
developer.* 2006 by Scott Sehlhorst Page 1 of 15
Original author owns and reserves all future rights. Reprint only with written permission.

developer.*

Test Smarter, Not Harder
by Scott Sehlhorst

Introduction: Complexity Leads to Futility

Imagine we are developing a web page for customizing a laptop purchase.

If you’ve never configured a laptop online before, take a look at Dell’s “customize it”

page for an entry level laptop. The web page presents eleven questions to the user that have

from two to seven responses each. The user has to choose from two options in the first

control, two in the second, and so on. The user has seven possible choices for the last

control.

When we look at all of the controls combined, the user has to make

(2,2,2,2,2,3,2,2,3,4,7) choices. This is a simple configuration problem. The number of

possible laptop configurations that could be requested by the user is the product of all of

the choices. In this very simple page, there are 32,256 possibilities. At the time of this

writing, the page for customizing Dell’s high-end laptop has a not dissimilar set of controls,

with more choices in each control: (3,3,3,2,4,2,4,2,2,3,7,4,4). The user of this page can

request any of 2,322,432 different laptop configurations! If Dell were to add one more

control presenting five different choices, there would be over ten million possible

combinations!

Creating a test suite that tries all two million combinations for a high end laptop

could be automated, but even if every test took one tenth of second to run, the suite would

take over 64 hours! Dell changes their product offerings in less time than that.

Then again, if we use a server farm to distribute the test suite across ten machines we

could run it in about 6 hours. Ignoring the fact that we would be running this type of test

for each customization page Dell has, 6 hours is not unreasonable.

Validating the two million results is where the really big problem is waiting for us.

We can’t rely on people to manually validate all of the outputs–it is just too expensive. We

could write another program, which inspects those outputs and evaluates them using a

rules-based system (“If the user selects 1GB of RAM, then the configuration must include

1GB of RAM” and “The price for the final system must be adjusted by the price-impact of

1GB of RAM relative to the base system price for this model.”)

developer.* DeveloperDotStar.com

developer.* 2006 by Scott Sehlhorst Page 2 of 15
Original author owns and reserves all future rights. Reprint only with written permission.

There are some good rules-based validation tools out there, but they are either

custom software, or so general as to require a large investment to make them applicable to

a particular customer. With a rules-based inspection system, we have the cost of

maintaining the rules. The validation rules are going to have to be updated regularly, as

Dell changes the way they position, configure, and price their laptops.

Since we aren’t Dell, we don’t have the scale (billions of dollars of revenue) to justify

this level of investment. The bottom line for us is that we can’t afford to exhaustively test

every combination. Dell’s shareholders require them to grow their business, and these

configuration pages are the vehicle by which Dell generates billions of dollars in revenue.

They have to test it. The cost of errors (crashes, lost sales, mis-priced items, invalid

combinations of features) is too high. With this level of risk, the cost of not testing (the cost

of poor quality) is extremely high.

We Can’t Afford to Test It

I was able to attend a training session with Kent Beck a few years ago. I was also honored

to be able to enjoy a large steak and some cold beer with him that night after the training.

When asked how he responds to people who complain about the cost of quality, Kent told

us he has a very simple answer: “If testing costs more than not testing then don’t do it.”

I agree. There are few situations where the cost of quality1 exceeds the cost of poor

quality. These are situations where the needed infrastructure, test-development time, and

maintenance costs outweigh the expected cost of having a bug. (The “expected cost”2 is the

likelihood (as a percentage) of the bug manifesting in the field, multiplied by the cost of

dealing with the bug.)

The techniques described in this article are designed to reduce the cost of quality, to

make it even less likely that “not testing” is the best answer.

Just Test Everything, It’s Automated!

Two “solutions” that we have to consider are to test nothing and to test everything. We

would consider testing nothing if we can’t afford to test the software. When people don’t

appreciate the complexities of testing or the limitations of automated testing, they are

inclined to want to “test everything.” Testing everything is much easier said than done.

1 http://tynerblain.com/blog/2006/02/22/software-testing-series-measuring-the-cost-of-quality/
2 http://tynerblain.com/blog/2006/02/03/definition-of-expected-value/

developer.* DeveloperDotStar.com

developer.* 2006 by Scott Sehlhorst Page 3 of 15
Original author owns and reserves all future rights. Reprint only with written permission.

Have you ever been on a project where the manager said something like, “I demand

full testing coverage of the software. Our policy is zero tolerance. We won’t have bad

quality on my watch.”?

What we struggle with here is the lack of appreciation for what it means to have “full

coverage” or any other guarantee of a particular defect rate.

There are no absolutes in a sufficiently complex system–but that’s ok. There are

statistics, confidence levels, and risk-management plans. As engineers and software

developers, our brains are wired to deal with the expected, likely, and probable futures. We

have to help our less-technical brethren understand these concepts–or at least put them in

perspective.

We may get asked, “Why can’t we just test every combination of inputs to make sure

we get the right outputs? We have an automated test suite–just fill it up and run it!”

We need to resist the urge to respond by saying, “Monkeys with typewriters will have

completed the works of Shakespeare before we finish a single run of our test suite!”

Solving the Problem

There are a lot of applications that have millions or billons of combinations of inputs. They

have automated testing. They have solutions to this problem. We just finished discussing

how impractical it is to test exhaustively, so how do companies test their complex

software?

In the rest of the article, we will explore the following approaches to solving the problem.

 Random sampling

 Pairwise testing

 N-wise testing

We will also explore the impact that changing the order of operations has on our testing

approach, and the methods for testing when the sequence matters.

RANDOM SAMPLING

Early on in the software testing world, someone realized that by randomly checking

different combinations of inputs, they would eventually find the bugs. Imagine software

that has one million possible combinations of inputs (half as complex as our previous

developer.* DeveloperDotStar.com

developer.* 2006 by Scott Sehlhorst Page 4 of 15
Original author owns and reserves all future rights. Reprint only with written permission.

example). Each random sample would give us 0.000001% coverage of all possible user

sessions. If we run 1,000 tests, we would still only have 0.001% coverage of the application.

Thankfully, statistics can help us make statements about our quality levels. But we

can’t use “coverage” as our key measurement of quality. We have to think about things a

little bit differently. What we want to do is express a level of confidence about a level of

quality. We need to determine the sample size, or number of tests, that we need to run to

make a statistical statement about the quality of the application.

First we define a quality goal–we want to assure that our software is 99% bug free.

That means that up to 1% of the user sessions would exhibit a bug. To be 100% confident

that this statement is true, we would need to test at least 99% of the possible user sessions,

or over 990,000 tests.

By adding a level of confidence to our analysis, we can use sampling (selecting a

subset of the whole, and extrapolating those results as being characteristic of the whole) to

describe the quality of our software. We will leverage the mathematical work that has been

developed to determine how to run polls.

We define our goal to be that we have 99% confidence that the software is 99% bug

free. The 99% level of confidence means that if we ran our sample repeatedly, 99% of the

time, the results would be within the margin of error. Since our goal is 99% bug free code,

we will test for 100% passing of tests, with a 1% margin of error.

How many samples do we need, if there are one million combinations, to identify the

level of quality with a 99% confidence, and a 1% margin of error? The math for this is

readily available, and calculators for determining sample size are online and free. Using

this polling approach, we find that the number of samples we require to determine the

quality level with a 1% error and 99% confidence is 16,369.

If we test 16,369 user sessions and find 100% success, we have established a 99%

confidence that our quality is at least at a 99% level. We only have 99% quality, because we

have found 100% quality in our tests, with a 1% margin of error.

This approach scales for very large numbers of combinations. Consider the following

table, where our goal is to establish 99% confidence in a 99% quality level. Each row in the

following table represents an increasingly complex software application. Complexity is

defined as the number of unique combinations of possible inputs).

developer.* DeveloperDotStar.com

developer.* 2006 by Scott Sehlhorst Page 5 of 15
Original author owns and reserves all future rights. Reprint only with written permission.

We can see that the very few additional tests have to be run to achieve the same level of

quality for increasingly complex software. When we have a modest quality goal, such as

99/99 (99% confidence in 99% quality), this approach is very effective.

Where this approach doesn’t scale well is with increasing levels of quality. Consider

the quest for “five nines” (99.999% bug free code). With each increase in the desired level

of quality, the number of tests we have to run grows. It quickly becomes an almost

exhaustive test suite.

Each row in the following table represents an increasingly stringent quality

requirement, with the complexity of the software staying constant at one million possible

input combinations.

The random sampling approach does not provide a benefit over exhaustive testing when

our quality goals are high.

PAIRWISE TESTING OF INPUT VARIABLES

Studies have shown that bugs in software tend to be the results of the combination of

variables, not individual variables. This passes our “gut-check” since we know that

developer.* DeveloperDotStar.com

developer.* 2006 by Scott Sehlhorst Page 6 of 15
Original author owns and reserves all future rights. Reprint only with written permission.

conscientious developers will test their code. What slips through the cracks is overlooked

combinations of inputs, not individual inputs.

Consider a very simple laptop configuration page, having three selectable controls:

CPU, Memory, and Storage. Each control has three possible values as shown in the table

below.

CPU Memory Storage
Bargain Minimal Large
Consumer Average Very Large
Power-user Excessive Huge

Available user selections

We successfully pass tests of each of the different values available in the CPU control.

However, we discover that our test fails if the user selects a CPU value of “Consumer” and

selects a Storage value of “Huge”. This highlights an unknown dependency between the

CPI and Storage controls.

Pair-wise testing3 is designed to get coverage of every possible combination of two

variables, without testing every possible combination of all the variables. For this example,

there are 27 unique combinations of all of the selections. The following table shows the

first 9 combinations. An additional 9 combinations are needed for each of the other CPU

selections.

CPU Memory Storage
Bargain Minimal Large
Bargain Minimal Very Large
Bargain Minimal Huge
Bargain Average Large
Bargain Average Very Large
Bargain Average Huge
Bargain Excessive Large
Bargain Excessive Very Large
Bargain Excessive Huge
[…] […] […]

Available user selections

Exhaustive pair-wise testing will make sure that every unique combination of any two

variables will be covered. The next table shows the combinations for this example.

3 http://tynerblain.com/blog/2006/03/18/software-testing-series-pairwise-testing/

developer.* DeveloperDotStar.com

developer.* 2006 by Scott Sehlhorst Page 7 of 15
Original author owns and reserves all future rights. Reprint only with written permission.

CPU Memory Storage
Bargain Minimal Large
Consumer Average Very Large
Power-user Excessive Huge
Bargain Average Huge
Consumer Excessive Large
Power-user Minimal Very Large
Bargain Excessive Very Large
Consumer Minimal Huge
Power-user Average Large

Available user selections

With just 9 tests, we are able to exhaustively cover every unique pair of CPU and Memory,

CPU and Storage, and Memory and Storage. Pair-wise testing allows us to get full coverage

of the combinations of every two variables, with a minimal number of tests.

Pair-wise testing not only gives us full coverage of every pair of values, it also gives us

(redundant) coverage of every single value for each control.

If we look back at our previous examples of laptop-configuration, we can calculate

the numbers of tests required to get full pair-wise coverage. For the entry level laptop

configurator, there are 32,256 possible unique combinations of inputs. We can test every

unique combination of two variables with 31 tests. For the high-end laptop configurator,

there are 2,322,432 unique combinations of inputs. We can test every unique combination

of two variables with 36 tests.

N-WISE TESTING

The concept of pair-wise testing can be extended to N-wise testing–looking at every

combination of N possible inputs. This is a simple extension of the idea behind pairwise

testing. Good developers will catch the bugs caused by the combination of two variables.

Even the best developers will overlook the three-variable (or four or more variable)

combinations.

The following table shows how many tests are required to get full coverage of each N-

wise combination of inputs for both the low-end and high-end laptops configurators.

N Low-end High-end
1 7 7
2 31 36
3 110 179
4 318 749
5 814 2812

N-wise test coverage

developer.* DeveloperDotStar.com

developer.* 2006 by Scott Sehlhorst Page 8 of 15
Original author owns and reserves all future rights. Reprint only with written permission.

This is a much more manageable situation. Exhaustive coverage required us to use 2.3

million tests, where using N-wise testing with N=3, yields only 179 tests! Existing studies

have consistently shown that N=3 creates on the order of 90% code coverage with test

suites, although the number will vary from application to application. We will use N=3,

based on practical experience that N=4 tests rarely uncover bugs that were missed with

N=3.

This approach only works when users are forced to enter values in a proscribed

sequence and in cases where the sequence of entry is irrelevant. This set of tests won’t give

us representative coverage of what the users will do when they are allowed to make

selections in arbitrary but relevant order. If order doesn’t matter for us (for example, most

API signatures have a fixed order, and many websites will process multiple inputs in a

batch), then we have our desired methodology.

ORDER RELEVANCE AND STATISTICAL TESTING

There’s been an assumption implicit in all of our calculations so far: that the order of

selection in the controls is irrelevant. The available N-wise test calculation tools do not

incorporate order of selection in their permutations–explicitly, they assume a fixed order

of operations. When we test an API we have control over the order of processing–there are

a fixed number of arguments, in a fixed order. People, however, do not always interact with

the controls in a fixed order. And web service architectures may not be able to depend

upon a predetermined sequence of events.

With 5 controls in an interface, we have 5! (factorial4) or 120 possible sequences in

which selections can be made by a person. Although the user interface may incorporate

dynamic filtering that prevents some subsets of out-of-sequence selection, N-wise testing is

blackbox testing5, and will not have access to that information.

For an interface with M possible controls, each script created by an N-wise test

generator will have to be tested in M! sequences to get exhaustive coverage. If the controls

are split across multiple screens, then we can reduce the number of sequences. For

example, if there are 5 controls on the first screen, and five controls on the next screen,

instead of considering 10! (3.6 million sequences), we can consider all first-screen-

sequences in combination with all second-screen sequences (5! * 5! = 120 * 120 = 14,400

script sequences).

4 http://mathworld.wolfram.com/Factorial.html
5 http://tynerblain.com/blog/2006/01/12/foundation-series-black-box-and-white-box-software-testing/

developer.* DeveloperDotStar.com

developer.* 2006 by Scott Sehlhorst Page 9 of 15
Original author owns and reserves all future rights. Reprint only with written permission.

In our example laptop configurators, there are 11 and 13 controls (all on the same

page) for the low-end and high-end laptops respectively. This would imply 11! and 13!

possible sequences (40 million and 6 billion).

We do not need to do exhaustive coverage of the sequencing permutations. An N-

wise test is specifically analyzing the interdependence of any combination of N controls. As

a lower-bound, we would only need N! sequences for each generated script. So our 179-

script suite for the high-end laptop (with N=3) would need 3! (6) * 179 = 1,074 scripts to

cover the product.

Here’s the table for the lower-bound of scripts required to account for different

values of N for both laptop-configurators.

N Low-end High-end
1 7 7
2 62 72
3 660 1,074
4 7,632 17,976
5 97,680 337,440

N-wise test coverage when varying
sequence of operations

This is a lower bound, because it assumes a perfect efficiency in combining unique

sequences of each group of N controls. Existing N-wise testing tools do not (to the author’s

knowledge) take order of operations into account. For N=2, this is trivial–just duplicate the

set of tests, in the exact reverse order.

We can take order of operations into account by treating the sequence as an

additional input. We use the mathematical formula “X choose Y” which tells us the number

of different combinations of Y values from a set of X values. The formula for calculating “X

choose Y” is X!/(Y!*(X-Y)!) where X is the number of inputs and Y is the dimension of the

desired N-wise test.

Here’s the table of the number of combinations for each N, for both the low-end and

high-end laptop configuration screens we’ve been discussing.

N Low-end High-end
1 11 13
2 55 78
3 165 286
4 330 715
5 462 1,287

X Choose Y - number of unique sequences
for given N-wise run

developer.* DeveloperDotStar.com

developer.* 2006 by Scott Sehlhorst Page 10 of 15
Original author owns and reserves all future rights. Reprint only with written permission.

Here are the values, generally, for varying numbers of inputs.

N
3 4 5 6 7 8 9 10 15 20

1 3 4 5 6 7 8 9 10 15 20
2 3 6 10 15 21 28 36 45 105 190
3 1 4 10 20 35 56 84 120 455 1,140
4 1 5 15 35 70 126 210 1,365 4,845
5 1 6 21 56 126 252 3,003 15,504

Number of unique sequences for given N-wise run versus # of controls

Number of controls

We would then calculate the N-wise testing using a value of N+1 as an input to the test-

generation tool, and include the number of unique sequences as if it were a control input.

Unfortunately, we don’t have a solver capable of handling single dimensions larger

than 52. This limits our ability to create a test suite for N=3 to a maximum of 7 controls.

To show the impact of sequencing on the test suite, consider an interface with 7

controls, each having 5 possible values. N=3 would require 236 tests if order is irrelevant.

We then include sequence of selection as a parameter (by adding an 8th control with 35

possible values, and testing for N=4), In this case, N=3 (with sequencing) requires 8,442

scripts. Our theoretical lower bound would be 236 * 35 = 8260.

How to Make it Even
Better

When we don’t know

anything, or don’t apply any

knowledge about our

application to our testing

strategy, we end up with far

too many tests. By applying

knowledge of the application

to our test design we can

greatly reduce the size of our

test suite. Tests that

incorporate knowledge of the

application being tested are

known as whitebox tests6.

6 http://tynerblain.com/blog/2006/01/13/software-testing-series-black-box-vs-white-box-testing/

developer.* DeveloperDotStar.com

developer.* 2006 by Scott Sehlhorst Page 11 of 15
Original author owns and reserves all future rights. Reprint only with written permission.

MAP OUT THE CONTROL DEPENDENCIES

In our previous examples, we applied no knowledge of the interactions of controls, or the

interactions within the program of having made selections in the controls. If we consider a

visual map of the controls and their possible relationships, it would look like the following

diagram.

There is a possibly-relevant connection between the selections in every pair of

controls. We have designed our testing around the lack of knowledge that is clearly visible

in the diagram.

It is likely that we can rule out some of the dependencies, but possibly not all of

them. Our approach should be conservative; only remove those dependencies that we know

don’t exist. This knowledge comes from an understanding of the underlying application.

Once we remove these links the diagram will look like this:

This clarified mapping

allows us to reduce the size

of our test suite

dramatically, because

we’ve identified the

independence of many

controls. In an ideal case,

the result will be two or

more completely

disconnected graphs, and

we can build a set of tests

for our suite around each

separate graph. As the

diagram above shows, we

do not have two completely

independent graphs. We

can take a testing approach

as shown in the following diagram:

developer.* DeveloperDotStar.com

developer.* 2006 by Scott Sehlhorst Page 12 of 15
Original author owns and reserves all future rights. Reprint only with written permission.

We’ve grouped all of the controls on the left in a blue box. These controls will be used with

the N-wise generation tool to create a set of tests. The grouping of controls on the right will

also be used to generate a set of tests.

In this example, we reduce the number of tests required by a significant amount

when order matters.

N
order

independent order matters
order

independent order matters
3 236 8,260 306 1,440

Number of unique sequences for given N-wise run versus # of
controls

7 controls
4 controls +
4 controls

Also note that we increase the number of tests required when order doesn’t matter, if we

have any overlapping controls (if the graphs can’t be separated). When the graphs can be

separated, this reduces the amount of testing even if order is irrelevant.

The key to separating the graphs is to make sure that all controls only connect to

other controls within their region (including the overlapping region).

developer.* DeveloperDotStar.com

developer.* 2006 by Scott Sehlhorst Page 13 of 15
Original author owns and reserves all future rights. Reprint only with written permission.

ELIMINATE EQUIVALENT VALUES FROM THE INPUTS

When we know how the code is implemented, or have insights into the requirements, we

can further reduce the scope of testing by eliminating equivalent values. Consider the

following example requirements for an application:

Requirements

Silver status is available to accounts with 10 or more orders
Gold status is available to accounts with 100 or more orders
Platinum status is available to accounts with 500 or more orders
Accounts are set to the highest status for which they qualify

The next table shows two variables that we are evaluating in our testing–imagine that they

are controls in a user interface (or values imported from an external system).

Orders Account Status
1-9 Platinum
10-49 Gold
50-99 Silver
100-499
500-999
1000+

All values for two controls

If we did a pairwise test suite without knowledge of the requirements, we would have 18

tests to evaluate. We get 18 tests by finding all of the unique combinations of the two

controls (6 order-quantity values * 3 account status values = 18 combinations). However,

with knowledge of the requirements, we can identify that some of the values are equivalent.

The highlighted regions represent equivalent values (with respect to the requirements).

Orders Account Status
1-9 Platinum
10-49 Gold
50-99 Silver
100-499
500-999
1000+

All values for two controls

Which we can collapse for testing purposes into:

developer.* DeveloperDotStar.com

developer.* 2006 by Scott Sehlhorst Page 14 of 15
Original author owns and reserves all future rights. Reprint only with written permission.

Orders Account Status
1-9 Platinum
10-99 Gold
100-499 Silver
500+

All values for two controls

This consolidation of equivalent values reduces the number of tests we need to run. For

our simple pairwise test, we reduce the number from 18 to 12. The number is reduced

because now we have 4 order-quantity values * 3 account status values = 12 combinations.

When there are more controls involved, and when we are doing N-wise testing with N=3,

the impact is much more significant.

Conclusion

When we’re testing any software, we are faced with the tradeoff of cost and benefit of

testing. With complex software, the costs of testing can grow faster than the benefits of

testing. If we apply techniques like the ones in this article, we can dramatically reduce the

cost of testing our software. This is what we mean when we say test smarter, not harder.

Summarizing the techniques covered in this article:

 We can test very complex software without doing exhaustive testing.

 Random sampling is a common technique, but falls short of high quality goals–very

good quality requires very high quantities of tests.

 Pairwise testing allows us to test very complex software with a small number of

tests, and reasonable (on the order of 90%) code coverage. This also falls short of

high-quality goals, but is very effective for lower expectations.

 N-wise testing with N=3 provides high quality capable test suites, but at the expense

of larger suites. When the order of inputs into the software matters, N-wise

approaches become limited in the number of variables they can support (fewer than

10), due to limitations of test-generation tools available today.

 We can apply knowledge of the underlying software and requirements to improve

our testing strategy. None of the previous techniques require knowledge of the

application, and thus rely on brute force to assure coverage. This approach results in

conceptually redundant tests in the suite. By mapping out the grid of

interdependency between inputs and subdividing the testing into multiple areas we

reduce the number of tests in our suite. By removing redundant or equivalent values

developer.* DeveloperDotStar.com

developer.* 2006 by Scott Sehlhorst Page 15 of 15
Original author owns and reserves all future rights. Reprint only with written permission.

from the test suite we also reduce the number of tests required to achieve high

quality.

Testing smarter, not harder.

###

Continued Reading

The following articles from the author’s Tyner Blain blog were referenced in this article.

“Software Testing Series: Measuring the Cost of Quality”
http://tynerblain.com/blog/2006/02/22/software-testing-series-measuring-the-cost-of-quality/

“Definition of Expected Value”
http://tynerblain.com/blog/2006/02/03/definition-of-expected-value/

“Software Testing Series: Pairwise Testing”
http://tynerblain.com/blog/2006/03/18/software-testing-series-pairwise-testing/

“Foundation Series: Black Box and White Box Software Testing”
http://tynerblain.com/blog/2006/01/12/foundation-series-black-box-and-white-box-software-

testing/

“Software Testing Series: Black Box vs White Box Testing”
http://tynerblain.com/blog/2006/01/13/software-testing-series-black-box-vs-white-box-testing/

About the Author

Scott Sehlhorst has built nine years of software experience on a foundation of eight years as

a mechanical engineer. He’s worked as a consultant, developer, and technical preseller.

Scott also operates the Tyner Blain blog (tynerblain.com\blog), and Tyner Blain LLC,

which provides product management and process improvement services.

