
december 2008 | vol. 51 | no. 12 | communications of the acm 29

V
viewpoints

M
a ny critical large sys-
tems are failing. The
replacement FAA air
traffic control system,
the FBI virtual case file,

and the Navy Marine Corps Internet
(NMCI), are a few of the many billion-
dollar systems that could not deliver the
functions needed. In stark contrast, the
Boeing 777 aircraft, the Global Position-
ing System (GPS), and the U.S. Census
database system have been outstanding
successes. Why do some systems fail
and others succeed?

Development time is the critical fac-
tor. This is the time to deliver a system
that meets the requirements set at the
beginning of the development process.
If development time is shorter than the
environment change time, the delivered
system is likely to satisfy its custom-
ers. If, however, the development time
is long compared to the environment
change time, the delivered system be-
comes obsolete, and perhaps unusable,
before it is finished. In government and
large organizations, the bureaucratic ac-
quisition process for large systems can
often take a decade or more, whereas
the using environments often change
significantly in as little as 18 months
(Moore’s Law).

The Boeing 777, GPS, and U.S. Census
data systems were developed for stable
environments—they were completed
before any significant changes occurred
in their requirements. In contrast, the
FAA replacement system, FBI Virtual
Case File (see www.spectrum.ieee.org/

sep05/1455), NMCI (GAO4, www.nm-
cistinks.com) all faced dynamic envi-
ronments that changed faster than their
development processes could. Prede-
cessors of these systems were success-
ful because their environments were
stable, but the current generations en-

countered trouble because their envi-
ronments had become too dynamic.

The traditional acquisition process
tries to avoid risk and control costs by
careful preplanning, anticipation, and
analysis. For complex systems, this pro-
cess usually takes a decade or more. Are
there any alternatives that would take
much less time and still be fit for use?

Yes. Evolutionary system develop-
ment produces large systems within
dynamic social networks. The Internet,
World Wide Web, and Linux are promi-
nent examples. These successes had no
central, preplanning process, only a
general notion of the system’s archi-
tecture, which provided a framework
for cooperative innovation. Individu-
als in the network banded into small
groups to quickly produce or modify
modules in the architecture. They tested
their modules by asking other users to
try them. The systems evolved rapidly

in many small increments that aligned
with current perceptions of the using
environment.

Moreover, the evolutionary process
embraces risk, and the patience to see
what emerges. It works with nature’s
principle of fitness in the environment:

components that work well survive,
and those that do not are abandoned.

The astonishing success of evolu-
tionary development challenges our
common sense about developing large
systems. We need to learn from these
systems, because evolutionary develop-
ment may be the only way to achieve
satisfactory replacements for aging
large systems and to create new, unprec-
edented systems.

Evolutionary development is a ma-
ture idea that has languished away from
mainstream practice. In this column,
we will analyze why evolutionary devel-
opment does not fit the current com-
mon sense and why we need to work to
change that.

Our Current Common Sense
From its founding in 1968, the software
engineering field set out to address the
“software crisis,” a persistent inabil-

The Profession of IT
Evolutionary System
Development
Large systems projects are failing at an alarming rate.
It’s time to take evolutionary design methods off the shelf.

doi:10.1145/1409360.1409371	 Peter J. Denning, Chris Gunderson, and Rick Hayes-Roth

30 communications of the acm | december 2008 | vol. 51 | no. 12

viewpoints

cycles cannot keep up with real, dynamic
environments.

It may come as a surprise, there-
fore, that practices for adaptability are
allowed under government acquisi-
tion rules. In 2004, the Office of Secre-
tary of Defense sponsored the launch
of W2COG, the World Wide Consor-
tium for the Grid (w2cog.org) to help
advance networking technology for
defense using open-development pro-
cesses such as in the World Wide Web
Consortium (w3c.org). The W2COG
took advantage of a provision of ac-
quisition regulations that allows Lim-
ited Technology Experiments (LTEs).
The W2COG recently completed
an experiment to develop a secure
service-oriented architecture system,
comparing an LTE using evolutionary
methods against a standard acquisi-
tion process. Both received the same
government-furnished software for
an initial baseline. Eighteen months
later, the LTE’s process delivered a
prototype open architecture that ad-
dressed 80% of the government re-
quirements, at a cost of $100K, with
all embedded software current, and
a plan to transition to full COTS soft-
ware within six months.

In contrast, after 18 months, the
standard process delivered only a con-
cept document that did not provide a
functional architecture, had no working
prototype, deployment plan, or time-
line, and cost $1.5M. The agile method
produced a “good enough” immediately
usable 80% success for 1/15 the cost of
the standard method, which seemed
embarked on the typically long road to
disappointment.

Agile Methods for Large Systems
Agile system development methods
have been emerging for a decade.1,3,6
These methods replace the drawn-out
preplanning of detailed specifications
with a fast, cyclic process of prototyping
and customer interaction. The evolu-
tionary design approach advocated here
is a type of agile process.

The U.S. Government Accounting Of-
fice (GAO) has scolded the government
on several occasions for its uncommit-
ted lip service to agile processes.4 The
GAO believes agile processes could sig-
nificantly shorten time to delivery, re-
duce failure rate, and lower costs. Many
people resist the GAO advice because

ity to deliver dependable and usable
software. Fritz Bauer, one of the field’s
founders, believed a rigorous engineer-
ing approach was needed. He famously
quipped, “Software engineering is the
part of computer science that is too hard
for computer scientists.” Over the years,
software engineers produced many
powerful tools: languages, module man-
agers, version trackers, visualizers, and
debuggers are some examples. In his
famous “No silver bullet” assessment
(1986), Fred Brooks concluded that the
software crisis had not abated despite
huge advancements in tools and meth-
ods; the real problem was getting an
intellectual grasp of the problem and
translating that understanding into an
appropriate system architecture.2 The
tools of 1986, while better than those
of 1968, relied on concepts that did not
scale up to ever-larger systems. The situ-
ation today is much the same: tools are
more powerful, but we struggle with
scalability, usability, and predictability.

Current software engineering is
based on four key assumptions:

Dependable large systems can only ˲˲

be attained through rigorous applica-
tion of the engineering design process
(requirements, specifications, proto-
types, testing, acceptance).

The key design objective is an ar-˲˲

chitecture that meets specifications
derived from knowable and collectable
requirements.

Individuals of sufficient talent and ˲˲

experience can achieve an intellectual
grasp of the system.

The implementation can be com-˲˲

pleted before the environment changes
very much.

What if these assumptions no longer

hold? The first assumption is challenged
by the failures of large systems that used
the traditional design process and the
successes of other large systems that
simply evolved. The remaining assump-
tions are challenged by the increasingly
dynamic environments, often called
ecosystems, in which large systems op-
erate. There is no complete statement
of requirements because no one person,
or even small group, can have complete
knowledge of the whole system or can
fully anticipate how the community’s re-
quirements will evolve.

System Evolution:
A New Common Sense
To avoid obsolescence, therefore, a sys-
tem should undergo continual adapta-
tion to the environment. There are two
main alternatives for creating such ad-
aptations. The first, successive releases
of a system, is the familiar process of
software product releases. It can work
in a dynamic environment only when
the release cycle is very short, a difficult
objective under a carefully prescribed
and tightly managed process. Windows
Vista, advertised as an incremental im-
provement over XP, was delivered years
late and with many bugs.

The second approach to adaptation is
many systems competing by mimicking
natural evolution; the more fit systems
live on and the less fit die out. Linux,
the Internet, and the World Wide Web
illustrate this with a constant churn of
experimental modules and subsystems,
the best of which are widely adopted.

Evolutionary system design can be-
come a new common sense that could
enable us to build large critical systems
successfully. Evolutionary approaches
deliver value incrementally. They contin-
ually refine earlier successes to deliver
more value. The chain of increasing val-
ue sustains successful systems through
multiple short generations.

Designs by Bureaucratic
Organizations
Fred Brooks observed that software
tends to resemble the organization that
built it. Bureaucratic organizations tend
toward detailed processes constrained
by many rules. The U.S. government’s
standard acquisition practices, based on
careful preplanning and risk avoidance,
fit this paradigm. Their elaborate archi-
tectures and lengthy implementation

The astonishing
success of evolutionary
development
challenges our
common sense about
developing large
systems.

viewpoints

december 2008 | vol. 51 | no. 12 | communications of the acm 31

they assume careful preplanning mini-
mizes risk and maximizes dependability
and usability. However, more leaders are
pushing for agile acquisition because
the track record of the normal process in
dynamic environments is so dismal.

The software engineering commu-
nity has hotly debated preplanned ver-
sus agile processes. After a while they
reached a truce where they agreed that
preplanning is best for large systems
where reliability and risk-avoidance are
prime concerns, and agile is best for
small to medium systems where adapt-
ability and user friendliness are prime
concerns.

We challenge that conclusion. Pre-
planning is ceasing to be a viable option
for large systems. Moreover, many small
systems aim to be ultra-reliable.

Evolutionary Ecosystems
Evolutionary development uses “loosely
managed” processes. Numerous suc-
cessful large systems evolved through
such a process—CTSS, Unix, Linux,
Internet, Google, Amazon, eBay, Apple
iPhone Apps, and banking applica-
tions are notable examples. All these
systems relied on a common platform
used by all members of the commu-
nity, from developers to users. In such
an ecosystem, successful prototypes
transition easily to working products.
It appears that the common ecosys-
tem provides enough constraints that
loose management works. The suc-
cessful ecosystems were guided by a
vision and a set of interaction rules
that everyone in the community ac-
cepted. Building ecosystems for gov-
ernments is quite challenging be-
cause of organizational impediments
to information sharing.5 We advocate
much more aggressive use of loosely
managed ecosystems. The W2COG
was conceived to allow government to
join a large ecosystem that could adap-
tively address its information network-
ing needs.

Loosely managed does not mean un-
managed. Scrum and Extreme Program-
ming (XP) are often cited as successful
management approaches for agile pro-
cesses.6 Even the respected Capability
Management Model (CMM) is amenable
to agile development.

Whereas preplanned development
seeks to avoid risks, evolutionary devel-
opment mimics nature and embraces

risks. The developers purposely expose
emerging systems to risks to see how
they fail, and then they build better sys-
tem variants. It is better to seek risk out
and learn how to survive it. In a natural
ecosystem, only the most fit organisms
survive. Fitness is nature’s way of man-
aging risk.

All the evidence says that that evo-
lutionary processes works for systems
large and small, and that risk seeking
is the fastest route to fitness. There is
too much at stake to continue to allow
us to be locked into a process that does
not work.	

References
1.	B oehm, B. Making a difference in the software century.

IEEE Computer (Mar. 2008), 32–38.
2.	B rooks, F. The Mythical Man Month. Anniversary

Edition. Addison-Wesley, 1995.
3.	C ao, L. and Balascubramaniam, R. Agile software

development: Ad hoc practice or sound principles?
IEEE Pro (Mar.–Apr. 2007), 41–47.

4.	GAO . Defense Acquisitions: Assessments of Selected
Weapons Programs. Report GAO-06-391 (Mar. 2006);
http://www.gao.gov/new.items/d06391.pdf, and
Information Technology: DOD Needs to Ensure That
Navy Marine Corps Intranet Program Is Meeting
Goals and Satisfying Customers. Report GAO-07-51.
(Dec. 2006); http://www.gao.gov/new.items/d0751.pdf.

5.	H ayes-Roth, R., Blais, C., Brutzman, D. and Pullen,
M. How to implement national information sharing
strategy. AFCEA-GMU C4I Center Symposium:
Critical Issues in C4I, George Mason University,
Fairfax, VA, AFCEA (2008); http://c4i.gmu.edu/events/
reviews/2008/papers/25_Hayes-Roth.pdf.

6.	S chwaber, K. Agile Project Management with Scrum.
Microsoft Press, 2004.

Peter J. Denning (pjd@nps.edu) is the director of the
Cebrowski Institute for Information Innovation and
Superiority at the Naval Postgraduate School in Monterey,
CA, and is a past president of ACM.

Chris Gunderson (cgunders@w2cog.org), Captain
(retired) U.S. Navy, is Principal Investigator of the Naval
Postgraduate School W2COG and Netcentric Certification
Office initiatives.

Rick Hayes-Roth (hayes-roth@nps.edu) is Professor of
Information Systems at the Naval Postgraduate School
in Monterey, California, and was CTO for Software at
Hewlett-Packard Company.

Whereas preplanned
development
seeks to avoid
risks, evolutionary
development mimics
nature and
embraces risks.

Calendar
of Events
December 17-20
HiPC ’08: 15th International
Conference on High
Performance Computing
Bangalore, India
Sponsored: SIGARCH
Contact: Ajay K. Gupta,
Phone: 269-276-3104
Email: ajay.gupta@wmich.edu

January 7-9
International Conference on
Multimedia Modeling
Sophia Antipolis, France
Contact: Benoit Huet,
Phone: +33-0-493008179
Email: benoit.huet@eurecom.fr

January 14-17
International Conference
on Bio-Inspired Systems and
Signal Processing
Porto, Portugal
Contact: Joaquim B. Filipe,
Phone: 351-91-983-3996
Email: jfilipe@insticc.org

January 19-21
International Conference
on Agents and Artificial
Intelligence
Porto, Portugal
Contact: Joaquim B. Filipe,
Phone: 351-91-983-3996
Email: jfilipe@insticc.org

January 19-22
Asia and South Pacific Design
Automation Conference
Yokohama, Japan
Contact: Yutaka Tamiya,
Phone: +81-44-754-2663
Email: tamiya.yutaka@
jp.fujitsu.com

January 20-23
The Eleventh Australasian
Computing Education
Conference
Wellington, New Zealand
Contact: Margaret Hamilton,
Phone: 613-992-52939
Email: mh@cs.rmit.edu.au

January 23-24
International Conference
on Advances in Computing,
Communication and Control
Mumbai, India
Contact: Srija Unnikrishnan,
Phone: +919869005457
Email: srija.unni@gmail.com

