
T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004

1

Abstract— Software reliability is the probability of failure-free
operation of a computer program for a specified time in a
specified environment. Much research has focused on predicting
software reliability at delivery based on the trend of failures
encountered during testing. Software reliability engineering
combines the use of quantitative reliability objectives and
operational profiles.

Extreme Programming is a light weight software development
process. Testing is said by some to be at the heart of XP and
there is nothing it cannot achieve, while others find the practice
chaotic and uncontrollable.

There is lack of research regarding the quality of the end
product produced by using XP processes. Another gap in the
general knowledge is the use of Extreme Programming in critical
projects. Can it be done?

 The promoters of XP claim that reliability comes if you
follow the procedure, others find the chaos of XP problematic.
Some of these problems have been tried to solve by using XP with
extensions.

This paper gives a literature based review on software
reliability engineering and whether it is possible to achieve high
reliability by using XP.

Index Terms—Extreme Programming, Software Reliability,
Software Reliability Engineering.

1. INTRODUCTION
xtreme Programming (Beck 1999a; 1999b), or XP, is the
most known of the agile software development processes
measured by the number of papers and books written on
it. XP is an incremental software process that is supposed

to suit a fast changing environment. It aims at keeping the
system design as simple and adaptable as possible by
refactoring and always implementing the simplest thing that
could work. Pair programming, unit tests, and the code itself
help communicate the system structure and intent. Unit tests
and continuous integration of increments give programmers
instant feedback about the impact of the changes made.

Reliability (Musa et al. 1990) is probably the most
important of the characteristics inherent in the concept
“software quality”. It is intimately connected with defects and
defects represent the largest cost element in programming.
Software reliability concerns itself with how well the software
functions to meet the requirements of the customer.

One of the most common failings of XP teams is
insufficient testing (Jeffries 2001). XP asks for more testing
than many teams are used to. But what about projects that

need reliability at a substantially higher level?

1.1 Research problem and questions
This paper is concentrating in software reliability and

whether it is possible to achieve reliability by using Extreme
Programming. The XP approach offers some guidance on
quality assurance, but is very vague on achieving software
reliability. The aim of this research is to explore how Extreme
Programming is claimed to achieve software reliability and
could the traditional software reliability methods be combined
with it.

In order to find an answer to the research problem, we must
first define the term reliability. Thus the first (or perhaps
number zero) research question is: How to define software
reliability?

As we come closer to the actual topic of this research we
can define two main research questions:
What are the software reliability testing methods of traditional

software development and Extreme Programming?
Means to answer this question is to describe the traditional

software reliability methods. Then I focus on the quality
assurance and reliability methods of Extreme Programming.
The third research question is:
Is it possible to achieve software reliability by using Extreme

testing methods?
The objective of this study is to answer the before

mentioned research questions and offer some knowledge on
how to achieve software reliability by using Extreme
Programming practices.

1.2 Scope and definitions
The terms mentioned in the previous chapter are somewhat

vague and offer a vast array of previous studies and literature,
so the scope of this study must be restricted in order to meet
the course objectives. Some of the key terms in this research
are defined as follows:

eXtreme testing refers to testing practices of the Extreme
Programming practise, where testing is performed mainly by
developers who write unit tests using test-first approach (i.e.
write test code before the actual implementation). In Extreme
Programming practise also the customer provides functional
tests. While the team is implementing, the customer is
specifying functional tests, which are to convince the
customer that the user stories being implemented in the
iteration are ready and functional. (Beck 1999b)

Testing is a process of planning, preparation and measuring
aimed at establishing the characteristics of an information

Can Extreme Programming Be Combined With
Software Reliability?

Eila Pohjola

E

T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004

2

system and demonstrating the difference between the actual
and required status (Pol et al. 2002). The term Testing
includes here only unit testing and functional system testing.

Software reliability methods in this research are confined to
only to those methods used in testing and other methods
involved in other stages of the life-cycle are excluded. Also
formal mathematical methods like logic proofing are
excluded.

1.3 Methods
This paper is a literature review. The main sources of

information will be the databases for scientific articles and
books on software development in general and specially on
agile methods. The material can be obtained from databases of
scientific articles, libraries and also the World Wide Web.

The aim is to find relevant material by making thorough
searches of databases and the Web with several keywords
related to the topic and then narrow the material down to the
most relevant.

1.4 Structure and outline of the study
The rest of the paper is structured as follows. Chapter two

introduces the concept of software reliability and software
reliability engineering. We will also look into some methods
used in testing software reliability. Next chapter introduces
Extreme Programming and its 12 practices. We will
concentrate more into the quality assurance methods of
Extreme Programming. Chapter four will attempt to match the
XP quality assurance methods to the traditional software
reliability methods and to assess the influence of XP methods.
Another subject is to evaluate the possibility to use traditional
software reliability methods in Extreme Programming.
Summary and discussion is in chapter five.

2. SOFTWARE RELIABILITY AND TESTING
Software reliability is often defined as the probability of

failure-free operation of a computer program for a specified
time in a specified environment. So what is a failure?
Software failure is the departure of the external results of
program operation from requirements. A fault is the defect in
the program that, when executed under particular conditions,
causes the failure. (Musa et al. 1990).

There are three principal reliability strategies: fault
prevention, fault removal, and fault tolerance. Fault
prevention uses requirements, design, and coding technologies
and processes, as well as requirements and design reviews, to
reduce the number of faults introduced in the first place. Fault
removal uses code inspection and development testing to
remove faults in the code once it is written. Fault tolerance
reduces the number of failures that occur by detecting and
countering deviations in program execution that may lead to
failures. (Musa 1997)

Fault removal strategy is primary area of this study. The
software reliability methods, including testing, that can be
used in fault removal are discussed further in chapter 2.2.

It is said (Salasin 1989), though, that software reliability
cannot be “tested” in to the product. Thus the reliability
requirement must be taken into account during design and
development. Testing can only provide measurement on how

reliable the software is. Let’s assume that reliable software
causes a system to behave as we expect it to within the
constraints imposed by physical devices. This definition
implies that:

• The software as-built is same as software as-
intended

• The software does not exhibit failures during
operation

• The software is fault-tolerant
Much research has focused on predicting software

reliability at delivery based on the trend of failures
encountered during testing. The assumption underlying the
use of reliability models for such prediction are: (Salasin
1990)

• The statistical distribution of test data matches the
statistical distribution of data encountered in
operation

• Failure rates decrease with “time on test” since
errors are corrected when found

• A “reasonable number of errors” are encountered
during testing, since we can’t extrapolate failure
rates from zero

Work by Musa (Musa 1990) has shown some success in
predictions of software reliability based on test and
operational experiences.

2.1 The concept of software reliability engineering
Software testing often results in delays to market and high

cost without assuring product reliability. Software reliability
engineering can be applied to carefully engineer testing to
overcome these weaknesses. Software reliability engineering
combines the use of quantitative reliability objectives and
operational profiles (profiles of system use). The operational
profiles guide developers in testing more realistically, which
makes it possible to track the reliability actually being
achieved. (Musa 1997)

There are two types of testing using software reliability
engineering: development testing, in which you find and
remove faults, and certification testing, in which you either
accept or reject the software. Development testing precedes
certification testing, which in turn servers as rehearsal for
acceptance testing. (Musa 1997)

During development testing, you estimate and track failure
intensity, which is the failures per unit execution time. Failure
intensity is an alternative way of expressing software
reliability. Testers use failure intensity information to
determine any corrective actions that might need to be taken
and to guide release. Development testing typically comprises
feature, load, and regression testing. It is generally used for
software developed in your own organization. (Musa 1997)

Certification testing does not involve debugging. There is
no attempt to resolve failures you identify. Certification
testing typically comprises only load testing. Certification
testing is typically used on software acquired from outside of
the own organization. (Musa 1997)

Musa introduces in his article (Musa 1997) the application
steps of software reliability engineering.

• Determine which associated systems require separate

T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004

3

testing
• Decide which type(s) of testing is needed for each

system to be tested
• Define necessary reliability in terms of severity

classes and setting failure intensity objectives for the
software

• Develop operational profiles (set of operations and
their probability of occurrence)

• Prepare for testing
• Execute tests
• Interpret failure data

Figure 1. The core application steps of applying software reliability
engineering to testing and corresponding development life-cycle stages.

Figure 1 shows how the application steps of software
reliability engineering relate to corresponding development
life-cycle stages. It does not take a stand on which life-cycle
model is used, only to the stages where this method should be
applied.

2.2 Software reliability methods
Previous chapter discussed the concept of software

reliability on higher level. This chapter will introduce some
methods used in software reliability testing.

Formal methods are collection of notations and techniques
for describing and analyzing systems. Formal analysis
techniques can be used to verify that a system satisfies its
specifications. Software testing is perhaps the most frequently
used quality assurance method. Instead of trying to provide a
comprehensive check of the system, testing is focused on
sampling the executions, according to some coverage criteria,
and comparing the actual behavior with the behavior that is
expected according to specification. Testing does not
guarantee to find all errors or even some. (Peled 2001)

Testing can be divided to White box testing and Black box
testing. White box testing is more often used in unit testing
and in other “lower” levels of testing. Black box testing in
other hand is used more frequently in system and acceptance
testing. (Peled 2001; Pressman 1987)

The following two chapters present the testing methods
used for achieving software reliability (Peled 2001). Methods
presented here are traditional software testing methods, in this
context they are often called software reliability testing
methods. These methods are used to achieve software
reliability in a sense that all these testing methods fall under

the fault removal strategy of the three principal software
reliability strategies.

2.2.1 White box testing
White box testing is a test case design method that uses the

control structure of the procedural design to derive test cases.
Using white box testing methods, the software engineer can
derive test cases that 1) guarantee that all independent paths
within a module have been exercised at least once, 2) exercise
all logical decisions on their true and false sides, 3) execute all
loops at their boundaries and within operational bounds, and
4) exercise internal data structures to assure their validity.
(Pressman 1987)

I will start by presenting briefly the various white box
testing techniques introduced by Peled (Peled 2001).

Dataflow analysis is often used within compilers to perform
static analysis of the program.

Inspections and walkthroughs are manual testing methods,
carried out by a small team of people during a meeting, which
typically lasts one or three hours. Inspections and
walkthroughs can besides code check also documents
provided by the project.

In unit testing, a test case usually corresponds to the
selection of an execution path. During testing, one can seldom
check all the executions of a system in a comprehensive way.
Thus testing is often done based on coverage criteria.
Coverage criteria allow collecting sets of executions that are
likely to present the same errors. The control flow coverage
criteria include:

• Statement coverage: Each executable statement of the
program appears in at least one test case.

• Edge coverage: Each executable edge of the
flowchart appears in some test case.

• Condition coverage: Each Boolean combination that
may appear in any decision predicate during some
execution of the program must appear in some test
case.

• Path coverage: Every executable path is covered by a
test case.

Testing selfdom guarantees that all or even some of the
design and programming errors will be found. One way of
measuring the quality of a test suite is by performing code
coverage analysis.

It is common practice in specification and verification to
partition the executions into sets of executions that should not
be distinguished from each other. Then, instead of taking care
of all the executions, we take care of at least on sequence from
each such set.

Large software is usually developed by different teams,
each responsible for a part of the code. The same principle can
be applied to software testing. Such a compositional approach
has the additional advantage of better management. Tester is
allowed to concentrate on only a part of the features. Another
advantage is that finding an error in a small part of the code
usually pinpoints the source of the error more accurately.

2.2.2 Black box testing
Black box testing methods focus on the functional

requirements of the software. That, is black box testing

T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004

4

enables the software engineer to derive sets of input
conditions that will fully exercise all functional requirements
of the program. Black box testing is not an alternative to white
box techniques. It is a complementary approach that is likely
to uncover a different class of errors than white box methods.
(Pressman 1987)

Black box testing checks a system without considering its
internal structure. Testing is often based on modeling the
system as graph or an automaton, and using graph algorithms
to construct the test suite. (Peled 2001)

3. EXTREME PROGRAMMING
The first know lifecycle model was the waterfall model

(Pressman 1987; Scach 2002). The waterfall model didn’t just
appear (Beck 1999a). It was a rational reaction to the shocking
measurement that the cost of changing a piece of software
rose dramatically over time. Engineers wanted to make the
biggest most far-reaching decisions at earliest possible stage.
This did not seem to work correctly, and the next attempt to
solve the problem of ever changing requirements was the
iterative life-cycle model (Scach 2002).

Extreme Programming is a somewhat controversial new
approach to software development based on the incremental
model (Scach 2002). XP is said (Wake 2001) to be a
programming discipline. Extreme Programming is a

disciplined approach to software development that emphasizes
customer satisfaction and teamwork (Beck 1999a; 1999b).
Another definition is that it is a software development process
designed for small to mid-size projects, has strong customer
involvement, a simplified requirements gathering and
prioritization practice, and an emphasis on testing (Beck
1999b; Williams et al. 2002).

3.1 Introduction to Extreme Programming practices
XP turns the conventional software process sideways (Beck

1999a). Rather than planning, analyzing, and designing for the
far-flung future, XP exploits the reduction in the cost of
changing software to do all of these activities a little at a time,
throughout software development.

Figure 2 shows XP at timescales ranging from years to
days. The customer picks the next release by choosing the
most valuable features (called stories in XP) from among all
the possible stories, as informed by the costs of the stories and
the measured speed of the team in implementing stories.

The customer picks the next iteration’s stories by choosing
the most valuable stories remaining in the release, again
informed by the costs of the stories and the team’s speed. The
programmers turn the stories into smaller-grained tasks, which
they individually accept responsibility for. (Beck 1999a)

Then the programmer turns a task into a set of test cases
that will demonstrate that the task is finished. Working with a
partner, the programmer makes the test cases run, evolving the
design in the meantime to maintain the simplest possible
design for the system as a whole. (Beck 1999a)

The individual practices in XP are not by any means new.
Many people have come to similar conclusions about the best
way to deliver software in environment where requirements
change violently (Newkirk 2002). XP has 12 basic practices
(Beck 1999a; Beck 1999b; Newkirk 2002; Wake 2001). None

Figure 2. XP according to various timescales. At the scale of months and years, you have the stories in this release and then the stories in future releases. At the
scale of weeks and months, you have stories in this iteration and then the stories remaining in this release. At the scale of days and weeks, you have the task you
are working on now and then the rest of the tasks in the iteration. And at the scale of minutes and days, you have the test case you are working on now and then
the rest of the test cases that you can imagine.

T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004

5

of the practices are unique or original. They all have been
used for a long time (Beck 1999b).

Planning game. Customers decide the scope and timing of
releases based on estimates provided by programmers.
Programmers implement only the functionality demanded by
the stories in this iteration.

Small releases. The system is put into production in a few
months, before solving the whole problem. New releases are
made often—anywhere from daily to monthly.

Metaphor. The shape of the system is defined by a
metaphor or set of metaphors shared between the customer
and programmers.

Simple design. At every moment, the design runs all the
tests, communicates everything the programmers want to
communicate, contains no duplicate code, and has the fewest
possible classes and methods. This rule can be summarized as,
“Say everything once and only once.”

Tests. Programmers write unit tests minute by minute.
These tests are collected and they must all run correctly.
Customers write functional tests for the stories in iteration.
These tests should also all run, although practically speaking,
sometimes a business decision must be made comparing the
cost of shipping a known defect and the cost of delay.

Refactoring. The design of the system is evolved through
transformations of the existing design that keep all the tests
running. Refactoring is the process of improving the design of
code without affecting its external behaviour.

Pair programming. All production code is written by two
people at one screen/keyboard/mouse.

Continuous integration. New code is integrated with the
current system after no more than a few hours. When
integrating, the system is built from scratch and all tests must
pass or the changes are discarded.

Collective ownership. Every programmer improves any
code anywhere in the system at any time if they see the
opportunity.

On-site customer. A customer sits with the team full-time.
40-hour weeks. No one can work a second consecutive

week of overtime. Even isolated overtime used too frequently
is a sign of deeper problems that must be addressed.

Open workspace. The team works in a large room with
small cubicles around the periphery. Pair programmers work
on computers set up in the centre.

The thirteenth practice of XP is the fact that rules are just
rules. By being part of an Extreme team, you sign up to follow
the rules. But they’re just the rules. The team can change the
rules at any time as long as they agree on how they will assess
the effects of the change. (Beck 1999b)

3.2 Quality assurance methods in Extreme Programming
In Extreme Programming the test-first method is being used

in unit testing (Wake 2001; Beck, 1999b). Unit testing is
claimed to be at the heart of XP (Beck 1999a; Beck 1999b). In
XP unit testing is part of every programmer’s daily business.
There are, however, two twists: Programmers write their own
tests and they write these tests before they code. It is claimed
(Beck 1999a; Beck 1999b) that XP primarily addresses the
accepted wisdom that programmers can’t possibly test their
own code by having you write code in pairs.

The promoters of XP claim that XP testing strategy doesn’t
ask any more work than the usual bench testing strategies. It
just changes the form of the tests. Instead of activities that
evaporate into the ether as soon as they are finished, you
record the tests in a permanent form. These tests will run
automatically today, and this afternoon after integration and
tomorrow. (Beck 1999a; Beck 1999b; Wake 2001)

The Test/Code cycle of XP goes as follows (Wake 2001):
• Write one test
• Compile the test. It should fail to compile, because

the code that the test calls has not been implemented
yet

• Implement just enough to compile
• Runt the test and see it fail
• Implement just enough to make the test pass
• Refactor for clarity and remove duplication
• Repeat from the top

Tests also come from the customers. At the beginning of
iteration, the customers think about what would convince
them that the stories for iteration are completed. These
thoughts are converted into system wide tests, either directly
by the customer using a textual or graphical scripting
language or by the programmers using their own testing tools.
These tests, too, accumulate confidence, but in this case they
accumulate the customer’s confidence of the correct operation
of the system. (Beck 1999b; Wake 2001)

The XP process has some practices for testing but offers
only rough guidance in practice. It has been said by the
promoters of XP (Wake 2001; Beck 1999b) that the testing is
a discipline unto itself.

Beck (Beck 1999b) introduces some forms of testing that
the XP team might need when they are in trouble. These are:

• Parallel test – a test designed to prove that a new
system works exactly like the old system

• Stress test - a test design to simulate the worst
possible load

• Monkey test – a test designed to make sure the
system acts sensibly in the face of nonsensical input

Pair programming is also considered (Beck 1999b) a quality
assurance method by XP practioners. When pair programming
one is continually inspecting the code. It has been claimed
(Beck 1999b; Wake 2001) that the code resulting from pair
programming is of better quality.

Refactoring is another quality assurance method in XP
(Wake 2001). It is the process of improving the design of code
without affecting its external behaviour. Refactoring is done,
so that code would be as simple as possible, ready for any
changes that come along and at the same time testable.

These two XP practices, even though quality assurance
methods in XP, are not part of the testing methods. Thus this
paper will not concentrate on them.

4. SOFTWARE RELIABILITY IN EXTREME PROGRAMMING
Some anecdotal evidence argues success of the Extreme

Programming in producing higher quality in less time.
Although precise information about benefits and costs of the
Extreme Programming practice represents a critical guideline
for improvement of software quality, there has been little

T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004

6

work on the subject beyond subjective reports and a study in
academic environment. (Succi et al. 2001)

IT managers often view XP as a slightly chaotic
methodology. Many even regard XP as dangerous and
unpredictable because to them it appears to neglect planning
and controlling in large-scale or long-term projects.
(Cockburn 2002)

4.1 Extreme Programming vs. traditional methods
As mentioned before there are very few studies about

Extreme Programming. Most of them have been made in an
academic environment, which even at its best can not describe
reality accurately. One of these studies compared Extreme
Programming and traditional software development. The
paper (Macias et al. 2003) describes an experiment carried out
during the Spring/2002 academic semester with computer
science students at the University of Sheffield. The study is
set in academic environment and thus is not fully applicable in
“the real world” but it does give a general picture on how
things could be.

The objective of the experiment (Macias et al. 2003) was to
assess Extreme Programming. With this purpose, it was
compared with a traditional approach which played the role of
a control treatment. The observable practices followed by the
teams in Extreme Programming treatment were: planning
game, testing, pair programming, simple design, coding
standards, collective ownership, continuous integration, small
releases, and some cases of metaphors and refactoring. They
did not follow "40 hours week" nor "on site customer". The
teams followed an additional practice: testing based on
requirements.

Results (Macias et al. 2003) supported the fact that Extreme
Programming teams produced as good results as the
traditional approach. The implications of this result are very
important. The most relevant one for the Software
Engineering community is that a procedure free of design
stage provides as good results as one including design stage.
The lack of design resulted from applying Extreme
Programming.

According to the study (Macias et al. 2003) internal quality
and external quality are unrelated. The behavior of the internal
quality factors was not related to the behavior of the external
factors. This means that some systems could present good user
characteristics and poor internal construction, or good internal
construction and poor presentation for the user, or any other
combination. But there was not any pattern, according to the
data from the correlation coefficient.

Study by Paulk reviews XP in the light of CMM (Capability
Maturity Model). XP advocates many good engineering
practices, although some practices may be controversial and
counter-productive outside a narrow domain. Paulk suggests
that the ideas in XP should be carefully considered for
adoption where appropriate in an organization's business
environment since XP can be used to address many of the
CMM Level 2 and 3 practices. In turn, organizations using XP
should carefully consider the management and infrastructure
issues described in the CMM. (Paulk 2001)

The risk in changing to XP is that the emergent properties
providing value in its proper context may not emerge. Still,

the emphasis in choosing and improving software processes
should be to let common sense prevail - and to use data
whenever possible to provide insight when answering
challenging questions. (Paulk 2001)

4.2 Why XP is claimed to be reliable?
One of the most widespread criticisms of Agile methods in

general is that they do not work for systems that have
criticality, reliability and safety requirements. Paper by
Lindvall et al. reports a disagreement amongst the developers
about suitability of agile methods for these types of projects.
Some developers feel that Agile Methods work if performance
requirements are made explicit early, and if proper levels of
testing can be planned for. Others argue that Agile best fits
applications that can be built “bare bones” very quickly,
especially applications that spend most of their lifetime in
maintenance. (Lindvall et al. 2001)

What can XP offer for the projects that need high
reliability? According to Jeffries (Jeffries 2001), one of the
promoters of Extreme Programming, XP projects typically
report higher reliability than the same teams had attained
before doing XP. Jeffries claims that XP provides very good
reliability because of the following reasons:

Unit Tests, ideally written before the code that is tested,
cover "everything that could possibly break".

Acceptance Tests, independently defined by the customer,
test all the requirements.

Whenever defects slip through the unit tests, to be detected
by the acceptance tests, it is recommended that the
programmers upgrade the unit tests, not only to show the
existing defect, but to upgrade the testing practices in general
based on what was learned about the "missing" tests.

Whenever defects slip through the acceptance tests and are
caught by users, the same practice is used to upgrade both
acceptance tests and unit tests, and the testing practices.

All production code is programmed by two programmers
working together. This provides one hundred percent
inspection by at least one other person.

In XP, code is owned by the team, not by individuals. This
means that over the course of the project, essentially all the
code is viewed and edited by even more programmers than the
original pair who wrote it. This provides even higher levels of
inspection.

XP teams release software to users very frequently, ideally
every couple of weeks. This ensures that the software gets
plenty of assessment in the real working environment. This
enables the team to build an excellent sense of system quality.

Although this argumentation is pretty straightforward,
Jeffries offers no proof in his article, that this is really the
case. Arguments presented above could serve as hypothesis,
for a more through study on the subject.

Williams et al. offer another point on the reliability. With
TDD (test-driven development), software engineers write low-
level, automated unit tests every time they create a new
class/method, before they write the code. As a result, methods
are “testable” (e.g. in the simplest case, at least have return
values). Development cannot proceed until all the unit test
cases for the new user story pass and all the unit test cases for
the entire existing code base pass. (Williams et al. 2002)

T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004

7

“Test then code” is the phrase used to express XP's
emphasis on testing. It captures the principle that testing
should be planned early and test cases developed in parallel
with requirements analysis, although the traditional emphasis
is on black-box testing. Thinking about testing early in the life
cycle is a well-known good software engineering practice,
even if too infrequently practiced. (Paulk 2001)

The test-driven development practice of XP, is the key to
working with critical projects. Because all of the tests have to
be passed before release, projects developed with XP can
adhere to strict (or safety) requirements. Customers can write
acceptance tests that measure non-functional requirements, but
they are more difficult and may require more sophisticated
environments than unit tests. (Lindvall et al. 2002)

Usually the proofs of XP’s reliability, like the ones
mentioned above, concentrate on the methods and how by
using them you can produce good quality software. But you
can not trust the methodology on its own, when it is not used.
Jeffries argues, that a very common failing in XP projects is
insufficient testing, especially insufficient acceptance testing
(Jeffries 2001).

4.3 XP with extensions
It is allowed and even desirable to change the XP process to

fit individual needs (Beck 1999b). There have been (Lippert et
al. 2003) reported experiences of retrofitting XP. According
to a study by Lippert et al. when suitably adapted for use in
projects with complex domains or limited resources, it has
been found that XP offers a high degree of security and
reliability without limiting the advantages of agile software
development.

Some methodological extensions have been developed to
XP for use a number of areas in which questions and problems
frequently occur. Lippert et al. apply these extensions in cyclic
and iterative approach that emphasizes constant feedback and
project preparation. According to the study, unlike system
presentations, using early system versions helps to address
questions relating to features such as stability, load behaviour,
and performance. (Lippert et al. 2003)

Problems can occur if the customer does not follow through
on promises to extensively test the prototypes and subsequent
versions. Approach emphasizes the importance of holding a
frank conversation at the beginning of the project that explains
what is expected of the customer, particularly with respect to
regular involvement in testing. This conversation should make
clear how the customer can integrate this effort into a normal
work routine and that the testing will yield tangible benefits.
Responding to objections about testing provides an
opportunity to initiate an early search for solutions that foster
the XP goal of encouraging the customer’s close involvement
in the development process. (Lippert et al. 2003)

Even if the customer does carry out testing, the results from
manual acceptance tests can be interpreted in different ways.
Developers must be able to assess the quality of the customer
testing, but doing so is a difficult undertaking, especially
when the feedback is positive. (Lippert et al. 2003)

One solution is to both document the test setup and results
and to evaluate them in a feedback cycle. Feedback can point
to remaining weaknesses in the tests, providing a basis for

more meaningful tests. While endorsed test results offer more
protection against unwarranted additional requirements, the
feedback cycle is beneficial because high-quality acceptance
tests avoid the need for such requirements. (Lippert et al.
2003)

The study by Lippert et al. reports experiences from
several projects using extensions. These extensions have been
developed to solve a particular problem the project is facing.
Developers’ experiences from these projects have been good,
but there is not quantified evidence on how well these
extensions did. In generally there seems to a lack of evidence
in the literature on how well the XP practice could answer to
the need of software reliability.

Williams et al. address this problem in their study.
According to them basic characteristics of XP enable an
extension of XP to encompass a measure of reliability. They
examine the enhancement of XP practices to include explicit
estimation of the probability that the software system performs
according to its requirements based on aspecified usage
profile. (Williams et al. 2002)

They (Williams et al. 2002) propose the composition of XP
acceptance testing and Software Reliability Engineering
(SRE) in order to obtain quantifiable measures of reliability.

Operational profiles are at the heart of SRE (Musa et al.
1997). Two additional requirements for creating an
operational profile are required of the customers (Williams et
al. 2002). These added steps are necessary for estimation of
the reliability range for a system developed using XP.
In the first step the customer must quantify the fraction of
usage of each of the “m” user stories, usj, 0< j ≤ m. User
stories are numbered (j) between zero and m, which is the
total amount of user stories. The usage of a user story j (usj),
can be anything between 0-100%. It is assumed that the
attempted story coverage is 100% from the user perspective.

In the second step customer specifies acceptance test cases.
For each user story j, the customer specifies nj acceptance test
cases that cover this story, n being the number of test cases.
Let the fraction of the story that is covered by test-case be atij,
0 < i < nj. Here i is the test case between zero and nj, which is
the total number of test cases for this user story. However, the
coverage for all acceptance test cases for a story may not total
100%. Part of it may be due the economics of software testing.

Williams et al. are developing an open source “Good
Enough” Reliability Tool (GERT) to support the composition
of XP acceptance testing and software reliability engineering.
GERT estimates the reliability range for the system. Currently,
the tool plugs in with JUnit. An upper bound on reliability is
estimated using a Nelson-style model:

∑∑
= =

=
m

j
ijij

n

i
j xatusR

j

1 1

^

where the acceptance test execution score is xij . If Acceptance
Test Case i of User Story j passes, the score is 1, otherwise it
is 0. Proper lower bound is still under investigation. One
option is to weight successful test cases proportionally to their
number in a particular coverage category, and inversely
proportion to the coverage they are intended to offer.

The group (Williams et al. 2002) is working on a co-

T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004

8

requisite confidence interval model. This model will indicate
the upper and lower bounds of the reliability estimate; a prime
determinant of the confidence interval model will be the
number of test cases written, particularly for critical, high
usage user stories. According to the paper, other issues, such
as coverage correlation and sampling issues also need to be
taken into account.
There are some limitations to the model described. XP culture,
needing agility, operates under resource constrained
conditions using as little as one test case for each space an
acceptance scenario covers. That alone creates a reliability
over-estimation problem unless it is accounted for. (Williams
et al. 2002) Additionally:

• The model is highly reliant on good input from a
customer regarding the operational profile, and
acceptance test cases.

• In XP, the dependencies and overlap between user
stories is not identified.

• It is very important that customers specify as many
acceptance test cases as possible or reliability will be
overstated.

5. SUMMARY AND DISCUSSION
The literature and studies available regarding software

reliability is vast. This field of study has been part of the
software development scene for long time and the sources and
their recommendations could be considered as trustworthy. It
is harder to find unbiased information on Extreme
Programming and especially on the subject of quantifying the
quality of products produced by using XP. One should always
read the studies about quality of XP with some skepticism as
the studies quite often lack rigorous research methods and are
no more than accounts of success stories.

Chapter two discussed the concept of software reliability
and testing. Three principal reliability strategies could be
identified: fault prevention, fault removal and fault tolerance.
The fault removal strategy was the main target of interest in
this study. The traditional way to execute this strategy is by
testing, thus the methods used for software reliability testing
were introduced. Another issue introduced regarding the
reliability of software was software reliability engineering
(SRE). SRE can be applied to engineer testing to overcome its
weaknesses, delays to market and high cost without assuring
product reliability.

Following chapter introduced the concept of Extreme
Programming and the 12 practices used in it. Special attention
was given to the testing practices, unit testing and functional
tests provided by the customer. Even though XP has a practice
for testing it offers only rough guidance in how practice it. It
has even been said by the promoters of XP that the testing is a
discipline unto itself.

Chapter four discussed software reliability in Extreme
Programming. There has been a lot of talk about the quality of
software that XP practices produce. Some state out their
concern regarding the lack of control, others promote it saying
that quality comes if you follow the procedure.

There has been very little or none useful studies outside the
academic environment regarding XP and especially reliability

in XP. Clearly more research in this area is needed. One of the
studies (Paulk 2001) reviewed XP in the light of Capability
Maturity Model and came to the conclusion that both of these
practices could benefit from another. One could conclude that
on its own XP is not adequate to solve the problems of
software reliability. Thus we come to the subject of XP with
extensions.

Some extensions of XP introduce the concept of software
reliability engineering to it, some try to solve the quality
problems that the XP projects sometimes face problem by
problem. Once again there is very little research reports
regarding the outcomes of these extensions.

Introducing the software reliability methods covered in
chapter two to Extreme Programming would be interesting.
Currently there is very little guidance on this subject from the
XP point of view. At present the responsibility of producing
tests belongs to developers and customers. Methods presented
require through knowledge of testing practices, equivalence
portioning, coverage criteria etc. This double role of
customer-tester expert or developer-tester expert will most
likely be tough to combine.

REFERENCES
Beck, K. 1999a, “Embracing Change With Extreme Programming”, IEEE
Computer, Volume: 32 Issue: 10, Oct. 1999, pp. 70-77.

Beck, K. 1999b, “Extreme Programming Explained, Embrace Change”,
Addison-Wesley.

Cockburn, A. 2002, “Agile Software Development”, Addison-Wesley.

Jeffries, R. 2001, “XP and Reliability”,
http://www.xprogramming.com/xpmag/Reliability.htm, [Modified 8.10.2001],
[Referenced 7.3.2004].

Lindvall, M., Basili v., Boehm B., Costa p., Dangle K., Shull F., Tesoriero R.,
Williams L., Zelkowitz, M. 2002, “Empirical Findings in Agile Methods”,
Proceedings of Extreme Programming and Agile Methods – XP/Agile
Universe, pp. 197-207.

Lippert, M., Becker.Pechau, P., Breitling, H., Koch, J., Kornstädt, A., Roock,
S., Schmolitzky, A., Wolf, H., Züllighoven, H. 2003, “Developing Complex
Projects Using XP With Extensions”, Computer, Volume 36 Issue 6, pp 67-
73.

Macias, F., Holcombe, M., Gheorghe, M. 2003, “A Formal Experiment
Comparing Extreme Programming with Traditional Software Construction”,
Proceedings of the fourth Mexican International Conference on Computer
Science, pp 73-80.

Musa, J. 1997, “Introduction to Software Reliability Engineering and
Testing”, Proceedings of the Eight International Symposium on Software
Reliability Engineering, pp 334-337.

Musa, J., Iannino, A., Okumoto, K. 1990, “Software Reliability:
Measurement, Prediction, Application”, McGraw-Hill.

Newkirk, J. 2002, “Introduction to Agile Processes and Extreme
Programming”, Proceedings of the 24th International Conference on Software
Engineering, pp 695-696.

Paulk, M. 2001, “Extreme Programming from a CMM Perspective”, IEEE
Software, Volume 18 No 6, pp. 19-26.

Peled, D. 2001, “Software Reliability Methods”, Springer.

Pol, M., Teunissen, R., van Veenendaal, E. 2002, “Software Testing - A guide
to the TMAP Approach”, Addison-Wesley.

Pressman, R. 1987, “Software Engineering, A Practitioner’s Approach”,
McGraw-Hill

T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004

9

Salasin, J. 1989, “Building Reliable Systems: Software Testing and Analysis”,
Proceedings of the 13th Annual International Computer Software and
Applications Conference, pp 517-520.

Schach, S. 2002, “Object-Oriented and Classical Software Engineering”,
McGraw-Hill.

Succi, G., Stefanovic, M., Pedrycz, W. 2001, “Quantitative Assessment of
Extreme Programming Practices”, Canadian Conference on Electrical and
Computer Engineering, Volume 1, pp 78-80.

Wake, W. 2001, “Extreme Programming Explored”, Addison-Wesley.

Williams, L. Wang, L., Vouk, M. 2002, “Good Enough” Reliability for
Extreme Programming, Fast Abstract at the International Symposium on
Software Reliability Engineering.

