infinite language)
is LL(k), one must verify an infinite number of conditions

Principles of top-down parsing
Predictive parsers - First" - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

Property 1 on LL(k) CFGs

Theorem (1 on LL(k) CFGs)

A CFG Gis LL(k)
S
VAcV:8 S wAy,A— € P(i=1,2: 014 # ap):
First*(c1v) N First*(aey) = 0

Problem

In theory, to determine if the property is satisfied on G (if we suppose the
produced language is infinite), an infinite number of conditions must be
verified: since only the k first symbols interest us, one can find an algorithm
which does that in a finite time (see below))
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Property 1 on LL(k) CFGs

Theorem (1 on LL(k) CFGs)

A CFG G is LL(K)
<

VS = WAy, A— o, € P(i=1,2: a1 #ap):
Firstk (ccyy) N First(apy) = 0

Proof: By contradiction
=  One supposes G is LL(k) and the property is not verified.
@ 38 = WAy, A— q; € P(i=1,2:a1 # ap):
First*(a1y) N First*(azvy) # 0
@ Then 3xq, Xz :
0 S = WAY g=Waiy g = WX
@ S = WAY g=>Waay g = WXz
@ First(xy) = First*(x2) A ay # a
Which contradicts that G is LL(k)

Property 1 on LL(k) CFGs

Theorem (1 on LL(k) CFGs)

A CFG G is LL(k)
<

VS S WAV, A— o € P(i=1,2:0q # ) :
First*(ceyy) N Firstk (agy) = 0

Proof (contd): By contradiction
< ! One supposes the property is verified and G is not LL(k)
VS = WAy, A— a, €P(i=1,2: a1 # ap):
First*(a4~) N First“(azy) = O A G is not LL(k)
@ Then since G is not LL(k): 3w, x1, X2 € T™ :

S ¢ = WAY g=Wayy g = wxq A
S ¢ = WAY g=Waey g = WXa A
First*(xy) = First*(x2) A
oy # ap
But
@ First*(xy) € First*(a17)
@ First(xp) € First*(az7)
Which contradicts the property.
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Principles of top-down parsin;(;
Predictive parsers - First" - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

Property 2 on LL(k) CFGs

Theorem (on LL(1) CFGs)

ACFGGisLL(1)
=
VA— i€ P(i=1,2: a1 # ) :
First(a1 Follow(A)) N First(cz Follow(A)) = 0

Advantage
To determine if Gis LL(1), it is sufficient to verify a finite number of conditions

253

Property 3 on LL(k) CFGs

Theorem (2 on LL(k) CFGs)

A CFG G is LL(K)
P
VA—ae P(i=1,2:a1 # ap):
First* (.1 Follow* (A)) N First*(az Follow*(A)) =

Definition (Strongly LL(k) CFG)
A CFG which satisfies the property above is strongly LL(k)

LL(1) = strongly LL(1)

From the properties on LL(1) languages and the definition of strongly LL(k)
languages, one can deduce that every LL(1) language is strongly LL(1)
For k > 1 one has: strong LL(k) = LL(k)

Advantage

To determine if G is strongly LL(k), it is sufficient to verify a finite number of
conditions
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From k = 2: “strongly LL(k)" C LL(k)

Example (of CFG G that is LL(2) but not strongly LL(2))

with rules : e A—b
@S — S% 0 A
@ S— aAa e B_b
@ S — bABa @ B—oc

Gis LL(2)

o S 2 S$ : First?’(aAa$) N First?(bABa$) = 0
o S' & aAa$ : First?(ba$) N First*(a$) = 0
o S' & bABa$ : First?(bBa$) N First?(Bas) = 0
o S' 2 pbBa$ : First?(ba$) N First?(ca$) = 0
o S' 2 pBas$ : First?(ba$) N First?(ca$) = 0

G is not strongly LL(2)
@ For S: First*(aAa...) N First?(bABa...) = ()
@ For B: First?*(b...) N First?(c...) =0

@ But for A: First?(bFollow?(A)) N First?(eFollow?(A)) # ()
({ba, bb, bc} N {a$, ba, ca} # )

Principles of top-down parsinl((;
Predictive parsers - First" - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

Non LL(k) grammar

Every ambiguous CFG G is not LL(k) (for any k)
Proof: straightforward using definitions of ambiguous and LL(k) CFG

Every left-recursive CFG G (where all symbols are useful), is not LL(1)

Proof:
If G is left-recursive, on has for some variable A of G (useful by hypothesis),

@ A— «| B (hence First(B3) C First(A))
@ A= o = Ay (hence First(A) C First(c))
= First(3) C First(«)

Hence G is not LL(1)
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Principles of top-down parsinE
Predictive parsers - First" - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

Non LL(k) grammars

Remark:

Generally a left-recursive CFG G is not LL(k) for any k

Every CFG G with 2 rules A — a1 | affz € P et a = x A |x| > k is not LL(k) ’

Cleaning of G

The bigger k is, the more complex the LL(k) parser will be. One tries to have
LL(k) CFGs with the smallest possible k (1 if possible). For that, one:

@ Suppresses the possible ambiguities in G

@ Suppresses the left recursions
@ Left factorizes

Principles of top-down parsinE
Predictive parsers - First" - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

Outline
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Q LL(1) parsers
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Algorithm to build the Actions table M[A, g
Initialisation : VA, a: M[A, a] = ()
VA — « € P (rule number /) :
Va € First(aFollow(A))

M[A, a] < i

Note:

The grammar is LL(1) if and only if each entry in the table M has at most

one value.

Principles of top-down parsing
Predictive parsers - First

- Follow
LL(k) CFGs
LL(1) parsers
Strongly LL(k) parsers (k > 1)
LL(k) parsers (k > 1)
Error handling and resynchronization
Recursive LL(k) parsers

Construction of an LL(1) Parser

Else, it means that Produce/Produce conflicts are unresolved
For instance for the CFG G with rules (1) and (2): S — aS | a

M[A, a] = {1,2}

Construction of the action table for an LL(1) parser

Example (Construction of M for G)

with rules :

S — E$ (0)
E—TE (1)
E'— +TE" (2)
2 — e (3)
T — FT’ (4)
T"— xFT" (5)

T — ¢ (6)
F—(E) (1)
F — id (8)

First(E$) = {id, ( }
First(TE') = {id, ( }
First(+TE") = {+}
First(FT") = {id,( }
First(xFT) = {*}
First((E)) = {( }

First(id) = {id}

Follow(S') = {¢}
Follow(E) = {), $}
Follow(E") = {), $}
Follow(T) = {),$, +}
Follow(T') = {),$, +}
Follow(F) = {),$, +, x}

([ M[Jid]+]«]C[)]$]

S0 0
E || 1 1
E 3
T [ 4 4
T 6
F |8 7
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Analysis of a string with an LL(1) parser

Example (Analysis of a (b + ¢)$)

Outline

On the stack | Remaining input | Action | Output
S+H | ax(b+c)$ PO €
E$H | ax(b+c)$ P1 0
TE' $4 | ax(b+c)$ P4 01
FTE$SH | ax(b+c)$ P8 014
idT’E'$SH | =(b+ c)$ M 0148
TE$H | *x(b+c)$ P5 0148
*FTE$H | *(b+c)$ M 01485
FT'E'$H | (b+c)$ P7 01485
(E)TE$SH | (b+0)$ M 014857
EYTE'$SH | b+ c)$ P1 014857
TE)TE$SH | b+ c)$ P4 0148571
FT'E)TESH | b+c¢)$ P8 01485714
idT'E)TE'S$SH | b+ c)$ M 014857148
TE)TES$H | +c¢)$ P6 014857148
E)YTES$SH | +c)$ P2 0148571486
+TE)TE$H | +c)$ M 01485714862
TE)TES$SH | ¢)$ P4 01485714862
FTE)TES$H | ¢)$ P8 014857148624
idT'E)TE'$SH | ¢)$ M 0148571486248
TE)TES$H | )$ P6 0148571486248
E)YTES$H | )$ P3 01485714862486
YTESH | )3 M 014857148624863
TESH | $ P6 014857148624863
ES$+H | $ P3 0148571486248636
$4 | $ A 01485714862486363

Principles of top-down parsinlc(;
Predictive parsers - First" - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

9 Strongly LL(k) parsers (k > 1)
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Principles of top-down parsinE
Predictive parsers - First" - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

Construction of a strongly LL(k) parser

Building of the Actions table M[A, u](u € T=¥)
Initialisation : VA, u : M[A, u] = Error
VA — « € P (rule number i) :
Yu € First"(aFollow*(A))

MIA, u] & i

Notes:

@ The grammar is strongly LL(k) if and only if each entry of the table M
has at most one value.
Otherwise, it means that Produce/Produce conflicts are unresolved.

@ In practice M is stored in a compact way

Principles of top-down parsinE
Predictive parsers - First" - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

Outline
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e LL(k) parsers (k > 1)
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Principles of top-down parsing
Predictive parsers - First" - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

LL(k) parsers for non strongly LL(k) CFGs

Explanation

It means that for some A — a4 | a

First*( a1 Follow*(A)) N First" (oo Follow" (A)) # 0

@ unlike “strongly LL(k)” CFGs where global look-aheads are sufficient

@ for LL(k) CFGs which are not strongly LL(k), one must use local
look-aheads

Said differently, in practice, during the analysis, the top of the stack and the
look-ahead are not sufficient to determine the Produce to do; we must also
“record” in which local context we are.

Principles of top-down parsinE
Predictive parsers - First" - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

Let us find out the problem

265

Let us look again at the definition:
The CFG Gis LL(k) < VYw,x1,x2 € T":

o & G = WA’}/ G=>Waoa1vy G = WX4

e 3 G :*> WA’)/ c=Waoaovy g :*> WXo = Q=2

@ First"(xy) = First*(x2)
Which means that in the wA~ context, a look-ahead of k symbols allows to
determine exactly what production to use next.
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Principles of top-down parsing
Predictive parsers - First" - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)
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Let us find out the problem

Let us take the LL(2) grammar which is not strongly LL(2)

with rules: o A b
e S — S% 0 A«
@ S— aha e B_b
@ S — bABa e B—oc

Depending on whether S — aAaor S — bABa has been done, a look-ahead
“ba” means that we must do a produce A — bor A — ¢

In general, we must compute the “local follow” of each variable for each
possible context.

Principles of top-down parsinlc(;
Predictive parsers - First" - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

Transformation of LL(k) CFG into strongly LL(k) CFG

Since there are only a finite number of variables and look-aheads of length
up to k, one can compute the set of possible local follows.

One can transform G into G’ where each variable A is replaced by a couple
[A, L]

@ the name A of the variable in G
@ the local follow, i.e. the set L of possible local look-aheads

In the previous example, the variable A transforms into [A, {a$}] and
[A, {ba, ca}]

Property
If Gis LL(k) then G’ is strongly LL(k)
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Principles of top-down parsinE
Predictive parsers - First" - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)
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Error handling and resynchronization
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Transforming an LL(k) CFG into a strongly LL(k) CFG

Algorithm to transform an LL(k) CFG G into a strongly LL(k) G’
With G= (V, T,P,S’) one builds G' = (V', T, P’, S") as follows:
Initially:
Vi =A{[S {e}]}
S" =[S, {e}]
P =0
Repeat until every new variable has its rules:
With [A, L] e VVANA— a=XBixiBz...Bnxm € P (xi€ T*,Bi € V)
P & [A L] — T(a) with
T() = xo[B1, Li]x1[Bz, Lo] . . . [Bm, Lm]Xm
L; = First(x;Biy1 . .. BmXm.L)
Vi<i<m:V &|[B,L]

Transforming an LL(k) CFG into a strongly LL(k) CFG

Example (of transformation of LL(2) G into strongly LL(2) G')
G=(V,T,P,S') with rules:

S =S5 (0 P EZ;

S—aAa (1) B—b (5

S — bABa (2) Boc (6)

is transformed into: G’ = (V', T, P, S") with :
Rule numberin G numberin G

[S", {e}] — [S. {$}]$ (07) (0)
[S,{$}] — alA, {ab}]a (1) (1)
[S,{$}] — b[A, {ba, ca}][B,{a$}]a (2" (2)
[A, {a$}] — b (3" (3)
[A {a$}] — € (4") (4)
[A, {ba, ca}] — b (5 (3)
[A, {ba, ca}] — ¢ (6") (4)
[B,{a$}] — b (7") (5)
[B,{a$}] — ¢ (8" (6)
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Transforming an LL(k) CFG into a strongly LL(k) CFG

Example (of transformation of LL(2) G into strongly LL(2) G')
G =(V',T,P, S") with:

Rule numberin G numberin G
[S', {e}] — [S, {$}]$ (0") (0)
[S,{$}] — alA, {ab}]a (1) (1)
[S,{$}] — b[A, {ba, ca}][B,{a$}]a (2") (2)
[A,{a$}] — b (3") (3)
[A {a$}] — € (4") (4)
[A, {ba, ca}] — b (5" (3)
[A, {ba, ca}] — ¢ (6") (4)
[B,{a$}] — b (7') ()
[B,{a$}] — ¢ (8) (6)
| M | ab|aa|bb|bc|balcala$|
[S, €] oo |0 |0
[S, {$}] 1711 |2 |2
[A, {a$}] 3’ 4’
[A, {ba, ca}] 5 |15 |6 |6
[B,{a$}] 718

Analysis with the built strongly LL(k) CFG

Example (Analysis of bba$)

| M | ab|aa|bb| bc|ba]cala$|
[S', €] oo [0 |0
[S, {$}] 1711 12 | 2
[A, {a$}] 3 4’
[A, {ba, ca}] 5 |5 |6 |6
[B,{a%$}] 7 |8
During the analysis, we can output the corresponding rules of G that are used
On the stack | Input | Action | Out. of G' | Out. of G
[S',¢e] 4 | bba$ | PO’ € €
[S,$]$ - | bba$ | P2 0) 0
b [A, {ba,ca}][B,{a%}] a$ 1 | bba$ | M 02 02
[A, {ba, ca}][B, {a%$}]a$- | ba$ P6’ 02 02
[B, {a$}]a%$- | ba$ P7 026 024
ba$- | ba$ M 0267 0245
a$- | ba$ M 0267 0245
$1 | ba$ A 0267 0245
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Predictive parsers - First" - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

Outline

0 Error handling and resynchronization

273

Principles of top-down parsinlc(;
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LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

Error handling and synchronizations in predictive analysis

When an error occurs, the parser can decide
@ to inform of the error and stop.

@ to try to continue (without code production) to detect possible further
errors (resynchronization).

One detects an error when

@ the terminal on top of the stack does not correspond to the next symbol
on input

@ the variable on top of the stack has not, as look-ahead, the next input(s)
In these cases, the parser can try to resynchronize, by modifying

@ the stack

@ the input

274
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Example: resynchronization in panic mode

Error handling in panic mode
When an error in found:
@ Pop the terminal on top of stack until the first variable

@ Skip the input symbols which do not correspond to a look-ahead or a
resynchronization symbol associated to the variable

@ If the symbol met is a synchronisation symbol, Pop the variable from the
stack

@ Continue the analysis (hoping that synchronization has been achieved
successfully)

Error handling in panic mode for an LL(1) parser

Synchronization symbols

If the entry is not already used in M, we add in M, for each variable A, the
synchronization symbols of A; for instance:

@ the Follow(A) symbols
@ other well chosen symbols

Example (Action table for the LL(1) parser of G= (V, T, P, S"))

with rules:
S —E (0) T — FT’ (4)
E— TE' (1) T"—«FT' | e (5)](6)
E'—+TE |e (2)](3) F—(E)|id (7)](8)
(Mllid] + | « [(C[ ) [ $ |

S|l 0

E || 1 1 | sync | sync

E’ 2 3 3

T || 4 | sync 4 | sync | sync

T 6 5 6 6

F || 8 | sync | sync | 7 | sync | sync
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Analysis of a wrong string with an LL(1) parser

Example (Analysis of +a x +b$)

On the stack | Input Action Output
SH | +ax+b% | Error: skips + €
S+ | ax+b$ PO -
E$H | ax+b$ P1 “0
TE $4 | ax* +b$ P4 “01
FT'E $4 | ax*+b$ P8 “014
idT’'E’ $4 | ax +b$ M “0148
TE $4 | =+ b$ P5 “0148
*FTE $4 | =+ b$ M “01485
FTE $4 | +b$ Error: +issync: popF | 01485
TE $4 | +b$ P6 “01485*
E $4 | +b$ P2 014856
+TE $4 | +b$ M 0148562
TE'$SH | b$ P4 0148562
FT'E'$H | b$ P8 01485624
idT’'E'$H | b$ M 014856248
TE$H | b$ P6 “01485°6248
E$H | $ P3 01485762486
$4 | $ A (with errors) 01485624863

Principles of top-down parsinl((;
Predictive parsers - First" - Follow

LL(k) CFGs

LL(1) parsers

Strongly LL(k) parsers (k > 1)

LL(k) parsers (k > 1)

Error handling and resynchronization

Recursive LL(k) parsers

Outline

© Recursive LL(k) parsers
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Example of recursive LL(1) parser

An LL(k) parser can easily be encoded as a recursive program where the
parsing of each variable of G is achieved by a recursive procedure.

The following code gives a recursive LL(1) parser for G whose production
rules are:

T — FT’ (4)

T —%FT'|e (5)|(6)
F—(E)lid (7)](8)

E— TE' (1)
E'—+TE"|e (2)](3)

279

Recursive code of an LL(1) parser

/x main.c =*/
/x E -> TE’; E' —> 4+TE’ | e ; T —> FT' ;
T —> *FT’ | e; F -> (E) | id =/

#define NOTOK 0
#define OK 1
char Phrase[100];
int CurToken;

int Res;

int Match (char t)
{
if (Phrase[CurToken]==t)
{
CurToken++;
return OK;

}

else

{
return NOTOK;

}
}

void Send_output (int no)

{
printf ("$d ", no);

}
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Recursive code of an LL(1) parser

int E(void)
{
Send_output (1) ;
1f (T () ==0K)
1if (E2 () ==0K)
return (OK) ;
return (NOTOK) ;

Recursive code of an LL(1) parser

int E2 (void)
{
switch (Phrase[CurToken])
{
case "+':
Send_output (2) ;
Match (" +");

1f (T () ==0K)
if (E2 () ==0K)
return (OK) ;
break;
case ’'S':
case ")’:

Send_output (3) ;
return (OK) ;

}
return (NOTOK) ;
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Recursive code of an LL(1) parser

int T (void)
{
Send_output (4) ;
if (F () ==0K)
1f (T2 () ==
return (

OK)
OK) ;
return (NOTOK) ;

Recursive code of an LL(1) parser

int T2 (void)
{
switch (Phrase[CurToken])
{
case "' :
Send_output (5);
Match (' ") ;
1f (F () ==0K)
if (T2 ()==0K)
return (OK) ;
break;
case "+':
case '$’:
case ")’
Send_output (6) ;
return (OK) ;

}
return (NOTOK) ;
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Recursive code of an LL(1) parser

int F(void)
{
switch (Phrase[CurToken])
{
case " (':
Send_output (7) ;
Match (" (") ;
if (E()==0K)
if (Match(’)’)==0K)
return (OK) ;
break;
case 'n’:
Send_output (8) ;
Match('n’");
return (OK) ;
break;
}
return (NOTOK) ;

Recursive code of an LL(1) parser

int main ()
{
scanf ("%s", Phrase);
if (E() !'= OK)
{
printf ("errorl\n");

}

else
{
if (Match ('’ $’)==0K)
{
printf ("\n");
}

else

{
printf ("error2\n");

}
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Chapter 10: LR(k) parsers

@ Principles of bottom-up parsing
@ LR CFGs
e LR(0) parsers

° LR(1) parsers
6 SLR(1) parsers

Q@ LALR(1) parsers
@ LLvsLRclasses
e The Yacc (Bison) tool
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G Principles of bottom-up parsing

© LR(k) CFGs
© LR(0) parsers

Q LR(1) parsers
Q SLR(1) parsers

© LALR(1) parsers
Q LL vs LR classes

Q The Yacc (Bison) tool
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Example (Grammar of a very simple language)

Rules Production rules
0 S’ — program$
1 program —  begin st-listend
2 st-list — st st-tail
3 st-tail — st st-tail
4 st-tail — €
5 st — Id:= expression;
6 st — read (id-list) ;
7 st —  write( expr-list);
8 id-list — Id id-tail
9 id-tail  — , Id id-tail
10 id-tail — €
11 expr-list —  expression expr-tail
12 expr-tail — , expression expr-tail
13 expr-tail — ¢
14 expression —  prim prim-tail
15 prim-tail  —  add-op prim prim-tail
16 prim-tail  — €
17 prim —  ( expression)
18 prim — Id
19 prim — Nb
20| 21 add-op — +|-

Example of syntactic tree

Example (Syntactic tree corresponding to begin Id :=Id - Nb ; end $)

Sl

/ \$
TN

begin st-list end
st st-tail
SN
Id := expression " ; €
prim prim-tail

N

Id add-op prim prim-tail

- Nb €
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Example of syntactic tree and of right-most derivation

Example (right-most derivation corresponding to the syntactic tree)

s'

/ \$
N

begin st-list end
st st-tail
SN
Id = expression " ; €
prim prim-tail

s

Id add-op prim prim-tail

Nb €

Right-most derivation S’ = begin Id :=Id - Nb ; end $:
01245141516 1921 18

Principles of bottom-up parsing
LR(k) CFGs

LR(0) parsers

LR(1) parsers

SLR(1) parsers

LALR(1) parsers

LL vs LR classes
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Right-most derivation

Example (Complete corresponding right-most derivation)

Rule sentential form

3
0 | program $
1 | begin st-listend $

2 | begin st st-tail end $
4 | beginstend $

5

begin Id := expression ; end $
14 | begin Id := prim prim-tail ; end $
15 | begin Id := prim add-op prim prim-tail ; end $

16 | begin Id := prim add-op prim ; end $
19 | begin Id := prim add-op Nb ; end $
21 | beginld :=prim-Nb ;end $

18 | beginld :=Ild-Nb ;end $

R R A R AR A
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Outline of a bottom-up parser

Outline of a bottom-up parser

PDA with one state and with output.
We start from the input string and build the tree bottom-up. In order to do so,
two actions are available:

@ “Shift”: shift the input symbols on the stack until identification of a
right-hand part « (handle) of the rule A — «

@ “Reduction”: replacement of o by A @
Initially the stack is empty.
The PDA can do 4 kinds of actions :
@ Shift: reading of an input symbol and push of this symbol on the stack

@ Reduce: the top of the stack a corresponding to the handle (the right
part of a rule number i : A — «), is replaced by A on the stack and the
number i of the used rule is written on the output

@ Accept: corresponds to a Reduce of the rule S — S$ (which shows that
the input has been completely read and analyzed); the analysis is
completed successfully

@ Error: If no Shift nor Reduce is possible

@Formally corresponds to || pops followed by a push of A

Principles of bottom-up parsing
LR(k) CFGs

LR(0) parsers

LR(1) parsers

SLR(1) parsers

LALR(1) parsers
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Outline of a bottom-up parser

Remark:

@ One can see that the analysis corresponds to a reverse order right-most
analysis: one starts from the string and goes up in the derivation back to
the start symbol. Analysis is done in reverse order since the input is read
from left to right.

@ The output will be built in reverse order (each new output is put before all
what has been produced before) to obtain this right-most derivation.
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Right-most derivation

Example (Corresponding complete right-most derivation)

On the stack Remaining input Act Output
= beginid :=Id- Nb ; end $ S €
 begin Id:=Ild-Nb;end$ S €
+ begin Id :=ld-Nb;end $ S €
+ begin Id := Id-Nb ; end $ S €
 begin Id := Id -Nb;end $ R18 €
+ begin Id := prim -Nb;end $ S 18
+ begin Id := prim - Nb;end $ S 18
+ begin Id := prim - Nb ; end $ R21 18
+ begin Id := prim add-op Nb ; end $ S 2118
 begin Id := prim add-op Nb ;end $ R19 2118
F begin Id := prim add-op prim ;end $ R16 192118
 begin Id := prim add-op prim prim-tail ;end $ R15 16192118
+ begin Id := prim prim-tail ;end $ R14 1516192118
+ begin Id := expression ;end $ S 1415161921 18
+ begin Id := expression ; end $ R5 141516 1921 18
+ begin st end $ R4 5141516192118
 begin st st-tail end $ R2 451415161921 18
+ begin st-list end $ S 2451415161921 18
 begin st-list end $ R1 2451415161921 18
F program $ S 12451415161921 18
 program $ € A 1245141516 1921 18
S € 01245141516 1921 18
where:
S : Shift

Ri : Reduce with the rule i

A : Accept (corresponds to a Reduce with the rule 0)
E : Error (or blocking which requests a backtracking)

Principles of bottom-up parsing

SLR(

0)
1) parsers
1)

LR(k) CFGs

parsers

parsers

LALR(1) parsers
LL vs LR classes
The Yacc (Bison) tool

Points to improve in the outline of the bottom-up parser

Criticism of the outline of the bottom-up parser

@ As such, this parser is extremely inefficient since it must backirack to

explore all the possibilities.

@ In this kind of parser, a choice must occur when both a “Reduce” and
“Shift” can be done, or when several “Reduces” are possible.

@ If several choices are possible and no criteria in the method allow to
choose, one can talk of Shift/Reduce or Reduce/Reduce conflicts.

@ Without guide when the choice must be done, possibly every possible
Shift and Reduce must be tried: the parser could therefore take an
exponential time (typically in the length of the input) which is

unacceptable!

@ We will show efficient bottom-up parsing techniques in this chapter.
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Outline

© LRk CFGs

297

LR(k) CFG

LR(k) CFG

@ Left scanning
LR(k) means @ Rightmost derivation
@ k lookahead symbols

Definition (The CFG G' = (V, T, P, S') is LR(k) (k a fixed natural number) if)

0 S =5 YAX =g vax 1/55: 0By te
o S ée 5By =G 6ﬂy = ’YOZX/ = A= é,
@ First“(x) = First*(x’) x'=y

Intuitively it means that if we look at First*(x) we can determine uniquely the
handle A — «a in yax
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Non LR(k) grammars

Example (of grammar which is neither LR(0) nor LR(1))
The following grammar G’ is not LR(0) nor LR(1)

S — 5%
S — Salale

o S ée Sa$ =G a$

But 6By = Sa$ # Saa$ = yAx’
Note that G’ is also ambiguous.

Theorem (Every ambiguous CFG G’ is not LR(k) for any k)

Types of LR(k) parsers studied

Types of bottom-up parsers studied here
We will study 3 types of LR(k) parsers
@ “Canonical LR’ parsers: most powerful but expensive
@ “Simple LR’ (SLR) parsers: less expensive but less powerful

@ “LALR” parsers: more powerful than SLR (a little less powerful but less

expensive than LR)

Operation of a bottom-up parser
All 3 types of bottom-up parsers use
@ a stack

@ an Action table which, depending on the top of the stack and the
look-ahead determines if the parser must do a Shift or a Reduce |
where i is the number of the rule to use

@ a Successor table which determines what must be put on the stack (see

below)
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Outline

© LR(0) parsers

Principles of bottom-up parsing
LR(k) CFGs

LR(0) parsers

LR(1) parsers

SLR(1) parsers

LALR(1) parsers

LL vs LR classes
The Yacc (Bison) tool

LR(0) parsing

301

Principle of construction of the parser

@ The principle of an LR parser is to determine a handle and to achieve
the reduction

@ We construct a deterministic finite automaton which recognizes all the
viable prefixes and determines when we reach the handle

Notion of LR(0) item

@ We use the notion of LR(0)-item for this construction

@ A LR(0)-item is a production rule with a e somewhere is the right part of
the rule
@ Fortherule A— a: A— a1 e a with @ = ayae means that it is possible
we are
e analysingarule A — a,

e after the analysis of ay (a4 is on the stack)
e before the analysis of aw
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LR(0) parsing

Remarkon A — a4 e as

They are grouped possibilities. One could e.g. have the 2 following grouped
possibilities:

@ S—aeAC

@ S—aeb
2 types of LR(0)-items are particular:

@ A — e« which predicts that we can start an analysis with the rule A — «

@ A — «e which recognizes the end of the analysis of a rule A — « (and
determines, if no conflict exists, that the corresponding Reduce can be
done)
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Construction of the LR(0) characteristic Finite State Machine (CFSM)

LR(0) Characteristic Finite State Machine (CFSM)

@ A deterministic finite automaton is built. Depending on the input
characters read and on the variables already recognized, it determines
the possible handle.

@ When the automaton reaches an “accepting” state, i.e. which contains
an LR(0)-item A — «e (where a handle is complete), A — « is
recognised, we can achieve the reduce, i.e. replace o by A

@ The language of this automaton is the set of viable prefixes of G’
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Construction of the LR(0) characteristic finite state machine (CFSM)

Construction of the LR(0) characteristic finite state machine (CFSM)

@ Initially mark that S" must be analyzed : S’ — «S$

@ An LR(0)-item A — ~1 e B, where the e is just before a variable B: it
means that we “predict” that B must be analyzed just after; i.e., a right
part of a rule B — (;: for all B-productions B — 3; : B — e/3; must
therefore be added

@ Add, using the same principle, all LR(0)-items B — o4 until stabilisation:

this is called the closure operation

@ The closure operation allows to obtain the set of possibilities on that
state in the analysis of G’ and forms a state of the LR(0)-CFSM

@ The transitions s % & of this finite automaton express that the analysis
of the (terminal or variable) symbol X is completed
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Example of LR(0)-CFSM

Example (Of construction of LR(0)-CFSM)

For G’ with the following rules:

S — S$ (0)
S — aAC (1)
S — ab (2)
A — ¢ (3)
cC — d (4)

The LR(0)-CFSM is represented by the following figure :
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Example of LR(0)-CFSM

Example (Of construction of an LR(0)-CFSM)

kernel

closure

S > a®AC
S »aeb
A-—>»eo C

Intuitive meaning of the LR(0)-CFSM

State of the CFSM: Status of the analysis:

The beginning of the analysis (initial state), S$
must be analyzed, i.e. either aAC or ab must be
analyzed

a has already been analyzed and either AC or b
remains to be analyzed. To analyze A, ¢ must be
analyzed

(5= aacel aAC has been analyzed; therefore the analysis of
a Sis completed

S$ has been analyzed; therefore the analysis of
S’ is terminated (there is only one S’ — S$ -
since it has been added to G); the analysis is
therefore completed successfully.
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Interpretation of the LR(0)-CFSM

State and transitions in the CFSM:

S > a®AC
S »>aeb
A-—>»>e cC

Interpretation of the LR(0)-CFSM

State and transitions in the CFSM:

Note

Status of the analysis:

@ In the state 1 (among others) a b
or a ¢ can be analyzed

@ A Shift will be done

@ If the shifted input is a b: go to
state 7

@ If the shifted inputis a c: goto
state 5

@ If the input is any other character,
it is an error (the analyzed string
does not belong to the language)

Status of the analysis:

@ In the state 7 an analysis of ab is
completed ...

@ this corresponds to the analysis
of an S, started 2 states before in
the path taken by the analysis, i.e.
in the state 0

@ then the analysis of S, started in
state 0, is now completed

@ go to state 2

This corresponds to a Reduce of
S — ab

One sees that a Reduce corresponds to a Shift of a variable whose analysis

is completed
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LR parsing

LR parsing
@ This analysis of a string corresponds to the identification of handles
@ A stack is used to keep the states of the path taken in the LR(0)-CFSM
@ The analysis starts at state 0 which includes S' — ¢S$

@ Implicitly, an error state () exists; any transition which is not explicitly
expected goes to that error state

Construction of the Action and Successor tables

The Action and Successor tables synthesize the information to keep from the
LR(0)-CFSM.

Construction of the Action table

The Action table gives for each state of the LR(0)-CFSM, the action to do
among:

@ Shift

@ Reduce / where i is the number of the rule of G’ to use for the reduce
@ Accept which corresponds to Reduce S’ — S$

@ Error if in the state no reduce is possible and the input is not expected

Construction of the Successor table

The Successor table contains the transition function of the LR(0)-CFSM. It is
used to determine

@ For a Shift action
@ For a Reduce action

which state will be the next one (i.e. which state is Pushed on the stack),
possibly (in case of Reduce) after having removed |«| symbols)
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Construction algorithms of an LR(0) parser

Closure algorithm for a set s of LR(0)-items
Closure(s) :=
Closure < s
Repeat
Closure’ < Closure
if [B— 0 e Ap] € Closure
VvV A — ~ € P (A-production of G’)
Closure < {[A — e7]}
fv
fi
Until : Closure = Closure’
Return : Closure
Endproc
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Construction algorithms of an LR(0) parser

Algorithm to compute the next state of a state s for a symbol X
Transition(s,X) :=
Transition < Closure({[B — 6 X e p] | [B— § @ Xp] € s})
Return : Transition
Endproc
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Construction algorithms of an LR(0) parser

Construction algorithm of the set of states C of the LR(0)-CFSM
Note: A state of C is a set of LR(0)-items
Construction-LR(0)-CFSM :=
C < Closure({[S" — «S$]}) U {0} /* where 0 is the error state */

Repeat
Given s € C not processed yet
vXeV UuUT

Successor|(s, X| «<Transition(s, X)
C < Successor][s, X]
fv
Until every s has been processed

/* The empty entries in Successor point to the error state () */
Endproc

Principles of bottom-up parsing
LR(k) CFGs

LR(0) parsers

LR(1) parsers

SLR(1) parsers

LALR(1) parsers

LL vs LR classes
The Yacc (Bison) tool

Construction algorithms of an LR(0) parser

Construction algorithm of the Action table
Construction-Action-table() :=
Vs € C: Action[s] <
VseC
if [A — ae] € s: Action[s] < Reduce i
/* where A — « is the rule i */
if [A— « e af] € s: Action[s] < Shift
if [S' — S$e] € s: Action[s] < Accept
Endproc
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Language recognized by the LR(0)-CFSM

Theorem (The CFG G’ is LR(0) if and only if the Action table has at most one
action in each entry)

Intuitively, Action[s] summarises the state s

Theorem (The language recognized by the LR(0)-CFSM of a CFG G’ LR(0),
when all states are accepting, is the set of its viable prefixes)

Remark

The states of the automaton are generally named with a natural integer
identifier (O for the initial state)

Construction of the tables for G’

Example (Action and Successor tables for G’ of the slide 306)

© N o o b~ W N
ny)
w

Action Successor

Reminder: Implicitly the empty entries of the table Successor refer to an error
state
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Tables of an LR(0) CFG

Notes

@ Few grammars are LR(0) (but there are more than LL(0) grammars)
@ If G’ is not LR(0), one must consider a look-ahead and build an LR(k)

parser with kK > 1.

@ Obviously here also, the bigger the k, the more complex the parser.
@ We try to limit ourselves to k = 1.
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Predictive LR(k) parsers

Remark on the algorithm

@ The general LR(k) parsing algorithm for k > 0 is given here
@ If k = 0, the Action table is a vector
@ If k > 1, the Action table has, as second parameter, a look-ahead u of

size < k

@ The construction of the Action and Successor tables for kK > 0 will be

given in the next sections.
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Predictive LR(k) parsers

General algorithm for the way an LR(k) parser works

We assume the Action and Successor tables are already built

Parser-LR-k():=

Initially: Push(0) /* Initial state */

Loop
s « Top()

if Action[s,u] = Shift : Shift(s)
if Action[s,u] = Reduce i : Reduce(i)

if Action[s,u] =0 : Error()
if Action[s, u] = Accept : Accept()

Endloop
Endproc

I* |u| < k and Action is a */
/* vector (no u parameter */
/* if the parser is LR(0)) */

@ Shift(s) := X < next input; Push(Successor|[s, X]) Endproc

@ Reduce(i) = (the rule i = A — «) For j = 1 to |«a| Pop() endfor;

s « Top() ; Push(Successor|s, A]); Endproc

@ Error() := Informs of an error in the analysis; Endproc

@ Accept() := Informs of the success of the analysis; Endproc

LR(0) analysis

Example (Analysis of the string acd$ for G')

with the following rules:

S — S8 (0

S — aAC (1)

S — ab (2

A — ¢ (3)

cC — d (4)
On the stack | Remaining Input | Act | Output
-0 acd$ S €
01 cd$ S €
+015 ds R3 €
013 ds S 3
0136 $ R4 3
0134 $ R1 43
- 02 $ S 143
- 028 € A 143
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LR(0) analysis

Correspondence between the analysis such as presented at the beginning of
the chapter and LR analysis

Although it is useless, one can (to help the reader’s understanding) explicitly
Push the Shifted symbols (terminals or variables during the Reduce) on the

stack
On the stack | Remaining Input | Act | Output
=) acd$ S €
F 0at cd$ S €
~0alch as R3 €
- 0alA3 as S 3
- 0a1A3d6 $ R4 3
- 0a1A3C4 $ R1 43
052 $ S 143
F052%8 € A 143

We have :

@ the stack where the numbers of states have been abstracted,
concatenated with the remaining input is at each moment a sentential
form of a right-most derivation.

@ The stack, where the number of states are abstracted, is always a viable
prefix.
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Example 2 of LR(0)-CFSM

Example (Of construction of LR(0)-CFSM)

For G; with the following rules:

S — 8% (0)
S—aS (1)
S—b (2)

We get the following LR(0)-CFSM and Action and Successor tables:
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LR(0)-CFSM and Action and Successor tables

Example ( LR(0)-CFSM and Action and Successor tables)

a b S
ol s 2 4 1
1 S
2| S 2 4 3
3 R1
4 | R2
5 A
Action Successor
LR(0) analysis
Example (Analysis of the string aab$ for G5)
with the rules :
S — 8% (0)
S—asS (1)
S—b (2)
On the stack | remaining input | Act | Output
O aab$ S €
02 ab$% S €
022 b$ S €
0224 $ R2 €
0223 $ R1 2
023 $ R1 12
01 $ S 112
F 015 € A 112

Note: the O rule is not given as output

PUB Cours-Librairie, av. P. Héger 42, B-1000 Bruxelles / INFO-F-403_A




Principles of bottom-up parsing
LR(k) CFGs

LR(0) parsers

LR(1) parsers

SLR(1) parsers

LALR(1) parsers

LL vs LR classes
The Yacc (Bison) tool

Example 3 of LR(0)-CFSM

Example (Of LR(0)-CFSM construction)
For G; with rules :

S — S$% (0)
S— 8SasSb (1)
S—e (2)

We get the following LR(0)-CFSM and Action and Successor tables:

LR(0)-CFSM and Action and Successor tables

327

Example ( LR(0)-CFSM and Action and Successor tables)

a b S
0| R2 1
1 S 2
2| R2 3
3 S 2 4
4 R1
5 A

Action Successor
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LR(0) analysis

Example (Analysis of the string aabb$ for Gj)

with rules :

S — S$ (0)

S— SaSb (1)

S—e¢ (2)
On the stack | Remaining input | Act | Output
-0 aabb$ R2 €
F 01 aabb$ S 2
F012 abb$ R2 2
0123 abb$ S 22
01232 bb$% R2 22
- 012323 bb$ S 222
- 0123234 b$ R1 222
0123 b$% S 1222
- 01234 $ R1 1222
+ 01 $ S 11222
015 € A 11222

Non LR(0) grammar

Example (The grammar G; is not LR(0))
Gy, = {{S,E, T,F},{+,x*,id,(,),$}, Ps,S") with rules P; :

S — E$ (0)
E — E4+T (1)
E — T (2)
T — TxF (3)
T — F (4)
F — id (5)
F — (E) (6)

is not LR(0) as can be seen from the construction of its LR(0)-CFSM where
@ the state 7
@ the state 11

both request a Shift and Reduce action (Shift/Reduce conflict).
We will see that G, is a LR(1) grammar.
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@ LR(1) parsers
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Construction of the LR(1)-CFSM

@ The look-ahead is useful when a Reduce must be done

@ In that case, the possible look-aheads (of length up to k, here k = 1)
must be determined.

@ This amounts to compute the Follow sets local to the rules (items)

Computation of the LR(1)-items

@ LR(1)-items have the form [A — a1 e o, U] where u is a follow local to
A—a(a=ajaz)

@ The “initial” LR(1)-itemis [S" — ¢S$, €]
@ The Closure operation increases a set s of LR(1)-items as follows:

o Given[B— deAp,f]€s

= Yu € Firstk(pt) : s < [A — o7, U]
e A—~v€eP

Remark

In what follows we give algorithms for LR(k) even if the examples are
restricted to k = 1.
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Construction algorithms of a LR(k) parser

Closure algorithm of a set s of LR(k)-items
Closure(s) :=
Closure < s
Repeat
Closure’ <= Closure
if [B— Se Ap,/] € Closure
VvV A — ~ € P (A-production of G’)
Yu € First“(pt): Closure & [A — e, U]
fv
fi
Until : Closure = Closure’
Return : Closure
Endproc

334
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Construction algorithms of an LR(k) parser

Algorithm for the computation of the next state of a state s after the symbol X
Transition(s,X) :=
Transition < Closure({[B — 6X e p,u] | [B— & e Xp, U] € s})
Return : Transition
Endproc

335

Construction algorithms of an LR(k) parser

Construction algorithms of the set of states C of the LR(k)-CFSM
Construction-LR(k)-CFSM :=
C < Closure({[S’ — S$,¢]}) U 0
/* where () is an the error state */

Repeat
Given s € C not processed yet
vXeV UT

Successor[s, X] «<Transition(s, X)
C < Successor]s, X]
fv
Until every s is processed

/* The empty entries of Successor point to the () error state */
Endproc
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Construction algorithms of an LR(k) parser

Construction algorithms of the Action table
Construction-Action-table :=
Vs € C,u € T=K: Action[s, u] < 0
VseC
if [A — e, U] € s: Action[s, u] < Reduce i
/*where A — « is the rule i */
if[A— aeaB,yl €s A ue First“(ady): Action[s, u] < Shift
if [S' — S$e, €] € s: Action[s, ] < Accept
Endproc

337

Construction of the LR(1) parser for G

Example (Construction of the LR(1) parser for Gy)
G, = ({S,E, T,F},{+,x*,id,(,),$}, Ps, S") with the following P rules :

S — E$ (0)
E — E4+T (1)
E — T (2)
T — TxF (3)
T — F (4)
F — id (5)
F — (E) (6)

o LR(1)-CFSM

} See next slides
@ Tables

Notation: one writes [A — a1 ® ap, {u1, U, ..., Un}] instead of
[A— a1 eap, u]

[A— a1 eay, U]

[A— a1 e az, Up]
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LR(1) tables

Action Successor

[State [ + | = [id ] (] ) [ $Je] [Stae]] + [ «[id] (] )IS]TE]TI]F]
0 S S 0 5 6 1 7 4
1 S S 1 3 2
2 A 2
3 S| S 3 5 6 11 4
4 R4 | R4 R4 4
5 R5 | R5 R5 5
6 S| S 6 10 | 18 12 | 19 | 14
7 R2 S R2 7 8
8 S| S 8 5 6 9
9 R3 | R3 R3 9
10 R5 | R5 R5 10
11 RA S R1 11 8
12 S S 12 17 13
13 R6 | R6 R6 13
14 R4 R4 R4 14
15 R6 | R6 R6 15
16 S S 16 17 15
17 S S 17 10 18 20 14
18 S| S 18 10 | 18 16 | 19 | 14
19 R2 S R2 19 21
20 R1 S R 20 21
21 S| S 21 10 22
22 R3 | R3 R3 22

Principles of bottom-up parsing
LR(k) CFGs

LR(0) parsers

LR(1) parsers

SLR(1) parsers

LALR(1) parsers

LL vs LR classes
The Yacc (Bison) tool

Criticism of LR(1) (LR(k))

Criticism of LR(1) (LR(k))
@ On sees that very quickly, the parser (the CFSM and the tables)
becomes huge.

@ Therefore alternatives have been found, more powerful than LR(0) but
more compact than LR(1)

= The SLR(1) (SLR(k)) and LALR(1) (LALR(k)) parsers
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PUB Cours-Librairie, av. P. Héger 42, B-1000 Bruxelles / INFO-F-403_A



Principles of bottom-up parsing
LR(k) CFGs

LR(0) parsers

LR(1) parsers

SLR(1) parsers

LALR(1) parsers

LL vs LR classes
The Yacc (Bison) tool

Outline

e SLR(1) parsers
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Principles of construction of SLR(k) parsers

Principles of construction of SLR(1) parsers
The principle is very simple
@ One builds an LR(0)-CFSM
@ To build the Action table, one used the LR(0)-items and the global follow

of the variables to determine for which look-aheads a Reduce must be
done:
More precisely
@ Action[s, a] contains a Shift action if the state s contains B — ¢ e ay for
some variable B and strings v and ¢,

@ Action[s, a] contains the action Reduce i if

@ theruleiisA — «
@ scontains A — «e
@ ac Follow(A)

For SLR(k)

The same ideas can easily be extended for kK symbols of look-ahead: one
uses:

@ First*(ayFollow"(B))
@ Follow*(A).
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Construction algorithms of an SLR(k) parser

Construction algorithm of the Action table
Construction-Action-table() :=
Vs € C,u € T=K: Action[s, u] < 0
VseC
if [A— ae] €5 A U c Follow*(A): Action[s, u] < Reduce i
/* where A — « is the rule i */
if [A— aeaf] €s A uc First“(aBFollow*(A)):
Action[s, u] < Shift
if [S' — S$e] € s: Action[s, ] < Accept
Endproc

345

Principles of construction of SLR(k) parsers

Example (Construction of the SLR(1) parser for G;)
G, = ({S,E,T,F} {+,*,id,(,),$}, Ps,S") with rules P; :

S — E$ (0)
E — E+4+T (1)
E — T (2)
T — TxF (3)
T — F (4)
F — id (5)
F — (E) (6)

We have
@ Follow(E) = {+,),$}
@ Follow(T) = {+,x,),%}
@ Follow(F) = {+,x,),%}

@ LR(0)-CFSM
@ Tables (with “global” look-aheads)

} See next slides
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SLR(1) tables
Action Successor
[See [ + [ » [@ [ ([ ) [ S [ec] [Sael[[+[*[@]([) [SIEJTIF
0 S 0 5 6 1 7
1 S S 1 3 2
2 A 2
3 S| S 3 5 6 11
4 R4 R4 R4 R4 4
5 R5 | R5 AR5 | R5 5
6 S S 6 5 6 12 7
7 R2 S R2 | R2 7 8
8 S| S 8 5 6
9 R3 | R3 R3 | RS 9
10 R6 | R6 R6 | R6 10
11 R1 S R1 R1 11 8
12 S S 12 3 10

Notice that the Successor table of a SLR(k) parser is always equal to the
one for a LR(0) parser
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Criticism of the SLR(1) method

Limitations of the SLR(1) method

The SLR(1) method is simple and more powerful than the LR(0) method;
but, one easily can find examples where conflicts remain

Example (Grammar which is neither LR(0) nor SLR(1))
Gs = ({S',E, T,F},{+,%,id,(,),$}, Ps,S’) with rules Ps and the Follow :

S — 5% (0)

g : LR: R g;; e Follow(S) = {$}

L — xR (3) o FO//OW(L) = {:, $}
L — id (4) @ Follow(R) = {=,$}
R — L (5)

Gives the following part of CFSM :

Lellel

Where one can see the conflict : Action[3, =] = {Shift, Reduce 5}

Principles of bottom-up parsing
LR(k) CFGs

LR(0) parsers

LR(1) parsers

SLR(1) parsers

LALR(1) parsers

LL vs LR classes
The Yacc (Bison) tool

Outline

Q@ LALR(1) parsers
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Principle of the construction of LALR(k) parsers

Definition (Heart of an LR(k)-CFSM state)

It is the set of LR(k)-items of the state from which look-aheads have been
removed

Example (of heart of a state s)

State

heart

Principle of the construction of LALR(k) parsers
The principle is very simple
@ Build the LR(k)-CFSM

@ merge the states with the same heart by taking the union of their
LR(k)-items
© The construction of the tables then keeps the algorithm for LR(k)

Principle of the construction of LALR(1) parsers

Example (Construction of the LALR(1) parser for G,)
G, = ({S,E,T,F},{+,xid,(,),$},Ps,S) with rules P, :

S — E$ (0)
E —- E4+T (1)
E — T (2)
T — TxF (3)
T — F (4)
F — id (5)
F— (E) (6
After the construction of the LR(1)-CFSM the following states have the same
heart:
@ 3and 17 @ 8 and 21
@ 4and 14 @ 9and 22
@ 5and 10 @ 11 and 20
@ 6and 18 @ 12and 16
@ 7and 19 @ 13 and 15
® LALR(1)-CFSM } See next slides
@ Tables
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LALR(1) tables

Action
| State || + | = [id] (] ) ]| § |¢€]
0 S| S
1 S S
2 A
3—-17 S| S
4 —-14 R4 | R4 R4 | R4
5-10 R5 | R5 R5 | R5
6—18 S| S
7—-19 R2 | S R2 | R2
8 - 21 S| S
9 - 22 R3 | R3 R3 | R3
13—-15 || R6 | R6 R6 | R6
11 —20 || R1 S R1 | R1
12 - 16 S S
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LALR(1) tables

Successor

[Sate [ + [~ [ [T

[)

[ $

| E

[T

| F

0 5-10 6-18

1

7-19

4-14

2

3-17 5-10 6-18

11-20

4-14

414

5-10

6-18 5-10 6-18

12-16

7-19

4-14

7-19 8-21

8-21 5-10 6-18

9-22

9-22

13-15

11-20 8-21

12-16 3-17

13-15
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Features of the LALR(k) method

355

Theorem (The merging of LR(k)-CFSM states is consistent)
l.e. if 2 states s1 and s, must be merged in the LALR(k)-CFSM then

VX : Transition[si, X] and Transition[sz, X] must also be merged.

Indeed, Transition(s, X') only depends on the hearts of the LR(k)-items and

not the look-aheads.
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Features of the LALR(k) method

Features of the LALR(k) method

For all CFGs G, if we abstract the look-aheads, the LR(0)-CFSM and
LALR(k)-CFSM are the same.

It is possible to build the LALR(1)-CFSM directly from the LR(0)-CFSM
on which one directly computes the look-aheads: this method is not
seen in this course.

For the previous example, the Actions table of the LALR(1) and SLR(1)
parsers are the same (modulo the states’ names); it is generally not the
case.

@ Every SLR(k) grammar is LALR(k) but the inverse is not always true.
@ For instance, the grammar Gg on slide 349 is not SLR(1) but is LR(1)

and LALR(1).

Features of the LALR(k) method

An LR(1) grammar is not necessarily LALR(1). Indeed:

Merging states may add Reduce / Reduce conflicts

For the grammar whose rules are:

S — S$ (0)

g R
S — aBe (3) 5 = e @

the following states are generated in the LR(1)-CFSM

{[A — ce,d],[B — co, €|}
{[A — ce, €],[B — ce,d|}

whose merge produces a Reduce 5/Reduce 6 conflict
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Features of the LALR(k) method

Merging states cannot add Shift / Reduce conflicts
Indeed, if, in the same state of the LALR(1)-CFSM, one has:
@ [A— «e,g]and
@ [B— Beay,b]
then in the state of the corresponding LR(1)-CFSM, which contains
[A— «e, g
@ one would have [B — (3 e av, c] for some ¢ and
@ the Shift / Reduce conflict would already exist in the LR(1) parser

Principles of bottom-up parsing
LR(k) CFGs

LR(0) parsers

LR(1) parsers

SLR(1) parsers

LALR(1) parsers

LL vs LR classes
The Yacc (Bison) tool

Outline

@ LLvs LR classes
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Inclusion of the classes of grammars

Non ambiguous grammars

LR(k)

Ambiguous grammars

Notes
@ In practice, after cleaning, most grammars that we want to compile are
LALR(1)

@ One can prove that the 3 classes of languages LR(k) (i.e. recognized by
a LR(k) grammar), LR(1) and of the languages accepted by a DPDA
(deterministic automaton with a stack) are the same.

Principles of bottom-up parsing
LR(k) CFGs

LR(0) parsers
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SLR(1) parsers

LALR(1) parsers

LL vs LR classes
The Yacc (Bison) tool

Outline

Q The Yacc (Bison) tool
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Yacc = Yet Another Compiler Compiler (= Bison on GNU systems)

What does Yacc do?

@ Yacc has been designed as a generator of LALR(1) parsers, and more
generally, of parts of compilers.

@ Together with the Lex tool, Yacc can build a big part of or even a full
compiler.

@ Yacc is a powerful tool to create programs which process languages
whose context-free grammar is given.

363

General workflow for the use of Lex (Flex) and Yacc (Bison)

(yyparse) source

bas.y —» yacc —— y.tab.c

y.tab.h cc ——» bas.exe
bas.]| —» lex » lex.yy.c v
(yylex)

compiled output

Compilation :

yvacc —d bas.y # creates y.tab.h and y.tab.c
lex bas.l # creates lex.yy.c
cc lex.yy.c y.tab.c -11 -o bas.exe # compile and link

# creates bas.exe
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Yacc specification

declarations

o\°
o\°

roductions

O

o\°
o\°

additional code

The resulting parser (yyparse () ) tries to recognize sentences compatible

with the grammar.

During the analysis by a parser generated by Yacc, semantic actions given
with ¢ code can be executed and atiributes can be computed (see example

and next chapter).

Example Lex and Yacc: expression evaluator

Example (Lex part of the expression evaluator)

/ * File ex3.1 x/
5 {

#include "y.tab.h"
#define yywrap() 1
extern int yylval;

5}

integer [0-9]+
separator [\ \t]
nl \n

return (INTEGER) ;

—
|
L
*
~
PN

quit return 0; }
{nl} return '\n’; }
{separator} ;

{ return yytext[O0];
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integer} { sscanf (yytext, "%d",

return yytext[0];

&yylval);
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Example Lex and Yacc: expression evaluator

Example (Yacc part of the expression evaluator (1))

J e File ex3.y * /
% {
#include <stdio.h>

5}

$token INTEGER

o\°
o\°

Example Lex and Yacc: expression evaluator

Example (Yacc part of the expression evaluator (2))

lines: /*emptyx/
| lines line

’

line: "\n’
| exp "\n’
{printf (" = %d\n", $1);}
exp: exp '+’ term {$$ = s1 + $3;}
| exp -’ term {$s = S$1 - $3;}
| term
term: term ’x’ fact {$S$ = S$1 x $3;}
term '/’ fact {$ss = s1 / $3;}
fact
fact: INTEGER

| "'—" INTEGER
| 4 (I expl ) 14

{$$
{$$

- $2;}
$2;}
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Example Lex and Yacc: expression evaluator

Example (Yacc part of the expression evaluator (3))

o\
o\

int yyerror ()

{
printf ("syntax error\n");
return(-1);

}

main ()

{

yyparse () ;
printf ("goodbye\n") ;

Roles and phases of semantic analysis

Tools for semantic analysis

Construction of the AST and CFG

Some examples of the use of attributed grammars

Chapter 11: Semantic analysis

0 Roles and phases of semantic analysis
© Tools for semantic analysis
e Construction of the AST and CFG

0 Some examples of the use of attributed grammars

370
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Roles and phases of semantic analysis

Tools for semantic analysis

Construction of the AST and CFG

Some examples of the use of attributed grammars

Outline

0 Roles and phases of semantic analysis

Roles and phases of semantic analysis

Tools for semantic analysis

Construction of the AST and CFG

Some examples of the use of attributed grammars

Roles of semantic analysis

371

Definition (Role of semantic analysis)

For an imperative language, semantic analysis, also called context
management, handles the non local relations; it also addresses:

@ visibility control and the link between definition and uses of identifiers
Q@ type control of “objects”, number and type of function parameters

Q control flow (verifies, for instance, that a goto is allowed - see example
below)
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Roles and phases of semantic analysis

Tools for semantic analysis

Construction of the AST and CFG

Some examples of the use of attributed grammars

Example (of wrong control flow)

The following code is not allowed:

int main ()
{
for (int i=1;1i<10;++1)
infor: cout << "iteration " << 1 << endl;
goto infor;
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First phase of the semantic analysis
Construction of the abstract syntax tree (and of the control flow graph)
Definition (AST (Abstract Syntax Tree) )
Summarized form of the syntax tree which only keeps elements useful for
later phases.
Example (of grammar, of syntax tree and of AST)
exp — exp + term|
— exp — term|
—  term
Given G with the production rules: term  —  term x factor |
—  term / factor |
—  factor
factor — id|cst|(exp)
374
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The expression b*b-4"a*c gives
the following syntax tree : the following abstract syntax tree
(AST) :

exp

P PN

IS AN
/ \ / \ | id (b) id (b) / \ id (c)

term ™' factor term ™' factor id(c) cst (4) id (a)
factor id (b) factor id (a)
id (b) cst (4)

Roles and phases of semantic analysis

Tools for semantic analysis

Construction of the AST and CFG

Some examples of the use of attributed grammars

This AST will be decorated during the semantic analysis and code generation

phases; for instance:
Type: real
1 |loc: R1
Type: real / \ Type: real

loc: R1 - loc: R2
T

Ix1
T I / T I Type: real / \ Type: real
ype.real | ype:real | loc: R2 - . loc: sp+24
loc: sp+16 |id (b) |loc: sp+16 | id (b) id (c) s
/ \\
Type: real ) Type: real
loc: const  |cst (4) id (a) | loc: sp+8

This will allow to handle the context (collection of the semantic information
and verification of the constraints) and afterwards to generate the code.
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Second phase of the semantic analysis

Context management (semantic control)

Reminder on the role of the context management

Context management of imperative programming languages covers:

@ visibility control and the control of the link between definition and use of
identifiers (through the construction and use of a symbol table)

@ type control of “objects”, number and types of function parameters
@ control flow (verifies for instance that a goto is allowed)

© the building of a completed abstract syntax tree with type information
and a control flow graph to prepare the synthesis (code generation) step.
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The semantic analyzer uses and computes attributes of identifiers

Attributes of an “identifier”:

@ sort (constant, variable, function)
Q type

Q initial or fix value

@ scope

@ possible “localization” properties (e.g. location in memory at run-time, for
use by the code generation step)
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Identification of the definition which corresponds to an occurrence

Depends on the scope (each programming language has its own rules for the
scope)

In Pascal / C, can be determined during the analysis with a stack of scopes
(which can be merged with the symbol table).

During the analysis

@ of the beginning of a block: a new scope is stacked
@ of a new definition: it is put in the current scope

@ of the use of an element: the corresponding definition is found by looking
in the stack, from the top

@ of the end of a block: the scope is popped.

Roles and phases of semantic analysis

Tools for semantic analysis

Construction of the AST and CFG

Some examples of the use of attributed grammars

Note

This technique also allows to find the address of a variable for instance :
(number of static frames under the current frame, place in the frame)

For instance with the code:

{
int x=3,y=4;

if (x==y)
{ y=z could be i
int z=8; translated by f
rames y
V=2; var(1,4) — ~ )
} valvar(0,0) —
} of stack

The notion of frame is
developed in chapter 12
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Other identification or control problems

Overloading

Several operators or functions with the same name. Example: the '+’ can be
@ +: double x double — double

+:int x int — int

+: str x str — str

const Matrix operator+(Matrix& m)

Roles and phases of semantic analysis

Tools for semantic analysis

Construction of the AST and CFG

Some examples of the use of attributed grammars

Polymorphism

@ Several functions or methods with the same name (e.g. methods with
the same name in different classes).
@ “Pure” polymorphism : a function is polymorphic if it can be applied to
every types (e.g. seen in functional programming languages)
Depending on the programming language, the type control and in particular
the resolution of the polymorphism can be done
@ statically i.e. during the semantic analysis, at compile time

@ dynamically i.e. at run time, when the precise type of the “object” is
known.
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Note

In the context of Object Oriented programming languages, we talk about:
@ overloading
e the signature must be different to determine which method must be executed
@ overriding
o the signature must be the same
@ polymorphism
@ on objects of different classes.
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Other identification or control problem (cont’d)

Coercion and casting

It can happen that, during some operation, the expected type is T; and the
the value is of type T».

@ Either the programming language accepts to do a coercion i.e. a type
conversion not explicitly asked by the programmer.

@ Or the conversion must be explicitly requested using a casting operator.
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Example (of casting and coercion)

{
double x=3.14 y=3.14;
int i, J;

1= x; // coercion: ’"int —-> double’
// a warning can be sent

X = 1i; // coercion: "double —> int’
// a warning can be sent

j = (int) vy; // casting

(double) j; // casting

385

Roles and phases of semantic analysis

Tools for semantic analysis

Construction of the AST and CFG

Some examples of the use of attributed grammars

Typing system

One must first:
@ be able to formally define a type
@ define which types are equivalent or compatible

Definition (Type expression)
Directed graph whose nodes can be: Example (type expression)

@ a primitive type: bool, int, double,...
@ a constructor: function

e array

@ struct

e function struct ptr
(]

pointer / \ ¢

@ atype name (defined somewhere else) char int int

@ a lype variable (a priori represents any
type)
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Feature of a programming language

It can be

@ statically or dynamically typed depending if it is entirely done at compile
time or must be partly done at run time.

@ type-safe if the only operations that can be performed on data in the
language are those sanctioned by the type of the data.

@ typed if the typing imposes conditions on the programs.

@ strongly typed?
@ when it specifies one or more restrictions on how operations involving values
of different data types can be intermixed or
o [if the type information is associated with the variables and not with the
values,] or
o [if the set of types used is known at compile time and the type of the
variables can be tested at run time]

2This term has several definitions: Programming language expert Benjamin C. Pierce has said: |
spent a few weeks . . . trying to sort out the terminology of "strongly typed," "statically typed,"
"safe," etc., and found it amazingly difficult. . . . The usage of these terms is so various as to render
them almost useless

Type equivalence

Depending on the programming language, type equivalence can mean
equivalence by name or by structure

In Pascal, C, C++
Pascal, C and C++ have equivalence by name:

@ V and W are of different type from X and Y
struct {int i; char c;} V,W;
struct {int 1i; char c;} X,Y;

@ Same here
typedef struct {int i; char c;} S;
S V,W;
struct {int 1i; char c;} X,Y;

@ the following variables are of equivalent types! : constant pointer to an
integer
typedef int Veccent [100];

Veccent V,W;
int X[100],Y[10],2[17;
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Example of equivalence by structure

In other languages (Algol68 for instance), the equivalence is determined by
the structure.

Example (Expressions structurally equivalent)

function

/ \ function

AN / O\

int int ptr

i) N
/ \ ptr int int

Remark:

The unification algorithm (see resolution in Prolog) allows to verify if 2 types
are equivalent / compatible.

Roles and phases of semantic analysis

Tools for semantic analysis

Construction of the AST and CFG

Some examples of the use of attributed grammars

Outline

9 Tools for semantic analysis
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Tools for semantic analysis

Even if semantic analysis is mostly produced “by hand” (no tools to produce a
complete semantic analyzer, as it is done in the lexical and syntactic
analysis), two “tools” do exist.

@ semantic actions
@ attributed grammars

391
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Semantic actions

Definition (Semantic actions)

Actions added to the grammar. During the parsing, analysis of these actions
corresponds to achieving the prescribed actions.

Example (of semantic actions)

Classical example : translation of expressions in direct algebraic notation
(DAN) into reverse polish notation (RPN):

E — TF

E'" — +T{printf('+')}E’
E' — ¢

T — FT

T —  «F{printf(¥')} T’
T — ¢

F — (E)

F — id{printf(val(id))}
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Attributed grammars

Definition (Attributed grammar)

It specifies specific treatments on the context-free grammar describing the
syntax, which consists in the evaluation of attributes associated to the nodes

of the syntax tree

Definition (Inherited and synthesized attributes)

There exists only two kind of attributes associated to a node:

@ [nherited: whose value can only depend on attributes of its parent or

siblings,

@ Synthesized: whose value can only depend on attributes of its children,
or if the node is a leaf, is given by the scanner (or the parser).

Example (of attributed grammar)

D — TL

T — int

T — double
L — Liid

L — id

On the tree, the rules
to compute the
attributes give a
dependency graph
@ A--» B=the
value of A is used
to compute B

Example:
double id1 id2 id3
Gives :

L.typeh := T .type

T.type := int

T .type := double

Ly.typeh := L.typeh

L.tab := AjouterType(L,.tab, id.entree, L.typeh
L.tab := AjouterType(vide, id.entree, L.typeh)

dOLllble }é 1/'\; S;e;tree
¥/ \.

id1entree
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Attributed evaluation

Either the order is fixed before compilation (static order), or it is determined
during compilation (dynamic order).

Naive dynamic evaluation

while the attributes are not all evaluated
Evaluate (Root)

function Evaluate (S) (Rule S —-> X1 X2 ... Xm) {
1°) propagate the attributes evaluated in S
2°) For all children Xi (i=1] -> m): Evaluate (Xi)

3°) for all synthetized attributes A not yet evaluated
if the required attributes are not evaluated then
Compute A
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Other method: Topological sort

Every attribute is in a predecessor list.

Each of them has its number of predecessors.

The attributes A without predecessors can be evaluated and the number of
predecessors of the attributes which depends on A are decremented.

Note
Cyclic attributes are problematic for these methods
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The “classical” types of attributed grammars that can be statically evaluated:

@ S-attributed grammars: have only synthesized attributes (e.g. attributes
computed by the parser produced by YACC)

@ L-attributed grammars: computable through LR parsing (depth first
search - left first). It means that an inherited attribute depends only of
the left inherited attributes or the one of the parent.

Remarks: the evaluation of the attributes of these grammars can be done
during an LL(1) or LALR(1) analysis.
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Q Construction of the AST and CFG
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Construction of an AST (or AS-DAG) for an expression

Example (of construction of an AST)

E — E + T E.node:= CreateNode('+', Ey.node, T.node)
E — E —T E.node:= CreateNode('—', Ei.node, T.node)
E — T E.node := T.node

T — (E) T.node := E.node

T — id T.node := CreatelLeave(id, id.entry)

T — nb T.node := CreatelLeave(nb, nb.entry)

CreatelLeave and

CreateNode +
o verifies if the node / \
already exist

@ returns a pointer to an <+\ / * \
existing or existing : d
node. a/ \ ]

VRN

at+ax (b—c)+ (b—c) xd
gives:

Control flow graph

An extension of the attributes computation allows to obtain the Control flow
graph which is the basis of several program optimisations.

Example (of control flow graph)
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Control Flow Graph

Example ((2) of control flow graph)

Control Flow Graph for if B then /; else I endif
if-then-elsg 1
f |
|
S v Y 4
B~ l1
j 11 12
] 1
- < 7 ! !
\ ~h -
4 endif endif
1
v
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Control Flow Graph
Definition (Control Flow Graph)
@ ltis a flowchart which gives the possible flow of the instructions.
@ Itis composed of basic blocks.
@ A basic block is a sequence of consecutive instructions without stop or
connection
402
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e Some examples of the use of attributed grammars

Calculator in Yacc

403

Example (Yacc)

S E ;

E : E "+ E {$3
| T

T o T "%’ F {ss
| F

F . I(IEI)I {$$
| nb

$1+3$3}

$1*$3}

$2}

Note on Yacc
In this example,

@ the default rule in YACC is ss = $1
@ the stack of attributes behaves like a postfix evaluation stack
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Evaluation of an expression in LL(1) analysis

Example (of attributed grammar)

With the attributed grammar : EVa
E—TE  E.h-=Tuval PR
E.val = E'.val T val, NEQ,
E' — —TE; E.h=E'.h—T.val | ? /\\\\ !
E'.val = E|.val nby Tualm YEQy,
E — e E'.val = E".h | 4 W N 1
nbyal , T yal ~ Vg va
T — nb T.val = nb.val 4|f2 A
7 — 4 — 2 will be evaluated : nb ‘o
a12

With a recursive (top down) LL(1) analysis, the attributes can be transmitted
via input or output parameters.

Preliminary note: considered languages

Features and memory management of imperative languages
Intermediate code

Processor architecture

Code generation
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Chapter 12: Code generation

0 Preliminary note: considered languages

e Features and memory management of imperative languages
e Intermediate code

@ Processor architecture

e Code generation
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Preliminary note: considered languages
Features and memory management of imperative languages
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Processor architecture
Code generation

Restriction

In this course, we consider that the source language is imperative and
procedural

Types of languages

(%]
o

® 6 6 6 6 o6 o

Array languages

Aspect Oriented Programming
Languages

Assembly languages

Command Line Interface (CLI)
languages (batch languages)

Concurrent languages
Data-oriented languages
Dataflow languages
Data-structured languages
Fourth-generation languages
Functional languages
Declarative languages

© © 6 6 6 6 6 6 6 6 0 o

Logic programming languages
Machine languages

Macro languages
Multi-paradigm languages
Object-oriented languages
Page description languages
Procedural languages
Rule-based languages
Scripting languages
Specification languages
Syntax handling languages
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9 Features and memory management of imperative languages
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Questions to ponder

409

Can functions be recursive?

Can a function refer to non local identifiers?
Can a block refer to non local identifiers?

Which types of parameter passing are possible?
Can functions be passed as parameters?

Can a function be returned as a result?

Can the program dynamically allocate memory?

©C000000O

Must the memory be freed explicitly?
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To simplify we choose the following answers

Type(s) of parameter passing?: by value and reference
Recursive functions?: yes

Function which refers to non local id?: no

Block which refers to non local id?: yes

Functions passed as parameter?: no

Function returned as result?: no

Dynamic memory allocation?: yes

Memory explicitly freed?: yes

©C000000O
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Type(s) of parameter passing?: by value and reference
Main types of parameter passing :

@ By value: the formal parameter is a variable local to the function; its
value is initialized with the value of the effective parameter

@ By reference (or by variable): the address of the variable, passed in
parameter is transmitted to the function

@ By copy (in/ out): the formal parameter is a variable local to the function;
its value is initialized with the value of the variable given in effective
parameter; at the end of the function execution, the new value is copied
in the effective parameter

@ By name: textual replacement of the formal parameter by the effectively
transmitted parameter.
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Recursive functions?: yes

The execution of a program is sketched by its activation tree

Example (of program and of activation tree)

void readarray (int a[], int aSize){...}
static int partit(int al[], int first, int last) {...}
static void QS (int al[], int first, int last) {
if (first < last) {
int pivotIndex = partit(a, first, last);
QS(a, first, pivotIndex - 1);
QS (a, pivotIndex + 1, last);
}
}
static void quicksort (int af[], int aSize) {
QS (a, 0, aSize - 1);
}

int main () {

readarray (a, n)
quicksort (a,n)

~e N

Example of activation tree for quick-sort

Example (of program and of activation tree)

readarray quicksort(a,8)
e
// \
partit(a,0,7) S(a,0,3) QS(a,5,7)
partit(a,0,3) JOZ S(a,4,3) partit(a,5,7) QS(a,5,5) QS(a,7,7)
///////// \\\\\\\\\
partit(a,0,2) a|0 0) S(a,2,2)

Execution = depth first search of the activation tree

the activation tree is only known at execution time

=> control stack (run-time) to record the contexts and variables local to the
calling functions
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Changes of the run-time stack during execution

Example (Changes of the stack)

QS(0,7)
readarray quicksort quicksort
main main main main
— — — —
partit(0,3)
partit(0,7) QS(0,3) QS5(0,3)
QsS(0,7) QS(0,7) QS(0,7) I
quicksort quicksort quicksort
main main main
— — —

Preliminary note: considered languages
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Block refers to non local id?: yes

Activation frame

Each zone of the stack which corresponds to a block is called activation
frame.
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Block which refers to non local id ?: yes

Example (of access link)
_ If x is in the “grandparent’s” block,
° lReferences.to memory (variables for the access to x is done through 2
instance) will be coded by memory s
accesses whose addresses are
relative to the begin of the frame.
@ For instance, the access to a variable
x inside the grandparent’s block
corresponds to an access relative to active _4\_ stackpointer
the ante-penultimate frame of the frame > access link
run-time stack. .
. .+ access link
@ For that, each frame contains the X
address of the begin of the frame just
below (as a simply linked list)
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Frame structure (run-time activation frame)

Most complete case : frame for a function call

return values

effective parameters

access link

state machine saved

local data

temporaries
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Remark on the access to an array’s component

Example (of access to an array’s component)
@ If V is an array with 3 dimensions ny x n. x ns,
@ if we suppose that the language records the elements “line by line’
@ and that the first component is V|0, 0, 0]
@ The address of V[i,j, k] is «xV +i.ny.no +j.m + k
°
o

that can be written (by Horner): «V + ((i.ny) + j).n2 + k
Note that to compute this expression, n; is not needed.
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Dynamic memory allocation?: yes

Allocations are done during new

A supplementary memory zone is needed: the heap which has no structure
(FIFO, LIFG, ...).

The memory zone therefore contains:

@ zones allocated for the program and
@ other zones available managed by run-time functions
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Memory space explicitly freed?: yes (with delete)

@ Otherwise, a garbage collector is needed to be able to get back the parts
the heap that are no more accessible by the program.

@ This allows the run-time to satisfy further memory allocation requests.

Remark:

The garbage collector can interrupt the program execution unexpectedly

during its work
=> problem for real-time systems where predictable timing is crucial!
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Allocation of memory at run-time

The memory of a running program is generally composed of 4 zones

Code

Static data

Stack

v
A

Heap
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An example: program and associated memory

Code Code Code Code
0]
Note: i { feso
To simplify the figures,
only variables are
represented on the frame 2
heap . . :
; ~ " > o tack
i i i
int main() //1 After 1 After 4 After 6 After 10 \\frame 1
t /172 bott f stack
int 1i,9; //3 otiom ot stac
int *p, *g; //4
cin >>1i; //5 Code Code Code
p = new int[i]; //6 [0l 0]
if (i==3) /77 o 2l
//8 19] (0] (0]
{ int *r; //9 g (v g [' g
int t=4; //10
r=g=new int[i]; //11
} //12 - t
delete[] p; //13 U q 3 a > a
.. i i i
} //14 i I i
After 11 After 12 After 13
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Outline

Q Intermediate code
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Intermediate languages

Two classical approaches do exist:

@ An intermediate language is used with 3 address instructions of general
form x ==y op z

@ Byte-code of virtual machines is used (example JVM = Java Virtual
Machine). This can avoid the production of machine code altogether.

425

Preliminary note: considered languages

Features and memory management of imperative languages
Intermediate code

Processor architecture

Code generation

An example of simplified virtual machine : the P-machine

Defined in Wilhelm and Maurer’s book; (adapted to the Pascal language).
@ An evaluation and context stack
@ SP register: pointer to highest occupied location of the stack (stack:
[0..maxstr])
@ PC register: pointer to the next instruction to be executed
@ EP register: pointer to the highest location occupied throughout the
execution of the procedure as a whole (used to determine possible
collisions between the stack and the heap)
MP register: pointer to the start of the stack frame of the current block
NP register: pointer to the last occupied location on the heap
code : [0..codemax]; 1 instruction per word, init: PC =0

types
@ i :integer
o r : float (real)
@ b : boolean
@ 2 : address
@ notations
e N means numerical
@ [ means any type or address 426
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Expressions

| Instr | Semantics | Cond | Result |
add N | STORE[SP — 1] = STORE[SP — 1] + STORE[SP]; SP — — (N,N) (N)
sub N | STORE[SP — 1] = STORE[SP — 1] — STORE[SP]; SP — — (N,N) (N)
mul N | STORE[SP — 1] = STORE[SP — 1] « STORE[SP]; SP — — (N,N) (N)
div N | STORE[SP — 1] = STORE[SP — 1] / STORE[SP]; SP — — (N, N) (N)
neg N | STORE[SP] = —STORE[SP] (N) (N)
and N | STORE[SP — 1] = STORE[SP — 1] and STORE[SP];sP — — | (b, b) (b)
or N STORE[SP — 1] = STORE[SP — 1] or STORE[SP]; SP — — (b, b) (b)
not N | STORE[SP] = not STORE[SP] (b) (b)
equ T | STORE[SP — 1] = STORE[SP — 1] == STORE[SP};sP — — | (T, T) (b)
geq T | STORE[SP — 1] = STORE[SP — 1] >= STORE[sP];sP — — | (T, T) (b)
leqg T | STORE[SP — 1] = STORE[SP — 1] <= STORE[SP};sP — — | (T, T) (b)
les T | STORE[SP — 1] = STORE[SP — 1] < STORE[SP]; SP — — (T, T) (b)
grt T | STORE[SP — 1] = STORE[SP — 1] > STORE[SP]; SP — — (T, T) (b)
neq T | STORE[SP —1] = STORE[SP — 1] ! = STORE[SP];sP— — | (T, T) (b)

Example: add 1

Load and store

| Instr | Semantics | Cond | Result |
1do T g | SP+ +; STORE[SP] = STORE]q] q € [0..maxstr] (T)
ldc T g | SP+ + STORE[SP] = q Type(q) =T (T)
ind T STORE[SP] = STORE[STORE[SP]] (a) (T)
sro T q | STORE[q] = STORE[SP]; SP — — (T)

q € [0..maxstr]

sto T STORE[STORE[SP — 1]] = STORE[SP]; SP = SP — 2 (a,T)

Use

@ 1do : put the word at address g on top of stack
@ 1dc : put the constant g on top of stack

@ ind : replaces the address on top of stack by the content of the
corresponding word

@ sro: put the top of stack at address q

@ sto: putthe value on top of stack at the address given just below on the
stack

Code for x = vV,

Stack «+— @x; Stack < y; sto i
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Jumps
| Instr | Semantics | Cond | Result |
ujp q | PC=q q € [0..codemax]
fip Q | if STORE[SP] == false then PC = q fi (b)
SP— — q € [0..codemax]
ixj q | PC = STORE[SP] +q;SP — — (1)

429

Memory allocation and address computations (static or dynamic arrays)

| Instr | Semantics | Cond | Result |
ixa q STORE[SP — 1] = STORE[SP — 1]+ (a,) (a)
STORE[SP] * q; SP — —
inc T qQ | STORE[SP] = STORE[SP] + q (T) and type(q) = i (T)
dec T q | STORE[SP] = STORE[SP] — q (T) and type(q) = i (T)
chk P Qq | if (STORE[SP] < p) or (STORE[SP] > q) (i, 1) (1
then error(“value out of range’’) fi
dpl T SP + +; STORE[SP] = STORE[SP — 1] (T) (T, T)
ldd q SP + +; (a, T1,T2) (a, T, Ta, i)
STORE[SP] = STORE[STORE[SP — 3] + q]
sli T» STORE[SP — 1] = STORE[SP]; SP — — (T1, 1) (T2)
new if (NP — STORE[SP] < EP) (a,i)
then error(“store overflow’") fi
else NP = NP — STORE[SP);
STORE[STORE[SP — 1]] = NP;
SP =8P —2 fi
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Stack management (variables,procedures,...)

With by definition
base(p, a) = if (p == 0) then a else base(p — 1, STORE[a + 1])

| Instr | Semantics | Comments
lod T pQ | SP++; STORE[SP] = STORE[base(p, MP) + q] load value
lda pq SP + +; STORE[SP] = base(p, MP) + q load address
str T p q | STORE[base(p, MP) + q] = STORE[SP]; SP — — | store
mst P STORE[SP + 2] = base(p, MP); static link
STORE[SP + 3] = MP; dynamic link
STORE[SP + 4] = EP; save EP
SP=SP+5
cup pq MP = SP — (p + 4); p is the location for the parameters
STORE[MP + 4] = PC; save the address of return
PC =q branchin g
ssp p SP=MP+p—1 p = place for the static variables
sep P EP = SP + p; p is the max depth of the stack
if EP > NP collision control
then error( “store overflow'") fi stack / heap
ent pqg SP=MP+q—1; q data zone
EP = SP + p; p is the max depth of the stack
if EP > NP collision control
then error(“store overflow'") fi stack / heap

Preliminary note: considered languages

Features and memory management of imperative languages

Stack management (variables, procedures,...)

Use

®© 6 6 6 6 o o

Intermediate code
Processor architecture
Code generation

: put the value of address (p, q) on the stack : p static link, g offset

: branches with saving of the return address and update of MP

lod

in the frame

lda :idem but the address of the word is put on the stack
str :store

mst : put on the stack: static and dynamic link, EP

cup

ssp : allocation on the stack of p entries

sep : controls if the stack can be increased by p locations
ent :execution in raw of ssp and sep

Static and dynamic links: see reference (Wilhelm and Maurer).
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Stack management (procedures, parameter passing,...)

| Instr | Semantics | Comments |
retf SP = MP; result of the function on the stack
PC = STORE[MP + 4]; return
EP = STORE[MP + 3J; restores EP

if EP > NP then

error("store overflow’’) fi

MP = STORE[MP + 2] restores dynamic link
retp SP = MP — 1; procedure without result

PC = STORE[MP + 4]; return

EP = STORE[MP + 3]; restores EP

if EP > NP then
error( “store overflow'") fi
MP = STORE[MP + 2] restores dynamic link

433
Preliminary note: considered languages
Features and memory management of imperative languages
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Stack management (procedures, parameter passing,...)
| Instr | Semantics | Cond | Results |
movs q | for(i=q—1;i>0——1i) (a)
STORE[SP + i] = STORE[STORE[SP] + i];
od
SP=SP+q—1
movd q | for (i=1;i < STORE[MP + g+ 1]; + + i)
STORE[SP + i] = STORE[STORE[MP + q]+
STORE[MP + q+2] +i — 1];
od
STORE[MP + q] = SP + 1 — STORE[MP + q + 2];
SP = SP + STORE[MP + q + 1];
Use
@ movs : copies a block of data of fixed size on the stack
@ movd: copies a block of size known at execution time
434
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Stack management (procedures, parameter passing,...)

With base(p, a) = if p = 0 then a else base(p — 1, STORE[a + 1])

| Instr | Semantics | Comments |
smp P MP = SP — (p + 4); set MP
cupi P Q | STORE[MP + 4] = PC; returns address

PC = STORE[base(p, STORE[MP + 2] + q]
mstf P Q | STORE[SP + 2] = STORE[base(p, MP) + q + 1];

STORE[SP + 3] = MP; dynamic link
STORE[SP + 4] = EP; saves EP
SP=SP+5

435
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Label, I/0O, and stop
| Instr | Semantics | Comments
define @j @/ = address of the next instruction
prin Print(STORE[SP]); SP — — print the top of the stack
read SP + +; STORE[SP] = integer input | read an integer and put it on the stack
stp end of program
436
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Outline

Q Processor architecture
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Kinds of processors

Mainly, two big classes of processors exist:

@ Register machines
Instructions use a set of registers to achieve the computation. Generally
the registers are specialized:

@ universal registers

floating point registers

predicate registers (condition code) (1 bit)

program counter (pointer to the next instruction) (PC)
stack pointer (SP)

status and control registers

data and address register (instead of Universal registers)
o ...

Instructions are generally 1, 2 or 3 operand.
(of type opcode al a2 al).

®© ©6 6 606 00
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Kinds of processors

@ Stack machines
Instructions use an evaluation stack which allows to achieve most of the
operations (calculations, branches, ...)
(e.g. Java Virtual Machine (JVM))

Preliminary note: considered languages

Features and memory management of imperative languages
Intermediate code

Processor architecture

Code generation

Kind of processors (cont'd)

We also distinguish two types of processors:

@ CISC (Complex Instruction Set Computers): have a huge instruction set
with, generally, specialized registers (e.g. x86, Pentium, 68k)

@ RISC (Reduced Instruction Set Computers): have a limited instruction
set and, in general, a lot of universal registers (e.g. SPARC, PowerPC,
ARM, MIPS, new architectures, ...)
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Outline

e Code generation
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Reminder: results of semantic analysis

The output of the semantic analyser includes:
@ a decorated abstract syntax tree (AST)
@ (part of) a control flow graph

@ a structured symbol table which allows to determine the scope of each
identifier

442
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Reminders: AST and control flow graph

Example (decorated AST and control flow graph of the expression
d+ax(b—c)+(e—f)xd)

Reminders: AST and control flow graph

Example (decorated AST and control flow graph of an instruction if B then I
else &, endif)

if-then-else
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Example of control flow graph

Example (Control flow graph corresponding to a simple code)

{
int Min=0;
for (int i=1; i<n; ++1i)
if (V[1]<V[Min])
Min = i;
return Min;
}

Min=0
i=1

return Min

445
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Code generation
Code corresponding to an if
if
e code of e
then fip if code of e
e
i1 code of then then fip
ujp i1 code of then
endif
else code of else
i2
endif
446
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Code corresponding to a while

while code of e
e
do fip
i1
code of do
ujp
endwhile
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Representation of a basis block as a Directed Acyclic Graph (DAG)

The DAG contains
@ one node for each operator and
@ a leaf for each used variable / constant

Example (code of a block and associated DAG)

\ /*\,
e = atax(b-c); a/\
Y N\

f = (b-c) *d;

448
PUB Cours-Librairie, av. P. Héger 42, B-1000 Bruxelles / INFO-F-403_A



Preliminary note: considered languages

Features and memory management of imperative languages
Intermediate code

Processor architecture

Code generation

Code generation corresponding to a basis block

@ Using the AST (or AS-DAG),
@ some algorithms optimize the use of registers and
@ the order in which operations are evaluated

Example (For (a+ b) — (¢ — (d + e)) with 3 registers)

lw R1 , a

lw R2 , Db )

agd R1 R1 R2 +/ \ _

1 R2 , d

v 3 e SN SN

dd R2 , R2 , R3

?w R3 c d/// \\\e
sub R2 , R3 , R2

sub R1 , Rl , R2

449
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Code corresponding to an expression
Example (For (a+ b) — (c — (d + e)) with 2 registers)
1w R1 , a
lw R2 , Db
add R1 , Rl , R2 )
sw Rl , T / \
+ -
lw R1 , d
v R2 . e SN N
a Cc +
add R1 , R1 , R2
lw R2 , c d/// \\\
e
sub R1 , R2 , R1
lw R2 , T
sub R1 , R2 , R1
450
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Chapter 13: Turing machines

@ The Turing Machine (TM - 1936)

e RE and R languages vs class 0 and class 1

451

@ The Turing Machine (TM - 1936)

Q RE and R languages vs class 0 and class 1
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Definition of Turing Machines (TM)

Definition (Turing Machine (TM))
M=(QX,T,4q,B,F)
with
@ Q: finite set of states
@ X : finite input alphabet
@ I': finite tape alphabet withx C T
Q

d: transition functioné : Q x I — Q x I x D with 6(p, X) (not complete)
and D € {L, R} (Left,Right)

@ qo initial state
@ B the blank symbol with B € T'\X
F the set of accepting states with F C Q

Language of a TM

L(M) ={w e Z*|qowliapﬂ ANp e F}

When the TM reaches an accepting state, it stops.

Example of TM
Example
M = ({q07 g1, g2, g3, q4}7 {07 1}7 {07 1 P X7 Y7 B}7 67 qo, 87 {q4})

) Symbol

State 0 1 X Y B
Qo | (91, X, R) - - (s, Y,R) -
a1 (¢1,0,R)  (q Y,L) - (g1,Y,R) -
Q2 (q2707L) - (QO,X, R) (q27 Y7 L) -
Qs — - - (q3a Y7 R) (CI4,B, R)
g4 - - - - -

Example (Accepted sequence: 0011)

XXYi1 - XXqa YY F X XYY F XXqo YY F XXYqs Y  XXYYqsB
XXYYBquB

Example (Non accepted sequence: 0010)

XXYq;0 - XXY0q: B
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The Turing Machine (TM - 1936)
RE and R languages vs class 0 and class 1

Transition diagram of a TM

YIY -
0/0 —

start

YIY —

455

The Turing Machine (TM - 1936)
RE and R languages vs class 0 and class 1

Recursively enumerable (RE) and Recursive (R)

Definition (Recursively enumerable Language (RE))

Language accepted by a TM, i.e. language composed of all the strings
accepted by a TM

Definition (Recursive Language (R))

Language decided by a TM, i.e. language composed of all the strings
accepted by a TM which stops for all the inputs.

Note

A recursive language can be seen as a language which has an algorithm
(effective procedure) to recognize its words
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The Turing Machine (TM - 1936)
RE and R languages vs class 0 and class 1

Outline

9 RE and R languages vs class 0 and class 1

The Turing Machine (TM - 1936)
RE and R languages vs class 0 and class 1

Equivalence TM and language of class 0

Theorem (The languages of class 0 are RE)

Proof:
With G=< N,X,P, S >,

one can build a non deterministic TM M with two tapes which accepts the
same language.

@ the first tape contains the input string w
@ the second is used to to put the sentential form o
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The Turing Machine (TM - 1936)
RE and R languages vs class 0 and class 1

Equivalence TM and class 0 language

Theorem ((cont'd) the class 0 languages are RE)
Operation of M:

Init Initially S is put on the second tape, then, the TM
1 non deterministically selects a position i in
2 non deterministically selects a production 8 — ~ de G

3 if B is in position i in «, replaces 3 by ~ by shifting what follows « (left or
right)
4 compares the obtained sentential form with w on the first tape:

e if both match, w is accepted
@ else, goes back to step 1

The Turing Machine (TM - 1936)
RE and R languages vs class 0 and class 1

Equivalence TM and class 0 language

Theorem (The RE class is included in the class 0)

Principle of the proof:
WithM =< Q,%,T,6,q0, B, F >,
G=< N,X, P, S > is built with L(G) = L(M).
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Strict inclusion of the type 2 class of languages (context-free) in the

type 1 class of languages (context-sensitive)

Reminder and properties
@ A context-sensitive grammar has rules of the form o — 3 with |a| <| 3|

@ A language is context-sensitive if it is defined by a context-sensitive
grammar

@ The context-free languages are included in the context-sensitive
languages

@ Some context-sensitive languages are not context-free (the inclusion is
strict)

Example (Lozi = {02' | i > 1} is context-sensitive but not context-free)

A grammar for Loy;:

Q@ S—DF Q@ GF — AF
Q@ S— DH Q@ AF — HO
Q@ DH — 00 Q AH — HO
Q D — DAG Q GA— AAG

The Turing Machine (TM - 1936)
RE and R languages vs class 0 and class 1

Languages R versus class 1 (context-sensitive)

R vs context sensitive
One can prove that:

@ Every context-sensitive language (class 1) is recursive.

e With G =< N, %X, P, S > a grammar with the rules « — (3 where |3| > ||,
and w,

e a graph of all sentential forms accessible from S and of size < |w/| can be
built.

e and we can decide the “accessibility” S = w

@ Some recursive languages are not of class 1 (not proven here)
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The Turing Machine (TM - 1936)
RE and R languages vs class 0 and class 1

Inclusion of classes of languages

In summary we have :

cl 2:CFL
cl 1:CSL

Non RE
&
set of languages

463
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Session 1: Regular languages

For theory reminders, refer to chapter(s) 2.

Some exercises of this session are taken or adapted from the exercises of the Introduction to automata
theory, languages and computation textbook, second edition, by J. Hopcroft, R. Motwani, J. Ullman.
Addison-Wesley, 2000.

Ex. 1. Consider the alphabet ¥ = {0, 1}. Using the inductive definition of regular languages, prove that
the following languages are regular:

1. The set of words made of an arbitrary number of ones, followed by 01, followed by an arbitrary
number of zeroes.

2. The set of odd binary numbers.
Ex. 2. Prove that any finite language is regular. Is the language L = {0"1"™ | n € N} regular? Explain.

Ex. 3. For each of the following languages (defined on the alphabet ¥ = {0, 1}), design a nondeterministic
finite automaton (NFA) that accepts it.

1. The set of strings ending with 00.

2. The set of strings whose 10" symbol, counted from the end of the string, is a 1.
3. The set of strings where each pair of zeroes is followed by a pair of ones.

4. The set of strings not containing 101.

5. The set of binary numbers divisible by 4.

Ex. 4. Transform the following (¢-)NFAs into DFAs:

0,1 ?/o 5 ™~

— 0—» 1—»1—»
0o

Q/‘ ’0)<1—>
1 v
<— 0
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e
3O

Ex. 5. Write a C/C++/Java function that implements the following automaton and returns the accepting

state number.
/ AXE}

W A\{I} A\{L}

\ LF}
F , A={ABC.,...Z}

Session 2: Regular expressions

For theory reminders, refer to chapter(s) 2 and 3.
Ex. 1. For each of the following languages (defined on the alphabet ¥ = {0, 1}), design a regular expres-
sion that recognizes it:

1. The set of strings ending with 00.

2. The set of strings whose 10" symbol, counted from the end of the string, is a 1.

3. The set of strings where each pair of zeroes is followed by a pair of ones.

4. The set of strings not containing 101.

5. The set of binary numbers divisible by 4.

Ex. 2. For each of the following DFAs, give a regular expression accepting the same language:
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Ex. 3. Convert the following REs into e-NFAs:
1. 01*
2. (0+1)01
3. 00(0+1)*

Ex. 4. 1. Give an extended regular expression (ERE) that targets any sequence of 5 characters, includ-
ing the newline character \n

2. Give an ERE that targets any string starting with an arbitrary number of \ followed by any number of

*

3. UNIX-like shells (such as bash) allow the user to write batch files in which comments can be added.
A line is defined to be a comment if it starts with a # sign. What ERE accepts such comments?

4. Design an ERE that accepts numbers in scientific notation. Such a number must contain at least one
digit and has two optional parts:
e A "decimal" part : a dot followed by a sequence of digits
e An "exponential” part: an E followed by an integer that may be prefixed by + or —

e Examples: 42, 66.4E-5, 8E17, ...
5. Design an ERE that accepts "correct” phrases that fulfill the following criteria:

e The first word must start with a capital letter
e The phrase must end with a full stop .

e The phrase must be made of one or more words (made of the characters a...z and A. . .Z)
separated by a single space

e There cannot be two phrases on the same line.
Punctuation signs other than a full stop are not allowed.

6. Craft an ERE that accepts old school DOS-style filenames (8 charactersina...z,A...Z and _)
whose extension is . ext and that begin with the string abcde. We ask that the ERE only accept the
filename without the extension!

e Example: on abcdeLOL. ext, the ERE must accept abcdeLOL

Session 3: Introduction to grammars

For theory reminders, refer to chapter(s) 4 through 6.
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Ex. 1. Informally describe the languages generated by the following grammars and also specify what kind
of grammars (in terms of the Chomsky hierarchy) they are:

S — abcA
Aabe
1.l A — ¢
Aa — Sa
cA — ¢S
S — 0
2. 1
1S
S — a
3. x5S
+SS
Ex. 2. Let G be the following grammar:
S — AB
A — Aa
bB
B — a
Sb

1. Is this grammar regular?
2. Give the parse tree for each of the following phrases:

e baabaab
e bBABDb
e baSh

3. Give the leftmost and rightmost derivations for baabaab.

Ex. 3. Write a context-free grammar that generates all strings of as and bs (in any order) such that there
are more as than bs. Test your grammar on the input baaba by giving a derivation.

Ex. 4. Write a context-sensitive grammar that generates all strings of as, bs and cs (in any order) such that
there are as many of each. Give a derivation of cacbab using your grammar.

Session 4: Pushdown automata and parsing

For theory reminders, refer to chapter(s) 7 and 8.

Ex. 1. Design a pushdown automaton that accepts the language made of all words of the form ww’ where
w is any given word on the alphabet ¥ = {a, b} and w is the mirror image of w.

Parsers

Consider the context-free grammar shown in Figure 1 where <system goal> is the start symbol (see last
rule) and $ denotes the end of the input:

Ex. 2. Give the parse tree for the following input:

begin
ID := ID - INTLIT + ID ;
end

Ex. 3. Simulate a top-down parser on the following input:
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(1) | <program> —  begin <statement list> end
(2) | <statement list> —  <statement> <statement tail>
(3) | <statement tail> —  <statement> <statement tail>
(4) | <statement tail> — ¢
(5) | <statement> —  ID := <expression> ;
(6) | <statement> —  read (<id list>) ;
(7) | <statement> —  write ( <expr list>) ;
®) | <id list> — ID «id tail>
) | «id tail> — , ID <id tail>
(10) | <id tail> — €
(11) | <expr list> —  <expression> <expr tail>
(12) | <expr tail> — , <expression> <expr tail>
(13) | <expr tail> — €
(14) | <expression> —  <primary> <primary tail>
(15) | <primary tail> —  <add op> <primary> <primary tail>
(16) | <primary tail> — €
(17) | <primary> —  ( <expression>)
(18) | <primary> — ID
(19) | <primary> — INTLIT
(20) | <add op> -  +
(21) | <add op> - =
(22) | <system goal> —  <program> $
Figure 1: Grammar used in Session 4.
begin
A := BB - 314 + A ;
end

Ex. 4. Simulate a bottom-up parser on the same input.

Session 5: First sets, Follow sets and LL(1) parsing

For theory reminders, refer to chapter(s) 8 and 9.

First* sets construction algorithm

begin
foreach a € T do First*(a) < {a}
foreach A € V do First*(A) < 0
repeat
foreach A € V do
First®(A) « First*(A)U{z € T* | A = YV1Ya... Y, Az €
L First* (Y1) @ First® (Yz2) @ - - - @" First*(Y;,)}

| until stability

Follow” sets construction algorithm

begin
foreach A € V do Followk(A) —0;
repeat
if B — aAB € P then
L Follow” (A) < Follow” (A) U {First*(3) & Follow*(B)} ;

until stability;
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ey
@)
3
“
&)
(6)
(N
®)
€]
(10)
(1)
(12)
13)
(14)
15)
(16)
7)
(18)
(19)
(20)
21
(22)

<program>
<statement list>
<statement tail>
<statement tail>
<statement>
<statement>
<statement>
<id list>

<id tail>

<id tail>

<expr list>
<expr tail>
<expr tail>
<expression>
<primary tail>
<primary tail>
<primary>
<primary>
<primary>
<add op>

<add op>
<system goal>

N A N A A AN

begin <statement list> end
<statement> <statement tail>
<statement> <statement tail>
€

ID := <expression> ;

read ( <id list> ) ;

write ( <expr list> ) ;

ID <id tail>

, ID <id tail>

€

<expression> <expr tail>

, <expression> <expr tail>

€

<primary> <primary tail>
<add op> <primary> <primary tail>
€

( <expression> )

ID

INTLIT

+

<program> $

Action table construction algorithm

Figure 2: Grammar for exercises 1 and 4 (Session 5).

begin
M+ x;

foreach A — o do
foreach a € First'(a) do
| MI[A,a] + M[A,a] UProduce(A — a) ;

if ¢ € First'(a) then
L foreach a € Follow' (A) do

foreach a € T'do M|a, a] - Match ;
| M8, €] « Accept ;

| MI[A,a] + M[A,a] UProduce(A — ) ;

Ex. 1. With regards to the grammar given by Figure 2:

1. Give the First'(A) and the Follow' (A) sets for each A € V.

2. Give the First? (<expression>) and the Follow? (<expression>) sets.

Ex. 2. Which of these grammars are LL(1)?

S — ABBA
A — a
1. €
B — b
€
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S — aSe
B
’ B — bBe
’ C
C — cCe
d
S — ABc
A — a
3. €
B — b
€
S — Ab
A — a
4, B
€
B — b
€

Ex. 3. Give the action table for the following grammar:

1 | <S> <expr>$

(2) | <expr> — <expr>

(3) | <expr> ( <expr>)

(4) | <expr> <var> <expr-tail>
(5) | <expr-tail> — <expr>

(6) | <expr-tail>
(7) | <var>

(8) | <var-tail>
(9) | <var-tail>

€
ID <var-tail>
( <expr>)

€

A A

Ex. 4. Program a recursive descent parser (in C, C++, .. .) for rules (14) through (21) of the grammar given
by Figure 2.

| Session 6: Grammars revisited

For theory reminders, refer to chapter(s) 6.

Grammar RemoveUnproductiveSymbols (Grammar G = (V,T, P, S)) begin
Vo 0;
1+ 0;
repeat
14— 1+ 1;
Vi—{A|A=aePAac(VieiUT) }UViy;
until V; = V;_q;
V'« Vi;
P’ + set of rules of P that do not contain variablesin V \ V' ;
return (G’ =(V',T,P',S)) ;

Grammar RemoveInaccessibleSymbols (Grammar G = (V,T, P, S)) begin
Vo {S};i«0;
repeat
it 1+1;
Vi {X|3A—=aXBinPAAEV,_1}UVi_1;
until V; = V,_q;
Vi« VinV,;T «V,NnT,;
P’ + set of rules of P that only contain variables from V; ;
return (G = (V' T, P",S)) ;
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Grammar RemoveUselessSymbols (Grammar G = (V, T, P, S)) begin
Grammar (G; + RemoveUnproductiveSymbols (G) ;
Grammar (G2 < RemoveInaccessibleSymbols (G1) ;
return (Gs) ;

LeftFactor (Grammar G = (V, T, P, S)) begin
while G has at least two rules with the same left-hand side and a common prefix do
Let E = {A — af,...,A — o} be such a set of rules ;
Let V be a new variable;
V=Vuy,;
P=P\FE,;
P=PU{A—-aV,V—=4,....,V = (}

RemovelLeftRecursion (Grammar G = (V,T, P, S)) begin
while G contains a left recursive variable A do
Let E = {A — Aa, A — B,..., A — (} be the set of rules that have A as left-hand side ;
Let ¢/ and V be two new variables ;
V=vu{Uu,v};
P=P\FE,;
P=PU{A—-UVU—-B,.... U=,V —=>aV,V e},

Ex. 1. Remove the useless symbols in the following grammars:

S — alA
()¢ A — AB
B — b
S = A
B
A — aB
bS
(2) b
B — AB
Ba
¢ — AS
b
Ex. 2. Consider the following grammar:
F — FopFE
ID[FE]
1D
op — x
/
+
- >

e Show that the above grammar is ambiguous.

e The priorities of the various operators are as follows: {[], — >} > {x,/} > {+, —}.

Modify the grammar in order for it to take operator precedence into account as well as left associa-
tivity.

Ex. 3. Left-factor the following production rules:
<stmt> — if <expr> then <stmt-list> end if
<stmt> —  if <expr> then <stmt-list> else <stmt-list> end if

Ex. 4. Apply the left recursion removal algorithm to the following grammar:
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EFE — E4+T
T

T — TxP
P

P — ID

Ex. 5. (Exam-level question) Transform the following grammar into an LL(1) grammar:

S = aBE|bF

E — bE]|e

F — aF|aG|aHD
G — Gcld

H — Ca

¢ — Hb

D — ab

Session 7: LR(0) and LR(k) parsing

For theory reminders, refer to chapter(s) 10.

LR(0) parsing

Closure (I) begin

repeat
'+ 1T;
foreach item [A — ce B3] € [,B — v € G'do
L[(—IU[B—).*}/];

until I’ = I;
B return ({) ;

Transition ([,X) begin
L return(Closure ({[A > aX ef]|[A—aeXple1})) ;

Items (G’) begin
C <Closure ({[S" — ¢5]}) ;
repeat
C'— C;
foreach/ € C, X e T"UV' do
L C'+ C'UTransition([,X) ;

until C' = C;

LR(0) action table construction algorithm:

foreach state s of the CFSM do
if s contains A — o« e a5 then Action[s] < Action[s] U Shift ;
else if s contains A — «e that is the i™ rule then Action[s] < Action[s] U Reduce; ;
else if s contains S’ — S$e then Action[s] < Action[s] U Accept ;

Ex. 1. Consider the following grammar:

) S'—S$ (5) C—Fg
() S—alCd 6) C—CF
(2) S—bD (1) F—z
3) S=Cf ®8) D—y
@) C—eD
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Give the corresponding LR(0) CFSM and its action table.

Ex. 2. Simulate the parser you built during the previous exercise on the following string :

Extra Ex. Consider the following grammars:

©0) S'—5% (3) LR
1. () S=L=R &) L—id
(2) S—R (5) R—L

0) S'—=S$ (1) S—e
2) S—SaSb

Give the grammars’ corresponding LR(0) CFSMs and their action tables.

LR(k) parsing

"aeyzzd".

Closure (I) begin
repeat
I+ 1T;
foreach item [A — e BB,0] € I,B — v € G' do
L foreach u € First"(fo) do I < I U[B — ey, ul;

until I’ = I;
B return () ;

Transition (I,X) begin
| return(Closure ({[A = aX efu][[A—aeXpulel}));

LR(k) action table construction algorithm:

foreach state s of the CFSM do
if s contains [A — « e a3, u] then
foreach u € First®(afu) do
L Action[s, u] « Action[s, u] U Shift ;

else if s contains [A — e, u], that is the i" rule then
| Action[s,u ] = Action[s, u] U Reduce; ;

else if s contains [S’ — SSe, | then
L Action][s, -] - Action][s, -] U Accept ;

The other algorithms are identical to the LR(0) case.

Ex. 3. Give the LR(1) CFSM for the following grammar and its action table:

(1) S'—S$ (5) B—cC
(2) S—A (6) B—cCe
(3) A—bB (7) C—dAf
(4) A—a

Is the grammar LR(0) ? Explain.
Ex. 4. Give the LR(1) CFSM for the following grammar and its action table:

(1) S'—S%
(2) S—SaSb
(3) S—ec

(4) S—e

Simulate the parser on the following input: "abacb".

10
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Session 8: SLR(1) and LALR(1) parsing

For theory reminders, refer to chapter(s) 10.

Reminder: SLR(1) action table construction algorithm
With the LR(0) items in hand, we build the action table as follows (a € X):

foreach state s of the CFSM do
if s contains A — « e a3 then
L Action[s, a] < Actionls, a] U Shift ;
else if s contains A — «e that is the i" rule then
foreach a € Follow'(A) do
L Action[s, a] < Actionls, a] U Reduce; ;

else if s contains S’ — S$e then
L Action[s] «+ Action[s] U Accept ;

Ex. 1. Build the SLR(1) parser for the following grammar:
) S'—S$

) S—A

) A—bB

) A—a

) B—cC

) B—cCe
) C—dAf

Ex. 2. Build the LALR(1) parser for the same grammar.

Session 9: 1ex/flex scanner generator

For theory reminders, refer to chapter(s) 3.

A filter is a program that reads text on the standard input and prints it modified on standard output.
For example, a filter that replaces all as with bs and that receives abracadabra on input would output
bbrbcbdbbrb.

Specification format
A lex specification is made of three parts separated by lines with %%:
e Part 1: regular expression definitions and arbitrary C code (between % { and % }) to be inserted at the

start of the scanner program

— The regular expression definitions are used as "macros" in part 2.
— The C code usually comprises header includes and declarations of variables, functions, etc.

e Part 2: translation rules of the following shape: Regex {Action}

— Regex is an extended regular expression (ERE)
— Action is a C code snippet that will be executed each time a token matching Regex is en-
countered.
— The regular expressions defined in Part 1 can be used by putting their names in curly braces
{ 1.
e Part 3: Arbitrary C code to be inserted at the end of the generated program.

— For example: main () if the scanner isn’t used in conjunction with yacc or bison.

11
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Variables and special actions
When writing actions, some special variables and macros can be accessed:

e yyleng contains the length of the recognized token

e yytext is a char (C string) that points to the actual string that was matched by the regular
expression.

e yylval is a special variable that will be used to pass information (attributes) to yacc

e ECHO is a macro (defined by 1ex itself) that is equivalentto print £ ("%s", yytext) and can be
used when some recognized strings are to be output as is.

Compiling
To obtain the scanner executable :

1. Generate the scanner code with lex myspec.1 (creates lex.yy.c)
2. Compile the code generated by 1ex into an object file: gcc —c lex.yy.c (creates lex.yy.o)
3. Compile other . c files as needed into object files
4. Link all object files together with the 1ib1 (for lex) or 1ibf1 (for £1lex) library:
gcc —o myscanner filel.o ... fileN.o lex.yy.o —-1fl

Note that the —1£1 flag (meaning "link against 1Libf1") is put after the file names.

Example

5 {

/* Arbitrary C code to be prepended to generated code =/

#include <stdlib.h>

5}

number [0-9]

letter [a-zA-7]

identifier {letter} ({number}|{letter})*

{identifier} { printf("ID %s of length %d\n", yytext, yyleng); }
({number})+ { printf("Integer : "); ECHO; }

/* Arbitrary C code to be appended to generated code =/

int main () {
yylex();

}

Exercises

Ex. 1. Write a filter that outputs the number of alphanumeric characters, alphanumeric words and of lines
in the input file.

Ex. 2. Write a filter that outputs its input file with line numbers in front of every line.

Ex. 3. Write a filter that only outputs comments in the input file. Such comments are comprised within
curly braces { }.

Ex. 4. Write a filter that transforms the input text by replacing the word "compiler" with "ewww" if the
line starts with an "a", with "?7?" if it starts with a "b" and by "profit!!!" if it starts with a "c".

Ex. 5. Write a lexical analysis function that recognises the following tokens:

Decimal numbers in scientific notation
C variable identifiers

Relational operators (<, >, ==, etc.)
The i f, then and else keywords

12
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The point of this function is then to be used by yacc. As such, each action should return an integer value
representing the kind of token that was found and should store the value in the yylval variable. For
example, if an integer is found, we would return a value representing that fact, and we would store the
actual integer value in yy1lval before returning.

Extra Ex. Write a program using 1ex/ f1lex that pretty prints C code. Your program should take a C file
as input and should then print the following to the terminal:

Keywords in bold face (while, for,...)

String literals (delimited by ") in green

Integer literals in blue

Comments (delimited by / « and */ for block comments, or by // and a newline for line comments)
in black over white (reverse colouring).

Correctly indented code

To this end, you may use the textcolor (attr, fg, bg) function available in an archive on the
exercises’ Web site.

e attr allows text to be made bold face (valeur BRIGHT), shown in reverse video mode (REVERSE)
or in normal mode (RESET).

e fg et bg are used to specify the colors to be used for foreground and background (values GREEN,
BLUE, WHITE, BLACK...)

Session 10: yacc/bison parser generator

For theory reminders, refer to chapter(s) 10.

You have received a Lex and a yacc specification (they can also be downloaded off the Web site).

1. Informally describe the accepted language of the compiler we’d generate from the specifications.

2. Adjust the specification so it only accepts polynomials of a single variable. We input a polynomial
per line, but there can only be one variable used on each line.

3. Add the necessary code to show the first derivative of a polynomial. For example, if 2x " 3+2x"2+5
was given on input, we would output :
First derivative: 6x"2+4x

4. Add a way to recognize polynomial products and adjust the derivative calculation. For example, if
(3x72+6x) » (9x+4) is given on input, we would output:
First derivative: ((3x72+6x) % (9) )+ ((6x+6) % (9x+4))

5. Add a way to evaluate a polynomial and its first derivative for a given value. The user should be able
to input the variable value, followed by a semicolon, followed by the polynomial (all this on the same
line). For example :

2 ; (3x72+6x)* (9x+4)
First derivative : ((3x72+6x)*(9))+((6x+6)*(9x+4))
p(2) = 528, p’ (2) = 612

13
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Appendix : 1ex specification

/* Ak Ak kA hkhkhkhhhkhhhkhhkhkhkhhkrhkhkrhkhkhkhkhkrhhkrhhkhdhhkhkhhkhkrhhkhkhkkkh*x*x */

/* % Introduction to Language Theory and Compilation * =/
/* * x/
/* % Session 10: yacc/bison *x */
/* * x/
VAR lex specification x */
/* R b b b b b b I b b b db b b b b b b b I b b b b b b b b b b b b b db b b b b b b b b b ab b b b b b b b g */

number [0-9]

letter [a—-zA-7]

integer {number}+

var {letter}+

%1

#include "derive.tab.h"

5}

o\
o

{integer} {return INTEGER ;}
{var} {return VAR ;}

"o 0

. {return yytext[0] ;}
"\n" {return yytext[0] ;}

o\°
o\°

14
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Appendix : yacc specification

/* Ak Ak kA hkhkhkhhhkhhhkhhkhkhkhhkrhkhkrhkhkhkhkhkrhhkrhhkhdhhkhkhhkhkrhhkhkhkkkh*x*x */

/* % Introduction to Language Theory and Compilation * =/
/* * x/
/* % Session 10: yacc/bison x */
/* * x/
/* yacc specification x */
/* R b b b b b b I b dh b db b b b b b b b b b b b b b I b S b b b b b b b b b b b b b db 2b ab b b b b b b b g */

%1
#include <stdio.h>

5}

$token INTEGER
$token VAR

$left ’+/ '’
sleft 7' '/’

o\°
o\

input : line input {1}
| line {1}

4

line : polynomial ‘\n’ {printf ("OK\n") ;}

polynomial : polynomial "+’ terme {}
| polynomial '-’' terme {}
| terme {}
4
terme : =" terme {}
| VAR "*’ INTEGER {1}
| INTEGER VAR "' INTEGER {}
| VAR {}
| INTEGER VAR {1}
| INTEGER {}

o\
o\°

int main (void)
{
yyparse () ;

int yyerror (char * s)

{

printf ("yyerror: I encountered an error: %s.\n\n",s) ;

}

15
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Session 11: Code generation

For theory reminders, refer to chapter(s) 11 and 12.

P-code

Ex. 1. Write a P-code program that computes and outputs the value of:
B+z)*(9-y)
where x is a value read on input and y is the value stored at address O.

Ex. 2. Write a program that outputs all odd values in the interval [7, 31]. In order to do this, you’ll need the
dpl 1 instruction that duplicates the integer value on top of the stack.

Ex. 3. Write the code that:
e Allocates memory for two static variables we’ll call @ and b
e Initializes a and b with values read on input

e AddsbHtoa

Divides b by 2
e If a > b, output a, else output b

Make sure that the memory slots allocated for a and b are consistent after every step above.

Attribute grammars
Ex. 4. Rewrite the following grammar in order to account for operator precedence and associativity:

<E> — <E><op><E>|(<E>)lint
<op> — +Il—=1Ixl/

Associate the rules and attributes necessary to compute the value of an expression E. Finally, remove
left recursion from the grammar.

Ex. 5. The following is a set of rules that defines an if of an imperative programming language:

<if> — if <cond> then <code> <if-tail>
<if-tail> — else <code> endif
<if-tail> — endif

Give the P-code instructions you’d have to generate to translate this kind of construct in a compiler. You
can assume <cond> and <code> are already decorated to generate the correct code.

16

PUB Cours-Librairie, av. P. Héger 42, B-1000 Bruxelles / INFO-F-403_A






