Theme 2
Program Design

Deriving Abstract Factory
Pattern Fragility
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Learning Objectives

® to establish the ABSTRACT FACTORY as a solution
to the problem of creating variable types of objects

® to show how this pattern also comes naturally from
a compositional design philosophy
® but not completely...

® to highlight the importance of getting the
implementation right as

® demonstrate how even small errors may cripple
the advantages a pattern was supposed to have.
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FLEXIBLE,

The Receipt class revisited &

® add responsibility:

n—“

® know its value in minutes parking time

® brint itself

® so, will introduce a single method
public void print(PrintStream stream);

® Result:

PAREKTING RECETIPT
Value 049 minutes.
Car parked at 08:06
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FLEXIBLE,
RELIABLE
SOFTWARE

New requirements

® Change is the only constant in software
development.

® Betatown wants receipts with bar code for
easy scanning

PARKTING RECETITPT
Value 049 minutes.
Car parked at 08:06
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FLEXIBLE,
RELIABLE
SOFTWARE

Variability Point

P Bttt s

«interface»
Receipt

StandardReceipt BarcodeReceipt

Variability points
Product Rate Receipt

Alpha town Linear Standard
Betatown Progressive | barcode
Gammatown || Alterna ting Standard
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FLEXIBLE,
RELIABLE
SOFTWARE

Compositional Approach

® |dentify what varies: instantiation of receipts
® |nterface expressing responsibility: Receiptlssuer

® Compose behaviour: delegate to Receiptlssuer

«interface» «interface»
PayStation Receiptissuer

-- Responsibilities: ~ -- Responsibilities | «interface»
Accept payment ' Issue receipts ] Receipt

Know earning, time bought
Handle buy and cancel createReceipt()

issuer

Question: do we really need this additional Receiptlssuer
abstraction!?
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FLEXIBLE,
RELIABLE
SOFTWARE

Try the Receiptlssuer
® TDD tells us:

® refactor to introduce Receiptlssuer

® add bar code receipts to BetaTown

PayStation ps;
/*x Fixture for pay station testing. x/
@Before

public void setUp () {
ps = new PayStationImpl( new One20neRateStrategy () );

} l
PayStation ps;
/*+ Fixture for pay station testing.
@Before
public void setUp () |
ps = new PayStationIlmpl( new One2OneRateStrategy (),
new StandardReceiptlssuer () );

Fact: configuration responsibility is assigned to two different objects
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Rethink the design

® Rethink the responsibilities:

® one object alone is responsible for creating all
objects that are related to the paystation
configuration.

® define responsibility of creation of objects in a
single place, often called a factory.

® PayStationFactory:
® create receipts

® cCreate rate strategies
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FLEXIBLE,
RELIABLE
SOFTWARE

Factories

«interface»
«interface» | PayStationFactory
PayStation

-- Responsibilities
Create receipts
Create rate strategy

createReceipt()
createRateStrategy()

ol ~
/ ~N
/

~
\\
/
~
/ ~

AlphaTownFactory BetaTownFactory GammaTownFactory
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Use TDD =

B i

PayStation ps;

/¥ Fixture for pay station testing. x

@Before | -

public void setUp () | does not compile
ps = new PayStationImpl( new TestTownFactory () );

public interface PayStationFactory | I
/xx Creale an instance of tne rate strategy to use. %/ IntrOduce the fa'Ctory
public RateStrategy createRateStrategy (); . .
interface and implemen
/% Create an instance of the receipt .
* @param the number of minutes the receipt represents. = the TeStTOWI"I FaCtOI")’

public Receipt createReceipt( int parkingTime );

public class PayStationImpl implements PayStation | Class
o]
/** the strategy for rate calculations x/
private RateStrategy rateStrategy;
/** the factory that defines strategies =/

private PayStationFactory factory; refaCtor the

/** Construct a pay station

@param factory the fll(.‘f(;}‘\l/ to produce strategies P&)’StathnlmPI tO use
%/
public PayStationImpl( PayStationFactory factory ) f{ the factory

this. factory = factory;
this.rateStrategy = factory.createRateStrategy ();
reset ();

i go on with making the

public Receipt buy() |{

5::::?5;1‘ = factory.createReceipt(timeBought); Proper factor.ies for.
the different towns.

return r;

]
}
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The Compositional Process™=
Again

Mo Bates

® |dentify some behaviour that varies between
different products:

® creating objects

® Express the responsibility of creating objects in
an interface

® PayStationFactory expresses this responsibility

® Let the pay station delegate all creation of
objects it needs to the delegate object
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Desien Patterns

Abstract Factory Patterr .~

¢ Intent:

¢ provide an interface for creating families of
related or dependent objects without
specifying their concrete classes.

e Applicability:
® a system should be independent of how its products are

created, composed, and presented

a system should be configured with one of multiple families of
products

a family of related product objects is designed to be used
together, and enforcement of this constraint is needed

you want to provide a class library of products, and you want to
reveal just their interfaces, not their implementations.
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AbstractFactory

CreateProductA()
CraatefroductBY)

l

AbstractProductA

A

ConcreteFactory1

ConcreteFactory2

CreateProductA()
CreateProductB()

CreateProductAl)
CreateProduciB{)

AbstractFactory defines a common interface
for object creation. ProductA defines the
interface of an object, ProductAl, required by

the client.
ConcreteFactoryl is responsible for creating
products belonging to the variant |.

AbslractProductB

ProductB2

Desion Patterns
Elemonts of Keusable
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Desien Patterns

Consequences

® + Low coupling between client and product
® + |solates concrete classes

® + Makes exchanging product families easy

® + Promotes consistency between products

® +- Supporting new types of products is
difficult
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Pattern Fragility
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Why Patterns!?

® Design patterns organize and structure code
in a particular way.

® Static: arrangement of classes/interfaces

® Dynamic: assignment of responsibility, interaction
patterns

® Why:

® Because | get some benefits from doing so

® Bottom line:

® Patterns are means to a goal, not the goal itself
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Patterns are encoded

e Pattern Fragility\
Pattern fragility is the property of design
patterns that their benefits can only be fully
utilized if the pattern’s object structure and
interaction patterns are implemented

correctly.
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FLEXIBLE,
RELIABLE

Example: Strategy

<<interface>> <<interface>>

PayStation RateStrategy

LinearRateStrategy ProgressiveRateStrategy
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Pitfalls: Declaration of delegates

Do not use class names in declarations!

Why is the following change a disaster?

public class PayStationImpl implements PayStation {

[...]

/% the strategy for rate calculations x/
private ProgressiveRateStrategy rateStrategy;

]
;

Declare object references that play part in a
designh pattern by their interface type, never by
their concrete class type.
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FLEXIBLE,
RELIABLE
SOFTWARE
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Pitfalls: Binding in the right place

® | oose coupling is fine, but we have to couple the
objects together eventually.

e |t is important that the binding is made
¢ in the right place

¢ as few places as possible (optimally 1Y)

® Many possibilities for Strategy:

— \\{ «interface»
algorithminterface()

i /’," _ \\\
ConcreteStrategyA ConcreteStrategyB
—— algorithmInterface() algorithmInterface()

——

L\
TN
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FLEXIBLE,
RELIABLE

SOFTWARE
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Pitfalls: Binding in the right place =

public class PayStationlmpl implements PayStation {
[ ]
public void addPayment( int coinValue ) throws IllegalCoinException {
switch ( coinValue ) {
case 5:
case 10:
case 25: break;
default:

throw new IllegalCoinException(”Invalid.coin: . ”"+coinValue+”_cent.”);
insertedSoFar += coinValue:
RateStrategy rateStrate

Binding in the context object:

all the patterns liabilities
none of the patterns benefits!!
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Pitfalls: Binding in the right place

¢ Object should be created and coupled in
the production code units whose

responsibility are explicitly configuration
and binding

® In Strategy, this is normally the Client role

® Abstract Factory’s purpose is to define bindings.

® the factory is often the right place to make
bindings.

® |n State it is actually often the ConcreteState
objects that define the ‘next state’
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FLEXIBLE,
RELIABLE
SOFTWARE

Pitfalls: Concealed Parametrisation
Assume: Previous binding survived.

Later: “Why does Betatown not work any more?
| need to fix it, and fix it fast!”

public class PayStationlmpl implements PayStation {

[...]

public void addPayment( int coinValue ) throws IllegalCoinException |{
switch ( coinValue ) {
case 5:
case 10:
case 25: break;
default:

throw new IllegalCoinException(”"Invalid.coin: . ."+coinValue+" _ cent.”);

}
insertedSoFar += coinValue;
theqtmte&.,\ rateStrategy ;

ratebStrategy = new LinearKateStrategy ();
} else if ( town == Town.BETATOWN ) {
rateStrategy = new ProgressiveRateStrategy ();
}

timeBought = rateStrategy . calculateTime (insertedSoFar);

-

]
[

Decide on a design strategy to handle a given
variability and stick to it.
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FLEXIBLE,
RELIABLE
SOFTWARE

Pitfalls: Responsibility Erosion

Software changes its own requirement.
New (weird) request:
Gammatown: explain rate policy.

public class AlternatingRateStrategy implements RateStrategy |{
[...]
public int calculateTime( int amount ) {
if ( decisionStrategy.isWeekend () ) {
currentState = weekendStrategy ;
} oelse {
currentState = weekdayStrategy;

}

return currentState.calculateTime{ amount );

}

public String explanationText() {
if ( currentState == weekdayStrategy ) {
return [the explanation for weekday];
b else {
return [the explanation for weekend|];
\ b
!
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FLEXIBLE,
RELIABLE
SOFTWARE

Pitfalls: Responsibility Erosion,

However, this strategy does not conform to the
contract by the interface.
50, need to type check:

if ( rateStrategy instanceof AlternatingRateStrategy ) {
AlternatingRateStrategy rs =
(AlternatingRateStrategy ) rateStrategy
String theExplanation = rs. e\plnntlonTe\t();
[use it somehow |

]
S

Possible solution: Move the method up into the
RateStrategy interface.

But: | have now added a new responsibility.
One that may not be very cohesive.
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Pitfalls: Responsibility Erosion

Carefully analyse new requirements to

avoid responsibility erosion and
bloating interfaces with in-cohesive
methods.
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Conclusion

® Take care at the implementation level!!!

® |t only takes a few “slip-ups” to completely
destroy the intended benefits of a pattern!

You do not learn patterns by reading
a book or listening to me!

DO IT: CODE! and reflect!
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