Theme 2
Program Design

Deriving Abstract Factory
Pattern Fragility

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Learning Objectives

® to establish the ABSTRACT FACTORY as a solution
to the problem of creating variable types of objects

® to show how this pattern also comes naturally from
a compositional design philosophy
® but not completely...

® to highlight the importance of getting the
implementation right as

® demonstrate how even small errors may cripple
the advantages a pattern was supposed to have.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,

The Receipt class revisited &

® add responsibility:

n—“

® know its value in minutes parking time

® brint itself

® so, will introduce a single method
public void print(PrintStream stream);

® Result:

PAREKTING RECETIPT
Value 049 minutes.
Car parked at 08:06

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE
SOFTWARE

New requirements

® Change is the only constant in software
development.

® Betatown wants receipts with bar code for
easy scanning

PARKTING RECETITPT
Value 049 minutes.
Car parked at 08:06

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE
SOFTWARE

Variability Point

P Bttt s

«interface»
Receipt

StandardReceipt BarcodeReceipt

Variability points
Product Rate Receipt

Alpha town Linear Standard
Betatown Progressive | barcode
Gammatown || Alterna ting Standard

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE
SOFTWARE

Compositional Approach

® |dentify what varies: instantiation of receipts
® |nterface expressing responsibility: Receiptlssuer

® Compose behaviour: delegate to Receiptlssuer

«interface» «interface»
PayStation Receiptissuer

-- Responsibilities: ~ -- Responsibilities | «interface»
Accept payment ' Issue receipts] Receipt

Know earning, time bought
Handle buy and cancel createReceipt()

issuer

Question: do we really need this additional Receiptlssuer
abstraction!?

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE
SOFTWARE

Try the Receiptlssuer
® TDD tells us:

® refactor to introduce Receiptlssuer

® add bar code receipts to BetaTown

PayStation ps;
/*x Fixture for pay station testing. x/
@Before

public void setUp () {
ps = new PayStationImpl(new One20neRateStrategy ());

} l
PayStation ps;
/*+ Fixture for pay station testing.
@Before
public void setUp () |
ps = new PayStationIlmpl(new One2OneRateStrategy (),
new StandardReceiptlssuer ());

Fact: configuration responsibility is assigned to two different objects
Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3 7

Rethink the design

® Rethink the responsibilities:

® one object alone is responsible for creating all
objects that are related to the paystation
configuration.

® define responsibility of creation of objects in a
single place, often called a factory.

® PayStationFactory:
® create receipts

® cCreate rate strategies

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,
RELIABLE
SOFTWARE

Factories

«interface»
«interface» | PayStationFactory
PayStation

-- Responsibilities
Create receipts
Create rate strategy

createReceipt()
createRateStrategy()

ol ~
/ ~N
/

~
\\
/
~
/ ~

AlphaTownFactory BetaTownFactory GammaTownFactory

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Use TDD =

B i

PayStation ps;

/¥ Fixture for pay station testing. x

@Before | -

public void setUp () | does not compile
ps = new PayStationImpl(new TestTownFactory ());

public interface PayStationFactory | I
/xx Creale an instance of tne rate strategy to use. %/ IntrOduce the fa'Ctory
public RateStrategy createRateStrategy (); . .
interface and implemen
/% Create an instance of the receipt .
* @param the number of minutes the receipt represents. = the TeStTOWI"I FaCtOI")’

public Receipt createReceipt(int parkingTime);

public class PayStationImpl implements PayStation | Class
o]
/** the strategy for rate calculations x/
private RateStrategy rateStrategy;
/** the factory that defines strategies =/

private PayStationFactory factory; refaCtor the

/** Construct a pay station

@param factory the fll(.‘f(;}‘\l/ to produce strategies P&)’StathnlmPI tO use
%/
public PayStationImpl(PayStationFactory factory) f{ the factory

this. factory = factory;
this.rateStrategy = factory.createRateStrategy ();
reset ();

i go on with making the

public Receipt buy() |{

5::::?5;1‘ = factory.createReceipt(timeBought); Proper factor.ies for.
the different towns.

return r;

]
}

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

The Compositional Process™=
Again

Mo Bates

® |dentify some behaviour that varies between
different products:

® creating objects

® Express the responsibility of creating objects in
an interface

® PayStationFactory expresses this responsibility

® Let the pay station delegate all creation of
objects it needs to the delegate object

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Desien Patterns

Abstract Factory Patterr .~

¢ Intent:

¢ provide an interface for creating families of
related or dependent objects without
specifying their concrete classes.

e Applicability:
® a system should be independent of how its products are

created, composed, and presented

a system should be configured with one of multiple families of
products

a family of related product objects is designed to be used
together, and enforcement of this constraint is needed

you want to provide a class library of products, and you want to
reveal just their interfaces, not their implementations.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

AbstractFactory

CreateProductA()
CraatefroductBY)

l

AbstractProductA

A

ConcreteFactory1

ConcreteFactory2

CreateProductA()
CreateProductB()

CreateProductAl)
CreateProduciB{)

AbstractFactory defines a common interface
for object creation. ProductA defines the
interface of an object, ProductAl, required by

the client.
ConcreteFactoryl is responsible for creating
products belonging to the variant |.

AbslractProductB

ProductB2

Desion Patterns
Elemonts of Keusable

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Desien Patterns

Consequences

® + Low coupling between client and product
® + |solates concrete classes

® + Makes exchanging product families easy

® + Promotes consistency between products

® +- Supporting new types of products is
difficult

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Pattern Fragility

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Why Patterns!?

® Design patterns organize and structure code
in a particular way.

® Static: arrangement of classes/interfaces

® Dynamic: assignment of responsibility, interaction
patterns

® Why:

® Because | get some benefits from doing so

® Bottom line:

® Patterns are means to a goal, not the goal itself

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Patterns are encoded

e Pattern Fragility\
Pattern fragility is the property of design
patterns that their benefits can only be fully
utilized if the pattern’s object structure and
interaction patterns are implemented

correctly.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,
RELIABLE

Example: Strategy

<<interface>> <<interface>>

PayStation RateStrategy

LinearRateStrategy ProgressiveRateStrategy

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Pitfalls: Declaration of delegates

Do not use class names in declarations!

Why is the following change a disaster?

public class PayStationImpl implements PayStation {

[...]

/% the strategy for rate calculations x/
private ProgressiveRateStrategy rateStrategy;

]
;

Declare object references that play part in a
designh pattern by their interface type, never by
their concrete class type.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

L — i Ty

FLEXIBLE,
RELIABLE
SOFTWARE

-y

eae s
B e pmane
— i Ty
e
o

Pitfalls: Binding in the right place

® | oose coupling is fine, but we have to couple the
objects together eventually.

e |t is important that the binding is made
¢ in the right place

¢ as few places as possible (optimally 1Y)

® Many possibilities for Strategy:

— \\{ «interface»
algorithminterface()

i /’," _ \\\
ConcreteStrategyA ConcreteStrategyB
—— algorithmInterface() algorithmInterface()

——

L\
TN

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,
RELIABLE

SOFTWARE

g P s
S wy———.

o~

e -

Pitfalls: Binding in the right place =

public class PayStationlmpl implements PayStation {
[]
public void addPayment(int coinValue) throws IllegalCoinException {
switch (coinValue) {
case 5:
case 10:
case 25: break;
default:

throw new IllegalCoinException(”Invalid.coin: . ”"+coinValue+”_cent.”);
insertedSoFar += coinValue:
RateStrategy rateStrate

Binding in the context object:

all the patterns liabilities
none of the patterns benefits!!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Pitfalls: Binding in the right place

¢ Object should be created and coupled in
the production code units whose

responsibility are explicitly configuration
and binding

® In Strategy, this is normally the Client role

® Abstract Factory’s purpose is to define bindings.

® the factory is often the right place to make
bindings.

® |n State it is actually often the ConcreteState
objects that define the ‘next state’

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,
RELIABLE
SOFTWARE

Pitfalls: Concealed Parametrisation
Assume: Previous binding survived.

Later: “Why does Betatown not work any more?
| need to fix it, and fix it fast!”

public class PayStationlmpl implements PayStation {

[...]

public void addPayment(int coinValue) throws IllegalCoinException |{
switch (coinValue) {
case 5:
case 10:
case 25: break;
default:

throw new IllegalCoinException(”"Invalid.coin: . ."+coinValue+" _ cent.”);

}
insertedSoFar += coinValue;
theqtmte&.,\ rateStrategy ;

ratebStrategy = new LinearKateStrategy ();
} else if (town == Town.BETATOWN) {
rateStrategy = new ProgressiveRateStrategy ();
}

timeBought = rateStrategy . calculateTime (insertedSoFar);

-

]
[

Decide on a design strategy to handle a given
variability and stick to it.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE
SOFTWARE

Pitfalls: Responsibility Erosion

Software changes its own requirement.
New (weird) request:
Gammatown: explain rate policy.

public class AlternatingRateStrategy implements RateStrategy |{
[...]
public int calculateTime(int amount) {
if (decisionStrategy.isWeekend ()) {
currentState = weekendStrategy ;
} oelse {
currentState = weekdayStrategy;

}

return currentState.calculateTime{ amount);

}

public String explanationText() {
if (currentState == weekdayStrategy) {
return [the explanation for weekday];
b else {
return [the explanation for weekend|];
\ b
!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE
SOFTWARE

Pitfalls: Responsibility Erosion,

However, this strategy does not conform to the
contract by the interface.
50, need to type check:

if (rateStrategy instanceof AlternatingRateStrategy) {
AlternatingRateStrategy rs =
(AlternatingRateStrategy) rateStrategy
String theExplanation = rs. e\plnntlonTe\t();
[use it somehow |

]
S

Possible solution: Move the method up into the
RateStrategy interface.

But: | have now added a new responsibility.
One that may not be very cohesive.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Pitfalls: Responsibility Erosion

Carefully analyse new requirements to

avoid responsibility erosion and
bloating interfaces with in-cohesive
methods.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Conclusion

® Take care at the implementation level!!!

® |t only takes a few “slip-ups” to completely
destroy the intended benefits of a pattern!

You do not learn patterns by reading
a book or listening to me!

DO IT: CODE! and reflect!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

