
Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Theme 2
Program Design

Deriving State Pattern
Test Stubs

1

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Learning Objectives

• to analyze how the polymorphic and
compositional proposals cope when faced with
a requirement that combines existing
solutions.

• to demonstrate how the compositional
proposal leads to the STATE pattern.

2

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

New Requirement

3

 Gammatown County wants:
 “In weekdays we need Alphatown rate (linear);

 in weekends Betatown rate (progressive)”

Exercise: HOW?

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Polymorphic Solutions

4

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Polymorphic Solution

5

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Compositional + Parameter

6

Terrible solution too!!!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Compositional Process

7

• We have identified some behaviour that
varies.

• The rate calculation behaviour is what must vary for
Gammatown and this we have already identified.

• We stated a responsibility that covers the
behaviour that varies and encapsulate it by
expressing it as an interface.

• The RateStrategy interface already defines the responsibility to
“Calculate parking time” by defining the method calculateTime.

• We compose the resulting behaviour by
delegating the concrete behaviour to
subordinate objects.

• This is the point that takes on a new meaning concerning our
new requirement.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Compose the behaviour

• That is:	

• the best object to calculate linear rate models has
already been defined and tested – why not use its
expertise ? Same goes with progressive rate.

• so let us make a small team – one object
responsible for taking the decision; the two other
responsible for the individual rate calculations.

8

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Solution

9

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Code View

10

public class AlternatingRateStrategy implements RateStrategy {
 RateStrategy weekendStrategy, weekdayStrategy, currentState;
 public AlternatingRateStrategy(RateStrategy weekdayStrategy,
 RateStrategy weekendStrategy) {
 this.weekdayStrategy = weekdayStrategy;
 this.weekendStrategy = weekendStrategy;
 this.currentState = null;
 }
 public int calculateTime(int amount) {
 if (isWeekend()) {
 currentState = weekendStrategy;
 } else {
 currentState = weekdayStrategy;
 }
 return currentState.calculateTime(amount);
 }
 private boolean isWeekend() {
 Date d = new Date();
 Calendar c = new GregorianCalendar();
 c.setTime(d);
 int dayOfWeek = c.get(Calendar.DAY_OF_WEEK);
 return (dayOfWeek == Calendar.SATURDAY
 ||
 dayOfWeek == Calendar.SUNDAY);
 }
}

Check the clock

Delegate to expert

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Consequences

11

• Minimal new code, thus very little to test

• most classes are untouched, only one new is added.

• Change by addition, not modification

• No existing code is touched

• so no new testing

• no review

• Parameterization of constructor

• All models possible that differ in weekends...

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Importance
• again the importance of:

• Encapsulate what varies: the rate policy

• Define well-defined responsibilities by
interfaces

• Only let objects communicate using the
interfaces

• Then the respective roles (pay station / rate strategy) can be
played by many different concrete objects

• And each object is free to implement the responsibilities of
the roles as it sees fit

• also to let most of the dirty job be done by
others.

12

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

State Pattern

• Intent

• Allow an object to alter its behaviour
when its internal state changes. The
object will appear to change its class.

• The rate policy algorithm alters its behaviour
according to the state of the system clock

• Seen from the PayStationImpl the
AlternatingRateStrategy object appears to change
class because it changes behaviour over the
week.

13

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Roles

14

Context delegate to its current state object

State specifies responsibilities of the behaviour
that varies according to state

ConcreteState defines state specific
behaviour

State changes?
May be defined either in

Context or in
ConcreteState
subclasses decide

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Exercise

15

Which object/interface fulfils which role in the pay
station?

Who is responsible for state changes?

context

state

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Consequences

16

• + State specific behaviour is localized

• in a single ConcreteState object

• + State changes are explicit

• as you just find the assignments of ‘currentState’

• - Increased number of objects

• as always with compositional designs

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

What are design patterns?

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Definition
• Design Patterns

are descriptions of communicating objects and classes that
are customised to solve a general design problem in a
particular context

• Elements of a design pattern:

• A pattern name
• The problem that the pattern solves

Including conditions for the pattern to be applicable
• The solution to the problem brought by the pattern.

The elements (classes-objects) involved, their roles,
responsibilities, relationships and collaborations
Not a particular concrete design or implementation

• The consequences of applying the pattern
Time and space trade off
Language and implementation issues
Effects on flexibility, extensibility, portability

18

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Differentiating Patterns
• Be aware that many patterns are structurally

equal.

- their UML class diagrams are more or less
identical!

• Patterns are defined by the problem they solve!

• Strategy is the problem of
• Handling variability of algorithms / business rules, making them

interchangeable

• State is the problem of
• providing behavior that varies according to object’s internal state

19

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Test Stubs

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Learning Objectives

• to show the problems of doing test-driven
development when the production code uses
resources that are not under direct testing
control

• to learn the terminology for test stubs and

• to show how they help us in our quest to
automate testing as much as possible.

21

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Road map

• New requirement

• demanding that all rate strategies are under fully
automatic testing control.

• Definition of direct and indirect input

• Discussion on ways to handle indirect input

22

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Test Cases

23

A test case for AlphaTown :

A test case for GammaTown :

Gammatown has one more parameter in the rate policy
test case

This parameter is not accessible from
the testing code!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Definition of Parameters

24

• Direct Input
Direct input is values or data, provided directly by
the testing code, that affect the behaviour of the
unit under test (UUT).

• Indirect Input
Indirect input is values or data, that cannot be
provided directly by the testing code, that affect the
behaviour of the unit under test (UUT).

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Structure of xUnit Tests

25

Depended-on Unit (DOU)
A unit in the production code that provides values or
behaviour that affect the behaviour of the unit under test.

✐
✐

“book” — 2010/3/11 — 9:50 — page 188 — #216 ✐
✐

✐
✐

✐
✐

188 ❚ CHAPTER 12 Test Stubs

12.2 Direct and Indirect Input

In the last chapter I identified the system clock as an indirect input parameter. So
before I discuss a plausible solution I will dwell a bit on the problem from a more
abstract point of view as it is something you run into all the time in testing and test-
driven development.

Abstractly I can describe the relation between production and testing code like in Fig-
ure 12.1. In this UML communication diagram, the numbered lines represent method
calls between objects, executed in the sequence shown by the numbers. The JUnit test
object symbolize the JUnit testing code that first sets up the production code, next ex-
ercises it, and finally verifies that its output matches the expected output. The testing
code exercises a particular part of the production code, the unit under test shown as
the UUT object. The right hand object, denoted DOU, symbolises units of the pro-
duction code that the UUT depends upon, and is explained in detail below.

JUnit test UUT
2:execute

DOU
3: query

1: setup

4: validate

Figure 12.1: The relation between test and production code.

In our concrete context the setup, exercise and verify code was (for weekdays):

chapter/state/compositional/iteration-2/test/paystation/domain/TestGammaWeekdayRate.java

@Test public void shouldDisplay120MinFor300cent () {
RateStra tegy r s =

new A l t e r n a t i n g R a t e S t r a t e g y (new LinearRateSt ra tegy () ,
new Pr ogre ss iv eRat eS t r a teg y ()) ;

a s s e r t E q u a l s (300 / 5 ∗ 2 , r s . ca lcula teTime (3 0 0)) ;
}

Now, a test case must state all the input parameters

Input Expected output
pay = 500 cent, day = Monday 200 min.
pay = 500 cent, day = Sunday 150 min.

This allows us to classify input into two categories.

Definition: Direct input
Direct input is values or data, provided directly by the testing code, that
affect the behavior of the unit under test (UUT).

Definition: Indirect input
Indirect input is values or data, that cannot be provided directly by the
testing code, that affect the behavior of the unit under test (UUT).

system clock
java.util.Calendar

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Test Stub

26

• How can we make the DOU return values that
are defined by the testing code?

• Test Stub
A test stub is a replacement of a real depended-on
unit that feeds indirect input, defined by the test
code, into the unit under test.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Key point

• Test stubs make software testable
Many software units depend on direct input that
influence their behaviour.
Typical indirect input are external resources like
hardware sensors, random-number generators,
system clocks etc.
Test stubs replace the real units and allow the
testing code to control the indirect input.

27

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Implementation

• Basically it is a variability problem

• during testing, use data given by test code

• during normal operation, use data given by system

• Remember:

• identify some behaviour that varies.

• it is the behaviour defined by isWeekend() that is variable.

• state the responsibility that covers the behaviour
that varies by an interface.

• compose the desired behaviour by delegating

28

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Solution

29

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Developing the solution

30

• Iteration 1: Refactoring

• Introduce the new interface.

• Refactor the existing AlternatingRateStrategy to
take instances of this interface as parameter in
the constructor. See that it compiles but the
tests fail.

• Refactor the existing design to make all test
cases pass again. This will require introducing
the ClockBasedDecisionStrategy.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Iteration 2: Test stub

31

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Setting it up

32

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Iteration 3

33

• Making a TestAlternatingRate
• moving all Gammatown rate policy test cases here,
• deleting the two old test case classes.

• Modifying TestAll so it includes the new test cases.
public class TestAlternatingRate {
 /** Test two hour parking during weekdays */
 @Test public void shouldDisplay120MinFor300centWeekday() {
 RateStrategy rs =
 new AlternatingRateStrategy(new LinearRateStrategy(),
 new ProgressiveRateStrategy(),
 new FixedDecisionStrategy(false));
 assertEquals(300 / 5 * 2, rs.calculateTime(300));
 }
 /** Test two hour parking during weekends */
 @Test public void shouldDisplay120MinFor350centWeekend() {
 RateStrategy rs =
 new AlternatingRateStrategy(new LinearRateStrategy(),
 new ProgressiveRateStrategy(),
 new FixedDecisionStrategy(true));
 assertEquals(300 / 5 * 2, rs.calculateTime(350));
 }
}

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Test Doubles

34

• Test Stub is a subtype of Test Double. Other subtypes
exists:

• Stub: get indirect input under control

• Spy: get indirect output under control
• record the UUT’s indirect output for (later) verification by the test case.

• Mock: a spy with fail fast property
• created and programmed dynamically by a mock library

• Fake: a lightweight but realistic double
• purpose is to be a high performance replacement for a slow or expensive DOU

• For more details, see: xUnit Test Patterns. Refactoring Test Code. G.
Meszaros. Addison Wesley Signature Series. 2007

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Example Test Spy

35

541

(the observation point) on which the SUT depends so that the Testcase Class is
type-compatible with the variables that are used to hold the DOC.

Variation: Inner Test Double

A popular way to implement the Test Spy as a Hard-Coded Test Double is to
code it as an anonymous inner class or block closure within the Test Method and
to have this class or block save the actual values into instance or local variables
that are accessible by the Test Method. This variation is really another way to
implement a Self Shunt (see Hard-Coded Test Double).

Variation: Indirect Output Registry

Yet another possibility is to have the Test Spy store the actual parameters in a
well-known place where the Test Method can access them. For example, the Test
Spy could save those values in a fi le or in a Registry [PEAA] object.

Motivating Example
The following test verifi es the basic functionality of removing a fl ight but does
not verify the indirect outputs of the SUT—namely, the fact that the SUT is
expected to log each time a fl ight is removed along with the date/time and user-
name of the requester.

 public void testRemoveFlight() throws Exception {
 // setup
 FlightDto expectedFlightDto = createARegisteredFlight();
 FlightManagementFacade facade = new FlightManagementFacadeImpl();
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 assertFalse("flight should not exist after being removed",
 facade.flightExists(expectedFlightDto.
 getFlightNumber()));
 }

Refactoring Notes
We can add verifi cation of indirect outputs to existing tests using a Replace
Dependency with Test Double (page 522) refactoring. It involves adding code
to the fi xture setup logic of the tests to create the Test Spy, confi guring the Test
Spy with any values it needs to return, and installing it. At the end of the test,
we add assertions comparing the expected method names and arguments of the

 Test Spy

Test
Spy542 Chapter 23 Test Double Patterns

indirect outputs with the actual values retrieved from the Test Spy using the
Retrieval Interface.

Example: Test Spy
In this improved version of the test, logSpy is our Test Spy. The statement facade.
setAuditLog(logSpy) installs the Test Spy using the Setter Injection pattern (see
Dependency Injection on page 678). The methods getDate, getActionCode, and so
on are the Retrieval Interface used to access the actual arguments of the call to
the logger.

 public void testRemoveFlightLogging_recordingTestStub()
 throws Exception {
 // fixture setup
 FlightDto expectedFlightDto = createAnUnregFlight();
 FlightManagementFacade facade = new FlightManagementFacadeImpl();
 // Test Double setup
 AuditLogSpy logSpy = new AuditLogSpy();
 facade.setAuditLog(logSpy);
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 assertFalse("flight still exists after being removed",
 facade.flightExists(expectedFlightDto.
 getFlightNumber()));
 assertEquals("number of calls", 1,
 logSpy.getNumberOfCalls());
 assertEquals("action code",
 Helper.REMOVE_FLIGHT_ACTION_CODE,
 logSpy.getActionCode());
 assertEquals("date", helper.getTodaysDateWithoutTime(),
 logSpy.getDate());
 assertEquals("user", Helper.TEST_USER_NAME,
 logSpy.getUser());
 assertEquals("detail",
 expectedFlightDto.getFlightNumber(),
 logSpy.getDetail());
 }

This test depends on the following defi nition of the Test Spy:

public class AuditLogSpy implements AuditLog {
 // Fields into which we record actual usage information
 private Date date;
 private String user;
 private String actionCode;
 private Object detail;
 private int numberOfCalls = 0;

Test
Spy

542 Chapter 23 Test Double Patterns

indirect outputs with the actual values retrieved from the Test Spy using the
Retrieval Interface.

Example: Test Spy
In this improved version of the test, logSpy is our Test Spy. The statement facade.
setAuditLog(logSpy) installs the Test Spy using the Setter Injection pattern (see
Dependency Injection on page 678). The methods getDate, getActionCode, and so
on are the Retrieval Interface used to access the actual arguments of the call to
the logger.

 public void testRemoveFlightLogging_recordingTestStub()
 throws Exception {
 // fixture setup
 FlightDto expectedFlightDto = createAnUnregFlight();
 FlightManagementFacade facade = new FlightManagementFacadeImpl();
 // Test Double setup
 AuditLogSpy logSpy = new AuditLogSpy();
 facade.setAuditLog(logSpy);
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 assertFalse("flight still exists after being removed",
 facade.flightExists(expectedFlightDto.
 getFlightNumber()));
 assertEquals("number of calls", 1,
 logSpy.getNumberOfCalls());
 assertEquals("action code",
 Helper.REMOVE_FLIGHT_ACTION_CODE,
 logSpy.getActionCode());
 assertEquals("date", helper.getTodaysDateWithoutTime(),
 logSpy.getDate());
 assertEquals("user", Helper.TEST_USER_NAME,
 logSpy.getUser());
 assertEquals("detail",
 expectedFlightDto.getFlightNumber(),
 logSpy.getDetail());
 }

This test depends on the following defi nition of the Test Spy:

public class AuditLogSpy implements AuditLog {
 // Fields into which we record actual usage information
 private Date date;
 private String user;
 private String actionCode;
 private Object detail;
 private int numberOfCalls = 0;

Test
Spy

543

 // Recording implementation of real AuditLog interface
 public void logMessage(Date date,
 String user,
 String actionCode,
 Object detail) {
 this.date = date;
 this.user = user;
 this.actionCode = actionCode;
 this.detail = detail;

 numberOfCalls++;
 }

 // Retrieval Interface
 public int getNumberOfCalls() {
 return numberOfCalls;
 }
 public Date getDate() {
 return date;
 }
 public String getUser() {
 return user;
 }
 public String getActionCode() {
 return actionCode;
 }
 public Object getDetail() {
 return detail;
 }
}

Of course, we could have implemented the Retrieval Interface by making the
various fi elds of our spy public and thereby avoided the need for accessor
methods. Please refer to the examples in Hard-Coded Test Double for other
implementation options.

 Test Spy

Test
Spy

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Example Fake Object

36

554 Chapter 23 Test Double Patterns

or disk I/O with a much lighter in-memory implementation. With the rich class
libraries available in most object-oriented programming languages, it is usually
possible to build a fake implementation that is suffi cient to satisfy the needs of
the SUT, at least for the purposes of specifi c tests, with relatively little effort.

A popular strategy is to start by building a Fake Object to support a specifi c
set of tests where the SUT requires only a subset of the DOC’s services. If this
proves successful, we may consider expanding the Fake Object to handle addi-
tional tests. Over time, we may fi nd that we can run all of our tests using the Fake
Object. (See the sidebar “Faster Tests Without Shared Fixtures” on page 319 for
a description of how we faked out the entire database with hash tables and made
our tests run 50 times faster.)

Installing the Fake Object

Of course, we must have a way of installing the Fake Object into the SUT to
be able to take advantage of it. We can use whichever substitutable dependency
pattern the SUT supports. A common approach in the test-driven development
community is Dependency Injection (page 678); more traditional developers
may favor Dependency Lookup (page 686). The latter technique is also more
appropriate when we introduce a Fake Database (see Fake Object on page 551)
in an effort to speed up execution of the customer tests; Dependency Injection
doesn’t work so well with these kinds of tests.

Motivating Example
In this example, the SUT needs to read and write records from a database. The test
must set up the fi xture in the database (several writes), the SUT interacts (reads
and writes) with the database several more times, and then the test removes the
records from the database (several deletes). All of this work takes time—several
seconds per test. This very quickly adds up to minutes, and soon we fi nd that our
developers aren’t running the tests quite so frequently. Here is an example of one
of these tests:

 public void testReadWrite() throws Exception{
 // Setup
 FlightMngtFacade facade = new FlightMgmtFacadeImpl();
 BigDecimal yyc = facade.createAirport("YYC", "Calgary", "Calgary");
 BigDecimal lax = facade.createAirport("LAX", "LAX Intl", "LA");
 facade.createFlight(yyc, lax);
 // Exercise
 List flights = facade.getFlightsByOriginAirport(yyc);

Fake
Object

555

 // Verify
 assertEquals("# of flights", 1, flights.size());
 Flight flight = (Flight) flights.get(0);
 assertEquals("origin",
 yyc, flight.getOrigin().getCode());
 }

The test calls createAirport on our Service Facade [CJ2EEP], which calls, among
other things, our data access layer. Here is the actual implementation of several
of the methods we are calling:

 public BigDecimal createAirport(String airportCode,
 String name,
 String nearbyCity)
 throws FlightBookingException{
 TransactionManager.beginTransaction();
 Airport airport = dataAccess.
 createAirport(airportCode, name, nearbyCity);
 logMessage("Wrong Action Code", airport.getCode());//bug
 TransactionManager.commitTransaction();
 return airport.getId();
 }

 public List getFlightsByOriginAirport(
 BigDecimal originAirportId)
 throws FlightBookingException {

 if (originAirportId == null)
 throw new InvalidArgumentException(
 "Origin Airport Id has not been provided",
 "originAirportId", null);
 Airport origin = dataAccess.getAirportByPrimaryKey(originAirportId);
 List flights = dataAccess.getFlightsByOriginAirport(origin);

 return flights;
 }

The calls to dataAccess.createAirport, dataAccess.createFlight, and TransactionManager.
commitTransaction cause our test to slow down the most. The calls to dataAccess.
getAirportByPrimaryKey and dataAccess.getFlightsByOriginAirport are a lesser factor but
still contribute to the slow test.

Refactoring Notes
The steps for introducing a Fake Object are very similar to those for adding a
Mock Object. If one doesn’t already exist, we use a Replace Dependency with Test
Double (page 522) refactoring to introduce a way to substitute the Fake Object for
the DOC—usually a fi eld (attribute) to hold the reference to it. In statically typed
languages, we may have to do an Extract Interface [Fowler] refactoring before we

 Fake Object

Fake
Object

555

 // Verify
 assertEquals("# of flights", 1, flights.size());
 Flight flight = (Flight) flights.get(0);
 assertEquals("origin",
 yyc, flight.getOrigin().getCode());
 }

The test calls createAirport on our Service Facade [CJ2EEP], which calls, among
other things, our data access layer. Here is the actual implementation of several
of the methods we are calling:

 public BigDecimal createAirport(String airportCode,
 String name,
 String nearbyCity)
 throws FlightBookingException{
 TransactionManager.beginTransaction();
 Airport airport = dataAccess.
 createAirport(airportCode, name, nearbyCity);
 logMessage("Wrong Action Code", airport.getCode());//bug
 TransactionManager.commitTransaction();
 return airport.getId();
 }

 public List getFlightsByOriginAirport(
 BigDecimal originAirportId)
 throws FlightBookingException {

 if (originAirportId == null)
 throw new InvalidArgumentException(
 "Origin Airport Id has not been provided",
 "originAirportId", null);
 Airport origin = dataAccess.getAirportByPrimaryKey(originAirportId);
 List flights = dataAccess.getFlightsByOriginAirport(origin);

 return flights;
 }

The calls to dataAccess.createAirport, dataAccess.createFlight, and TransactionManager.
commitTransaction cause our test to slow down the most. The calls to dataAccess.
getAirportByPrimaryKey and dataAccess.getFlightsByOriginAirport are a lesser factor but
still contribute to the slow test.

Refactoring Notes
The steps for introducing a Fake Object are very similar to those for adding a
Mock Object. If one doesn’t already exist, we use a Replace Dependency with Test
Double (page 522) refactoring to introduce a way to substitute the Fake Object for
the DOC—usually a fi eld (attribute) to hold the reference to it. In statically typed
languages, we may have to do an Extract Interface [Fowler] refactoring before we

 Fake Object

Fake
Object

556 Chapter 23 Test Double Patterns

can introduce the fake implementation. Then, we use this interface as the type of
variable that holds the reference to the substitutable dependency.

One notable difference is that we do not need to confi gure the Fake Object with
expectations or return values; we merely set up the fi xture in the normal way.

Example: Fake Database
In this example, we’ve created a Fake Object that replaces the database—that
is, a Fake Database implemented entirely in memory using hash tables. The test
doesn’t change a lot, but the test execution occurs much, much faster.

 public void testReadWrite_inMemory() throws Exception{
 // Setup
 FlightMgmtFacadeImpl facade = new FlightMgmtFacadeImpl();
 facade.setDao(new InMemoryDatabase());
 BigDecimal yyc = facade.createAirport("YYC", "Calgary", "Calgary");
 BigDecimal lax = facade.createAirport("LAX", "LAX Intl", "LA");
 facade.createFlight(yyc, lax);
 // Exercise
 List flights = facade.getFlightsByOriginAirport(yyc);
 // Verify
 assertEquals("# of flights", 1, flights.size());
 Flight flight = (Flight) flights.get(0);
 assertEquals("origin",
 yyc, flight.getOrigin().getCode());
 }

Here’s the implementation of the Fake Database:

public class InMemoryDatabase implements FlightDao{
 private List airports = new Vector();
 public Airport createAirport(String airportCode,
 String name, String nearbyCity)
 throws DataException, InvalidArgumentException {
 assertParamtersAreValid(airportCode, name, nearbyCity);
 assertAirportDoesntExist(airportCode);
 Airport result = new Airport(getNextAirportId(),
 airportCode, name, createCity(nearbyCity));
 airports.add(result);
 return result;
 }
 public Airport getAirportByPrimaryKey(BigDecimal airportId)
 throws DataException, InvalidArgumentException {
 assertAirportNotNull(airportId);

 Airport result = null;
 Iterator i = airports.iterator();
 while (i.hasNext()) {

Fake
Object

556 Chapter 23 Test Double Patterns

can introduce the fake implementation. Then, we use this interface as the type of
variable that holds the reference to the substitutable dependency.

One notable difference is that we do not need to confi gure the Fake Object with
expectations or return values; we merely set up the fi xture in the normal way.

Example: Fake Database
In this example, we’ve created a Fake Object that replaces the database—that
is, a Fake Database implemented entirely in memory using hash tables. The test
doesn’t change a lot, but the test execution occurs much, much faster.

 public void testReadWrite_inMemory() throws Exception{
 // Setup
 FlightMgmtFacadeImpl facade = new FlightMgmtFacadeImpl();
 facade.setDao(new InMemoryDatabase());
 BigDecimal yyc = facade.createAirport("YYC", "Calgary", "Calgary");
 BigDecimal lax = facade.createAirport("LAX", "LAX Intl", "LA");
 facade.createFlight(yyc, lax);
 // Exercise
 List flights = facade.getFlightsByOriginAirport(yyc);
 // Verify
 assertEquals("# of flights", 1, flights.size());
 Flight flight = (Flight) flights.get(0);
 assertEquals("origin",
 yyc, flight.getOrigin().getCode());
 }

Here’s the implementation of the Fake Database:

public class InMemoryDatabase implements FlightDao{
 private List airports = new Vector();
 public Airport createAirport(String airportCode,
 String name, String nearbyCity)
 throws DataException, InvalidArgumentException {
 assertParamtersAreValid(airportCode, name, nearbyCity);
 assertAirportDoesntExist(airportCode);
 Airport result = new Airport(getNextAirportId(),
 airportCode, name, createCity(nearbyCity));
 airports.add(result);
 return result;
 }
 public Airport getAirportByPrimaryKey(BigDecimal airportId)
 throws DataException, InvalidArgumentException {
 assertAirportNotNull(airportId);

 Airport result = null;
 Iterator i = airports.iterator();
 while (i.hasNext()) {

Fake
Object

557

 Airport airport = (Airport) i.next();
 if (airport.getId().equals(airportId)) {
 return airport;
 }
 }
 throw new DataException("Airport not found:"+airportId);
 }

Now all we need is the implementation of the method that installs the Fake
Database into the facade to make our developers more than happy to run all the
tests after every code change.

 public void setDao(FlightDao) {
 dataAccess = dao;
 }

Further Reading

The sidebar “Faster Tests Without Shared Fixtures” on page 319 provides a
more in-depth description of how we faked out the entire database with hash
tables and made our tests run 50 times faster. Mocks, Fakes, Stubs, and Dum-
mies (in Appendix B) contains a more thorough comparison of the terminology
used in various books and articles.

 Fake Object

Fake
Object

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Discussion

37

• Test Stubs make software testable.

• Compositional process helps isolating DOUs.

• The solution is overly complex?

• perhaps but it scales well to complex DOUs

• Some code units are not automatically testable
in a cost-efficient manner.

• Do not test that the return values from the
system library methods are correct.

