
Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Theme 2
Program Design

Deriving Abstract Factory
Pattern Fragility

1

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Learning Objectives

• to establish the ABSTRACT FACTORY as a solution
to the problem of creating variable types of objects

• to show how this pattern also comes naturally from
a compositional design philosophy
• but not completely...

• to highlight the importance of getting the
implementation right as

• demonstrate how even small errors may cripple
the advantages a pattern was supposed to have.

2

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

The Receipt class revisited
• add responsibility:

• know its value in minutes parking time

• print itself

• so, will introduce a single method
public void print(PrintStream stream);

• Result:

3

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

New requirements

• Change is the only constant in software
development.

• Betatown wants receipts with bar code for
easy scanning

4

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Variability Point

5

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Compositional Approach

6

• Identify what varies: instantiation of receipts

• Interface expressing responsibility: ReceiptIssuer

• Compose behaviour: delegate to ReceiptIssuer

Question: do we really need this additional ReceiptIssuer
abstraction?

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Try the ReceiptIssuer
• TDD tells us:

• refactor to introduce ReceiptIssuer

• add bar code receipts to BetaTown

7

✐
✐

“book” — 2010/3/11 — 9:50 — page 205 — #233 ✐
✐

✐
✐

✐
✐

A Compositional Proposal ❚ 205

It turns out that the situation is quite different and I cannot apply a STRATEGY pattern

for receipts. The reason is found in the source code for PayStationImpl’s buy method:

Fragment: chapter/abstract-factory/iteration-0/src/paystation/domain/PayStationImpl.java

public Receipt buy () {

Receipt r = new ReceiptImpl (timeBought) ;

r e s e t () ;

return r ;

}

The big problem is the new statement! The pay station does not just use a receipt

object as is the case with the rate strategy; it creates a receipt object. Each receipt is

unique and has its own value of parking time. Therefore it does not make sense to

provide the pay station with a single receipt object during construction as it cannot

use this object to create new ones1. Second, the code that instantiates the pay station

above does not compile. The ReceiptImpl constructor takes an argument, namely the

number of minutes parking time to print on the receipt. This again highlights the

difference between the pay station using an object versus creating new objects.

If I introduce an intermediate object, like ReceiptIssuer, I instead delegate the respon-

sibility of creating receipts to it and can avoid the problem.

13.4.1 Iteration 1: Refactoring

OK, let me try to figure out if the design based on a ReceiptIssuer is a feasible path. I

will confront it with reality: quickly develop it and see if it feels right, and be prepared

to backtrack if it turns out bad before the costs get too high.

Test-driven development tells me to take small steps, and as was the case earlier, the

best path is to refactor the existing design to introduce the new design and make all

test cases pass, and next introduce the new bar code receipt.

✽ refactor to introduce ReceiptIssuer

✽ add bar code receipts to Betatown.

The present fixture in TestPayStation looks like this:

Fragment: chapter/abstract-factory/iteration-0/test/paystation/domain/TestPayStation.java

PayStat ion ps ;

/∗ ∗ F i x t u r e f o r pay s t a t i o n t e s t i n g . ∗ /
@Before

public void setUp () {

ps = new PayStationImpl (new One2OneRateStrategy ()) ;

}

Thus, according to my design, I must configure it with an issuer object:

1I should mention that Java does provide a number of techniques to do this anyway. The clone() method

defined in Object would allow me to get a new receipt object that I could change the state in and then use.

This is actually the PROTOTYPE design pattern.

Fact: configuration responsibility is assigned to two different objects

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Rethink the design

• Rethink the responsibilities:

• one object alone is responsible for creating all
objects that are related to the paystation
configuration.

• define responsibility of creation of objects in a
single place, often called a factory.

• PayStationFactory:

• create receipts

• create rate strategies

8

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Factories

9

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Use TDD

10

does not compile

introduce the factory
interface and implement

the TestTownFactory
class

refactor the
PayStationImpl to use

the factory

go on with making the
proper factories for
the different towns.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

The Compositional Process
Again

11

• Identify some behaviour that varies between
different products:

• creating objects

• Express the responsibility of creating objects in
an interface

• PayStationFactory expresses this responsibility

• Let the pay station delegate all creation of
objects it needs to the delegate object

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Abstract Factory Pattern
• Intent:

• provide an interface for creating families of
related or dependent objects without
specifying their concrete classes.

• Applicability:
• a system should be independent of how its products are

created, composed, and presented

• a system should be configured with one of multiple families of
products

• a family of related product objects is designed to be used
together, and enforcement of this constraint is needed

• you want to provide a class library of products, and you want to
reveal just their interfaces, not their implementations.

12

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 13

AbstractFactory defines a common interface
for object creation. ProductA defines the
interface of an object, ProductA1, required by
the client.
ConcreteFactory1 is responsible for creating
products belonging to the variant 1.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 14

Consequences

• + Low coupling between client and product

• + Isolates concrete classes

• + Makes exchanging product families easy

• + Promotes consistency between products

• +- Supporting new types of products is
difficult

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Pattern Fragility

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Why Patterns?
• Design patterns organize and structure code

in a particular way.

• Static: arrangement of classes/interfaces

• Dynamic: assignment of responsibility, interaction
patterns

• Why:

• Because I get some benefits from doing so

• Bottom line:

• Patterns are means to a goal, not the goal itself

16

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Patterns are encoded

• Pattern Fragility
Pattern fragility is the property of design
patterns that their benefits can only be fully
utilized if the pattern’s object structure and
interaction patterns are implemented
correctly.

17

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Example: Strategy

18

<<interface>>

PayStation

 <<interface>>

RateStrategy

LinearRateStrategy ProgressiveRateStrategy

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Pitfalls: Declaration of delegates

19

Do not use class names in declarations!

 Why is the following change a disaster?

Declare object references that play part in a
design pattern by their interface type, never by
their concrete class type.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Pitfalls: Binding in the right place

20

• Loose coupling is fine, but we have to couple the
objects together eventually.

• It is important that the binding is made

• in the right place

• as few places as possible (optimally 1!)

• Many possibilities for Strategy:

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Pitfalls: Binding in the right place

21

Binding in the context object:

all the patterns liabilities
none of the patterns benefits!!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Pitfalls: Binding in the right place

22

• Object should be created and coupled in
the production code units whose
responsibility are explicitly configuration
and binding

• In Strategy, this is normally the Client role

• Abstract Factory’s purpose is to define bindings.

• the factory is often the right place to make
bindings.

• In State it is actually often the ConcreteState
objects that define the ‘next state’

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Pitfalls: Concealed Parametrisation

23

Assume: Previous binding survived.

Later: “Why does Betatown not work any more?
I need to fix it, and fix it fast!”

Decide on a design strategy to handle a given
variability and stick to it.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Pitfalls: Responsibility Erosion

24

Software changes its own requirement.
New (weird) request:

Gammatown: explain rate policy.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Pitfalls: Responsibility Erosion

25

However, this strategy does not conform to the
contract by the interface.
So, need to type check:

Possible solution: Move the method up into the
RateStrategy interface.

But: I have now added a new responsibility.
One that may not be very cohesive.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Pitfalls: Responsibility Erosion

26

Carefully analyse new requirements to
avoid responsibility erosion and
bloating interfaces with in-cohesive
methods.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Conclusion

27

• Take care at the implementation level!!!

• It only takes a few “slip-ups” to completely
destroy the intended benefits of a pattern!

You do not learn patterns by reading
a book or listening to me!

DO IT: CODE! and reflect!

