Theme 2
Program Design

Deriving State Pattern
Test Stubs

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Learning Objectives

® to analyze how the polymorphic and
compositional proposals cope when faced with
a requirement that combines existing
solutions.

® to demonstrate how the compositional
proposal leads to the STATE pattern.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,
RELIABLE
SOFTWARE

New Requirement

Gammatown County wants:
“In weekdays we need Alphatown rate (linear);
in weekends Betatown rate (progressive)”

«interface» «interface»
PayStation RateStrategy

LinearRateStrategy ProgressiveRateStrategy

Exercise: HOW?

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Polymorphic Solutions

«Intesface»

PayStatioh»

PayStationimpl

PayStationLinearRate

calculateTime(amount)

“me. | PayStationProgressiveRate

Pay St fonAlternatingRate

7| calculateTime(amount)

-] Copy rate calttir ‘=

e e, CINterface»
s 1 ;_ “;-ﬁ

PayStationLinearRate

code from both
subclasses

PayStationimpl

calculateTime(amount)

FLEXIBLE,
RELIABLE

PayStationProgressiveRate

PayStationAlternatingRate

calculateTime(amount)

Copy*tate,calculatio
| code from e,
Progressive class. ™

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE

Polymorphic Solution

_ «interface» PayStationimpl

tation - -

+ calculateTime(amount)
calculateLinear(amount

’/f// / #calcalateProgre;y "mount) v\

PayStationLinearRate

PayStationProgressiveRate

PayStationAlternatingRate CaII- br‘o't'ek

. methods in
calculateTime(amount) 7| superclass.

o halerface PayStationimpl

y i calculate Time(amounfles&™

AP

L

PayStationLinearRate . T W, -, PayStationProgressiveRate

=

PayStationAlternatingRate

S - W

Call method IM*eitagy
instance.

calculateTime(amount)

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Compositional + Parameter

FLEXIBLE,
RELIABLE
SOFTWARE

public class PayStationImpl implements PayStation { s
[os] =

Z ==
/** the strategy for rate calculations x/ :

Prieves :
private RateStrategy rateStrategyWeekday; e i e
private RateStrategy rateStrategyWeekend;

/[*% Construct a pay station. x/
public PayStationImpl(RateStrategy rateStrategyWeekday,
RateStrategy rateStrategyWeekend) {
this.rateStrategyWeekday = rateStrategyWeekday;
this.rateStrategyWeekend = rateStrategyWeekend;
}

public void addPayment(int coinValue) throws IllegalCoinException {

b osd]
if isWeekend ()) {

timeBought = rateStrategyWeekend. calculateTime (insertedSoFar);
} else {

timeBought = rateStrategyWeekday. calculateTime (insertedSoFar);
}

sl
rivate boolean isWeekend () {

-

Terrible solution too!!!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Compositional Process

® VWe have identified some behaviour that
varies.

® The rate calculation behaviour is what must vary for
Gammatown and this we have already identified.

® We stated a responsibility that covers the
behaviour that varies and encapsulate it by

expressing it as an interface.

® The RateStrategy interface already defines the responsibility to
“Calculate parking time” by defining the method calculateTime.

® We compose the resulting behaviour by
delegating the concrete behaviour to
subordinate objects.

® This is the point that takes on a new meaning concerning our
new requirement.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Compose the behaviour

® [hat is:

® the best object to calculate linear rate models has
already been defined and tested — why not use its
expertise ! Same goes with progressive rate.

® so let us make a small team — one object
responsible for taking the decision; the two other
responsible for the individual rate calculations.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

«interface»
PayStation

Solution

«interface»

AlternatingRateStrategy

RateStrategy

VA
\
N

N

LinearRateStrategy

N
N
N

ProgressiveRateStrategy

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,
RELIABLE
SOFTWARE

CodeView

public class AlternatingRateStrategy implements RateStrategy {

RateStrategy weekendStrategy, weekdayStrategy, currentState;
public AlternatingRateStrategy(RateStrategy weekdayStrategy,
RateStrategy weekendStrategy) {
this.weekdayStrategy = weekdayStrategy;

this.weekendStrategy = weekendStrategy;
this.currentState = null;

¥

public 1nt calculateTime(int amount) {

if (isWeekend()) { Check the clock

currentState = weekendStrategy;
1 else {
currentState = weekdayStrategy;

} Delegate to expert

return currentState.calculateTime(amount);

¥

private boolean isWeekend() {
Date d = new Date();
Calendar ¢ = new GregorianCalendar();
c.setTime(d);
int dayOfWeek = c.get(Calendar.DAY_OF_WEEK);

return (dayOfWeek == Calendar.SATURDAY
|

dayOfWeek == Calendar.SUNDAY);
¥

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Consequences

® Minimal new code, thus very little to test

® most classes are untouched, only one new is added.
® Change by addition, not modification
® No existing code is touched

® SO NO hew testing

® NO review

® Parameterization of constructor

® All models possible that differ in weekends...

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Importance

® again the importance of:
® Encapsulate what varies: the rate policy

® Define well-defined responsibilities by
interfaces

® Only let objects communicate using the
interfaces

® Then the respective roles (pay station / rate strategy) can be
played by many different concrete objects

® And each object is free to implement the responsibilities of
the roles as it sees fit

® also to let most of the dirty job be done by
others.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

State Pattern

® Intent

e Allow an object to alter its behaviour
when its internal state changes. The

object will appear to change its class.

® The rate policy algorithm alters its behaviour
according to the state of the system clock

® Seen from the PayStationlmpl the
AlternatingRateStrategy object appears to change

class because it changes behaviour over the
week.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Context

request

state.request();

«interface»
State

request

ConcreteStateA ConcreteStateB

request

request

FLEXIBLE,
RELIABLE

State changes?

May be defined either in
Context or in
ConcreteState
subclasses decide

Context delegate to its current state object

State specifies responsibilities of the behaviour
that varies according to state

ConcreteState defines state specific

behaviour
Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE

Exercise -

«interface» < «interface»
PayStation RateStrategy

LinearRateStrategy

con text AlternatingRateStrategy

ProgressiveRateStrategy

state

Which object/interface fulfils which role in the pay
station?

Who is responsible for state changes?

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Consequences

® + State specific behaviour is localized

® in a single ConcreteState object
® + State changes are explicit
® as you just find the assignments of ‘currentState’

® - |[ncreased number of objects

® as always with compositional designs

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

What are design patterns?

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Definition

e Desigh Patterns\
are descriptions of communicating objects and classes that

are customised to solve a general design problem in a
particular context

® Elements of a design pattern:

® A pattern name

® The problem that the pattern solves
Including conditions for the pattern to be applicable

® The solution to the problem brought by the pattern.
The elements (classes-objects) involved, their roles,
responsibilities, relationships and collaborations
Not a particular concrete design or implementation

The consequences of applying the pattern
Time and space trade off

Language and implementation issues

Effects on flexibility, extensibility, portability

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Differentiating Patterns

® Be aware that many patterns are structurally
equal.

- their UML class diagrams are more or less
identical!

® Patterns are defined by the problem they solve!

® Strategy is the problem of

® Handling variability of algorithms / business rules, making them
interchangeable

® State is the problem of

® providing behavior that varies according to object’s internal state

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Test Stubs

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Learning Objectives

® to show the problems of doing test-driven
development when the production code uses
resources that are not under direct testing
control

® to learn the terminology for test stubs and

® to show how they help us in our quest to
automate testing as much as possible.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,
RELIABLE
SOFTWARE

Road map

® New requirement

® demanding that all rate strategies are under fully
automatic testing control.

® Definition of direct and indirect input

® Discussion on ways to handle indirect input

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE
SOFTWARE

Test Cases

A test case for AlphaTown :

Unit under test: Rate calculation

Input Expected output
pay = 500 cent 200 min.

A test case for GammaTlown :

Unit under test: Rate calculation

Input Expected output
pay = 500 cent, day = Monday 200 min.

pay = 500 cent, day = Sunday 150 min.

Gammatown has one more parameter in the rate policy
test case

This parameter is not accessible from

the testing code!
Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Definition of Parameters

¢ Direct Input \
Direct input is values or data, provided directly by
the testing code, that affect the behaviour of the
unit under test (UUT).

¢ Indirect Input
Indirect input is values or data, that cannot be
provided directly by the testing code, that affect the
behaviour of the unit under test (UUT).

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,
RELIABLE
SOFTWARE

Structure of xUnit Tests

1: setup
() 2-execute
JUnit test '

l

. J

4 validate

N system clock
java.util.Calendar

DOU

Depéended-on Upit (DOU)
A unif in the production code that provides values or
behaviour that affect the behaviour of the unit under test.

@lest public void shoufdDisplayl20MinkFor300cent () {
RateStrategy rs =
new AlternatingRateStrategy(new LinearRateStrategy (),

new ProgressiveRateStrategy ());
assertEquals(300 / 5 % 2, rs.calculateTime (300));

!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE

Test Stub -

® How can we make the DOU return values that
are defined by the testing code?

e Test Stub \
A test stub is a replacement of a real depended-on
unit that feeds indirect input, defined by the test
code, into the unit under test.

1: setup 2: prepare
R

|'/ 3: install)

JUnit test 4-execute S: query |
nit tes _ e
Test Stub

T J

6: valicﬁfe

N

DOU

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Key point

¢ Test stubs make software testable
Many software units depend on direct input that
influence their behaviour.
Typical indirect input are external resources like
hardware sensors, random-number generators,
system clocks etc.
Test stubs replace the real units and allow the
testing code to control the indirect input.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Implementation

® Basically it is a variability problem
® during testing, use data given by test code
® during normal operation, use data given by system
® Remember:
® identify some behaviour that varies.
® it is the behaviour defined by isVWeekend() that is variable.

® state the responsibility that covers the behaviour
that varies by an interface.

® compose the desired behaviour by delegating

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,
RELIABLE
SOFTWARE

Solution

«interfacen S cinterface»
PayStation . RateStrategy

«interface»
WeekendDecisionStrategy

1

< AlternatingRateStrategy

FixedDecisionStrategy ClockBasedDecisionStrategy

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Developing the solution

¢ Iteration |: Refactoring

® Introduce the new interface.

® Refactor the existing AlternatingRateStrategy to
take instances of this interface as parameter in
the constructor. See that it compiles but the
tests fail.

® Refactor the existing design to make all test
cases pass again. This will require introducing
the ClockBasedDecisionStrategy.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,
RELIABLE
SOFTWARE

g e ot

Iteration 2:Test stub ~—

Listing: chapter/test-stub/iteration J_fs ystation/domain/FixedDecisionStrategy.java
package paystation.domain;

import java. util .x;

/% A test stub for the weekend decision strategy.

%/ '

public class FixedDecisionStrategy

implements WeekendDecisionStrategy |
private boolean isWeekend;

[*% construct a test stub weekend decision strategy.

¥ @param i1sWeekend the boolean value to return in all calls to
x method isWeekend ().

%/

public FixedDecisionStrategy (boolean isWeekend) |
this.isWeekend = isWeekend;

}

public boolean isWeekend () |
return isWeekend ;
}

|

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE
SOFTWARE

vy B -
e]

Setting it up

Input Expected output
pay = 300 cent, day = Wednesday 120 min.

can be rephrased

Input Expected output
pay = 300 cent, day-type = weekday 120 min.

Fragment: chapter/test-stub/iteration-2/ test/paystation/domain/TestGammaWeekdayRate java

@Test public void shouldDisplay120MinFor300cent () {
RateStrategy rs =
new AlternatingRateStrategy (new LinearRateStrategy (),
new ProgressiveRateStrategy (),

new FixedDecisionStrategy (false));
assertEquals(300 / 5 % 2, rs.calculateTime (300));

|

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE
SOFTWARE

Iteration 3

e Making a TestAlternatingRate

* moving all Gammatown rate policy test cases here,
* deleting the two old test case classes.

* Modifying TestAll so it includes the new test cases.

FixedDecisionStrategy.java
One20OneRateStrategy.java
TestAll.java
TestGammaWeekdayRate.java
TestGammaWeekendRate.java
Testintegration.java
TestLinearRate.java
TestPayStation.java
TestProgressiveRate.java

public class TestAlternatingRate {
/** Test two hour parking during weekdays */
@Test public void shouldDisplayl20MinFor300centWeekday() {
RateStrategy rs =
new AlternatingRateStrategy(new LinearRateStrategy(),
new ProgressiveRateStrategy(),
new FixedDecisionStrategy(false));
assertEquals(300 / 5 * 2, rs.calculateTime(300));
¥

/*¥* Test two hour parking during weekends */
@Test public void shouldDisplayl2@0MinFor35@centWeekend() {

RateStrategy rs =
new AlternatingRateStrategy(new LinearRateStrategy(),
new ProgressiveRateStrategy(),
new FixedDecisionStrategy(true));
assertEquals(300 / 5 * 2, rs.calculateTime(350));
}
¥

[P g [) [[() [S [S) [=

FixedDecisionStrategy.java
OneZOneRateStrategy.java
TestAll.java
TestAlternatingRate.java
Testintegration.java
TestLinearRate.java
TestPayStation.java
TestProgressiveRate.java

LIPS (S [[SR) [[S g [N

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Test Doubles e

® Test Stub is a subtype of Test Double. Other subtyp
exists:

® Stub: get indirect input under control

® Spy:get indirect output under control

® record the UUT’s indirect output for (later) verification by the test case.

® Mock:a spy with fail fast property

® created and programmed dynamically by a mock library

® Fake:a lightweight but realistic double

® purpose is to be a high performance replacement for a slow or expensive DOU

® For more details, see: xUnit Test Patterns. Refactoring Test Code. G.
Meszaros. Addison Wesley Signature Series. 2007

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Example Test Spy

public void testRemoveFlight() throws Exception {

// setup public class AuditLogSpy implements AuditLog {
FlightDto expectedFlightDto = createARegisteredFlight(); // Fields into which we record actual usage information

FlightManagementFacade facade = new FlightManagementFacadeImp1(); private Date date;
private String user;

// exercise . _ _ private String actionCode;
facade.removeFlight(expectedFlightDto.getFlightNumber()); private Object detail;
// verify private int numberOfCalls = O;

assertFalse("flight should not exist after being removed", // Recording implementation of real AuditlLog interface
facade.flightExists(expectedFlightDto. public void logMessage(Date date,

getF1lightNumber())); String user,
String actionCode,

Object detail) {

this.date = date;

this.user = user;
this.actionCode = actionCode;
this.detail = detail;

public void testRemoveFlightLogging_recordingleststub()
throws Exception {

// fixture setup
FlightDto expectedFlightDto = createAnUnregFlight();
F1ightManagementFacade facade = new FlightManagementFacadeImpl();
// Test Double setup
AuditLogSpy logSpy = new AuditLogSpy(Q);
;?czi:;z$§:ud1tLog(1ogSpy), // Retrieval Interface

facade.removeFlight(expectedFlightDto.getF1ightNumber()); public int getNumberOfCalls() {
// verify return numberOfCalls;

}

public Date getDate() {

return date;

numberOfCalls++;

}

assertFalse("flight still exists after being removed",
facade.flightExists(expectedFTightDto.

getFlightNumber())); !

public String getUser() {
return user;

assertEquals("number of calls", 1,
TogSpy.getNumberOfCalls());
assertEquals("action code",
Helper.REMOVE_FLIGHT_ACTION_CODE, ¥)) .
TogSpy . getActionCode () ; public Str1ng.getAct1onCode() {
assertEquals("date", helper.getTodaysDateWithoutTime(), return actionCode;
TogSpy.getDate());
assertEquals("user", Helper.TEST_USER_NAME,
TogSpy.getUser());
assertEquals("detail",
expectedFTightDto.getF1ightNumber(),
TogSpy.getDetail());

}
public Object getDetail() {

return detail;

}

}
Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Example Fake Object

public void testReadWrite() throws Exception{
// Setup public void testReadWrite_inMemory() throws Exception{
FlightMngtFacade facade = new FlightMgmtFacadeImpl(Q); // Setup
BigDecimal yyc = facade.createAirport("YYC", "Calgary", "Calgary"); FlightMgmtFacadeImpl facade = new FlightMgmtFacadeImp1Q);

BigDecimal lax = facade.createAirport("LAX", "LAX Intl1", "LA"); ;?ngeZSeﬁDao(nveInMjmoryDaEazése()ié"YYC" “Cal " ncal "
:) igDecimal yyc = facade.createAirpor , "Calgary", "Calgary");
j;cgggézgizteF11ght(yyc, 195 BigDecimal lax = facade.createAirport("LAX", "LAX Int1", "LA");

. . . . e facade.createFlight(yyc, lax);
List flights = facade.getFlightsByOriginAirport(yyc); // Exercise
// Verify List flights = facade.getFlightsByOriginAirport(yyc);
assertEquals("# of flights", 1, flights.size()); // Verify
Flight flight = (Flight) flights.get(0); assertqua1s("# of ﬂight§", 1, flights.size());
assertEquals("origin", Flight flight = (Flight) flights.get(0);

. . .] assertEquals("origin",
yyc, flight.getOrigin().getCode()); yyc, flight.getOrigin().getCode());

public BigDecimal createAirport(String airportCode,
String name,
String nearbyCity)

pubTlic class InMemoryDatabase implements FlightDao{
private List airports = new Vector();

. .] public Airport createAirport(String airportCode,
throws FlightBookingException{ String name, String nearbyCity)

TransactionManager.beginTransaction(); throws DataException, InvalidArgumentException {
Airport airport = dataAccess. assertParamtersAreValid(airportCode, name, nearbyCity);
createAirport(airportCode, name, nearbyCity); assertAirportDoesntExist(airportCode);
TogMessage("Wrong Action Code", airport.getCode());//bug A1rp°rt.reSU1t = hew A1rport(gEtNeXtA1rp°rt¥d()’
TransactionManager.commitTransaction(); . airportCode, name, createCity(nearbyCity));
. airports.add(result);
return airport.getId(); return result;
} }
public Airport getAirportByPrimaryKey(BigDecimal airportId)
public List getF1ightsByOriginAirport(throws DataException, InvalidArgumentException {
BigDecimal originAirportId) assertAirportNotNull(airportId);

throws FlightBookingException { Airport result = null;

Iterator i = airports.iterator();
if (originAirportId == null) while (i.hasNext()) {
throw new InvalidArgumentException(

"Origin Airport Id has not been provided",
"originAirportId", null);

Airport origin = dataAccess.getAirportByPrimaryKey(originAirportId); }

List flights = dataAccess.getFlightsByOriginAirport(origin); 3

throw new DataException("Airport not found:"+airportId);

Airport airport = (Airport) 1i.next(Q);
if (airport.getld().equals(airportld)) {
return airport;

return flights; }

}
RagnhildVan Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 36

Discussion

® Jest Stubs make software testable.
® Compositional process helps isolating DOUs.

® The solution is overly complex!?

® perhaps but it scales well to complex DOUs

® Some code units are not automatically testable
in a cost-efficient manner.

® Do not test that the return values from the
system library methods are correct.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

