Theme 2
Program Design

Towards a Strategy Pattern

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Thursday, October 18, 2012

Learning Objectives

® |earn several different solutions to the
problem of one product, several versions and
see their respective benefits and liabilities.

® |earn that one of the solutions, the
compositional one, is actually the strategy
design pattern.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 2

Thursday, October 18, 2012

FLEXIBLE,
RELIABLE

Remember: Pay Station

® The pay station must:

® accept coins for
payment

® show time bought

® print parking time
receipts

®) minutes cost 5 cent

® handle buy and cancel

® maintenance (empty it)

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 3

Thursday, October 18, 2012

New Requirement

® New progressive pricing model for a new client
|. first hour: $1.5 (5 cent gives 2 minutes)
2. second hour: $2 (5 cent gives |.5 minutes)

3. third and following hours: $3 (5 cents gives |
minute)

® How can we handle these different products!?

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 4

Thursday, October 18, 2012

FLEXIBLE,
RELIABLE
SOFTWARE

Code to Change =

public void addPayment|(int coinValue) throws IllegalCoinException {
switch [coinValue) {

S
S

ase 25: break;
r

throw new IllegalCoinException(“Invalid coin: “"+coinValue+” cent.™);

Variability point!!

How do | introduce having two different behaviors of the rate
calculation variability point such that both the cost and the risk
of introducing defects are low?

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3 5

Thursday, October 18, 2012

FLEXIBLE,
RELIABLE
SOFTWARE

Exercise! s,
s

® Propose some solutions to handle variations in
the code. Think about these issues:

® most of the code is the same in the 2 products

® what about 20 or more variants?

® Find different solutions!!!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 6

Thursday, October 18, 2012

Possible Solutions

® Model I:

® Make a copy of the source tree

® Model 2:

® Parameterization

® Model 3:
® Polymorphic proposal
® Model 4:

® Compositional proposal

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Thursday, October 18, 2012

FLEXIBLE,
RELIABLE
SOFTWARE

Source Tree Copying

® Deep copy production code source tree

® Code the new variant by replacing the code at the
variability point.

e Benefits
® simple

® fast

® variant decoupling
e Liabilities
® Multiple maintenance problem
® changes in common code must be propagated to all copies,

duplicated test cases

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Thursday, October 18, 2012

FLEXIBLE,

RELIABLE
SOFTWARE

g o ot

FLEXIBLE,
RELIABLE
] SOFTWARE

Parametrization

Throw in some ‘if’-statements

public void addPayment(int coinValue) throws lllegalCoinExcé' tion
swilch (coinValue) {

case 5H:
case 10:
case 25: break;
default:
throw new IllegalCoinException(”Invalid.coin: .”"+coinValue+”.cent.”);
}

insertedSoFar += coinValue;

if (town == Town . AIPHATOWNN) {
timeBought = insertedSoFar = 2 / 5;

} else if (town == Town.BETATOWN) {

[the progressive rate policy code]

|. Introduce a parameter (which town)

2. Switch on the parameter each time town specific behaviour
is needed.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3 9

Thursday, October 18, 2012

FLEXIBLE,

RELIABLE
SOFTWARE

g Per e g
Agte Ovewmpmone

Parametrisation s

e e

¢ Benefits
® Simple
® Avoid the multiple maintenance problem
¢ Liabilities
® Reliability concerns: adding a new rate model => adding code to the

existing PayStationlmpl class, potential of introducing errors, complete
regression testing

® Readability concerns: switching code becomes long!

® Responsibility erosion: new requirement: handle variations for different
towns

® Composition problem: a rate model that is a combination of existing
ones leads to code duplication

o CONCLUSION: it is tempting but it should turn on the

alarm bell!
Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 10

Thursday, October 18, 2012

FLEXIBLE,

RELIABLE

Subclass and override

«interface» R PayStationimpl

PayStation

calculateTime(amount)

public void addPayment(int coinValue)
throws IllegalC()lnExueptlon {
switch (coinValue) |

case 5:
case 10:
case 25: break;
default:
throw new IllegalCoinException("Invalid coin: "+coinValue);
}

insertedSoFar += coinValue;
timeBought = calculateTime (insertedSoFar);
/** calculate the parking time equivalent to the amount of
cents paid so far
@param pmd\(ﬂar the amount of cents paid so far
@return the parking time this amount qualifies for
x’,l"
protected int calculateTime(int paidSoFar) |
return paidSoFar = 2 / 5;

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3 H

Thursday, October 18, 2012

FLEXIBLE,
RELIABLE
SOFTWARE

e Benefits

® Avoid multiple maintenance

74
V4
;
7
£
-

! 7,
\\ ; b
W 5

/Il
A /
.
g

® Reliability concern: new requirements regarding rate policies by
adding new subclasses not by modifying existing classes.

® (Code readability: no code bloating

e Liabilities
® |ncreased number of classes: one new class for each rate policy

® |nheritance relation spent on single variation type: ending up
with
“PayStationProgressivePriceButLiniarlnWeekendsWithOracleDataBaseAccessDebu
ggingVersionAndBothCoinAndMobilePhonePaymentOptions™ ???

® Reuse across variants difficult: new requirement:VWe want a
rate policy similar to Alphatown during weekdays but similar to
Betatown during weekends.”

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3 12

Thursday, October 18, 2012

FLEXIBLE,

RELIABLE
SOFTWARE

Compositional Solution =

PR .

’
}J

Responsibilities of original system:

PayStation

e Print receipts
e Handle buy and cancel transactions

Divide the responsibilities over a set of objects and let
them collaborate: delegation

«interface»
PayStation

«interface»
—- Responsibilities: | RateStrategy
Accept payment

Know earning, time bought
Print receipts

Handle buy and cancel

-- Responsibilities
Calculate parking time

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3 3

Thursday, October 18, 2012

FLEXIBLE,

RELIABLE
SOFTWARE

Concrete Behaviour

«interface» «interface»
PayStation RateStrategy
LinearRateStrategy ProgressiveRateStrategy
sd insert coin
ps: PayStationHardware payStation:PayStationimpl strategy:LinearRateStrateqy
insart coin
® > addPayment
il calculateTime
-
time
updateDisplay
readDisplay
»
| |
read
Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3 14

Thursday, October 18, 2012

Compositional Solution

e Benefits

® Readability: no code bloat of conditional statements

® Run-time binding: change the rate policy while the system is
running

® Separation of responsibilities: responsibilities clearly stated in
interfaces.

® Variant selection is localized: There is only one place in the code
where we decide which rate policy to take

® Combinatorial: no inheritance used, can still be used to provide
new behaviour.

e Liabilities
® |ncreased number of interfaces, objects

® Clients must be aware of strategies

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 5

Thursday, October 18, 2012

The Compositional Process:—

Le

o

® VWe have identified some behaviour
that is likely to change...

® rate policies

® We have clearly stated a responsibility
that covers this behaviour and expressed
it in an interface.

® We get the full pay station behaviour by
delegating the rate calculation
responsibility to a delegate.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 6

Thursday, October 18, 2012

Desien Patterns

Strategy Pattern

ol

¢ Intent

define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from
clients that use it.

® Problem

Your product must support variable algorithms or business rules and you
want a flexible and reliable way of controlling the variability.

® Solution

Separate the selection of algorithm from its implementation by expressing
the algorithm’s responsibilities in an interface and let each implementation
of the algorithm realize this interface.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 17

Thursday, October 18, 2012

Strategy Pattern

Roles:

Context

m

«interface»
Strategy

Client

ConcreteStrategyA

algorithminterface()

Consequences:

+ Hierarchies of Strategy classes define a family of algorithms or behaviors to reuse.

+ Is alternative to subclassing.

+ Is an alternative to using conditional statements for selecting desired behavior
+ Can offer a choice of implementations for the same behavior

- Clients must be aware of different Strategies.
- Some communication overhead between Strategy and Context.
- The number of objects in the application increases.

/ \ algorithminterface()

ConcreteStrategyB

algorithminterface()

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Thursday, October 18, 2012

Desien Patterns

ol

18

Theme 2
Program Design

Refactoring and Integration Testing

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Thursday, October 18, 2012

19

Learning Objectives

® |earn a small steps approach to refactoring as
well as see the Triangulation principle in action
on a more complex problem.

® |earn about the different levels in testing and
the difference between unit and integration
testing in particular.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 20

Thursday, October 18, 2012

FLEXIBLE,
RELIABLE
SOFTWARE

Problem Statement

® How to introduce the Betatown rate structure?

® [wo options:

® Write test cases that tests the behavior of Betatown
rate structure and get the new compositional design as

weII asthe rate calculatlon algorlthm in place o

0 Refactor the existing pay station to use a composmonal
design first for Alphatown. Next write test cases and _
i algorithm for the Betatown rate structure.

Take small steps

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3 21

Thursday, October 18, 2012

FLEXIBLE,

RELIABLE
SOFTWARE

g Pt

Take Small Steps

refactor Alphatown to use a compositional design

S
** handle rate structure for Betatown

Refactoring is the process of changing a software system in
such a way that is does not alter the external behaviour of the
code yet improves its internal structure '\

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3 22

Thursday, October 18, 2012

Iteration |: Refactoring

|. Introduce the RateStrategy interface.

2. Refactor PayStationlmpl to use a reference to a
RateStrategy instance for calculating rate (test to see

it fail.)

3. Move the rate calculation algorithm to a class
implementing the RateStrategy interface.

4. Refactor the pay station setup to use a concrete
RateStrategy instance.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 23

Thursday, October 18, 2012

FLEXIBLE,

Step |:introduce RateStrategy interface

public interface RateStrategy {

[*% return the number of minutes parking time the
provided amount of payment is valid for.
@param amount payment in some currency.
@return number of minutes parking time

*/
public int calculateTime(int amount);

J

Step 2:introduce a reference in the PayStationimpl

public class PayStationImpl implements PayStation {
private int insertedSoFar;
private int timeBought;

/+*% the strategy for rate calculations =/
private RateStrategy rateStrategy ;

and modify the addPayment method:

public void addPayment(int coinValue) throws IllegalCoinException |{
switch (coinValue) {
case 5:
case 10:
case 25: break;
default:
throw new IllegalCoinException(”Invalid_coin:_."+coinValue+”_cent.”);

insertedSoFar += coinValue ;
timeBought = rateStrategy.calculateTime (insertedSoFar);

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3 24

Thursday, October 18, 2012

Change the setup in the test case class: T

@Before
public void setUp() {
ps = new PayStationImpl(new LinearRateStrategy());

}

Change the constructor:

/*¥* Construct a pay station instance with the given
rate calculation strategy.
@param rateStrategy the rate calculation strategy to use

g Peae s
A S eymane

*/
public PayStationImpl(RateStrategy rateStrategy) {
this.rateStrategy = rateStrategy;

}
Fake it! Define a stub:

public class LinearRateStrategy implements RateStrategy {
public 1nt calculateTime(int amount) {
return Q;

I3,

Change stub into a real application:

public class LinearRateStrategy implements RateStrategy {
public int calculateTime(int amount) {
return amount * 2 / 5;

1}
Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3 25

Thursday, October 18, 2012

Key Points

¢ Key Point: Refactor the designh before
introducing new features

® [ntroduce the design changes and refactor the system to
make all existing test suites pass before you begin
implementing new features.

¢ Key Point: Test cases support refactoring

® Refactoring means changing the internal structure of a
system without changing its external behavior. Therefore test
cases directly support the task of refactoring because when
they pass you are confident that the external behavior they
test is unchanged

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 26

Thursday, October 18, 2012

lteration 2: BetaTown Rate Policy

FLEXIBLE,
RELIABLE
SOFTWA

g Do -

|

® Introducing rate policy is an example of ——
Triangulation:

® |teration 2:add test case for first hour

public class ProgressiveRateStrategy implements RateStrategy {
public int calculateTime(int amount) {
return amount * 2 / 5;

}
}

® |teration 3:add test case for second hour

® [teration 4:add test case for third (and following)
hour.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 27

Thursday, October 18, 2012

Iteration 5: Unit and Integration

FLEXIBLE,
RELIABLE
SOFTWARE

Testing

public class TestProgressiveRate {

R ; '
ateStrategy rs; /** Test two hours parking */

: : @Test public void
@Before public void setUp() { . .
rs = new ProgressiveRateStrategy(); shouldDisplayl2@MinFor350cent()

1 throws IllegalCoinException {
// Two hours: $1.5+2.0

addOneDollar();
addOneDollar();
COmPare addOneDollar();

addHalfDollar();

assertEquals(2 * 60 /*minutes*/ ,
ps.readDisplay());

}

/** Test two hours parking */

@Test public void shouldGivelZ2@MinFor350cent() {
// Two hours: $1.5+2.0

assertEquals(2 * 60 /*minutes*/ , rs.calculateTime(350));
h

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3 28

Thursday, October 18, 2012

Testing Types

® The ProgressiveRateStrategy is tested in
isolation of the pay station (Unit testing)

® The pay station is tested integrated with the
LinearRateStrategy (Integration testing)

® Thus the two rate strategies are tested by two
approaches: in isolation, as part of another unit
and

® The actual Betatown pay station is never
tested!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 29

Thursday, October 18, 2012

Three levels of Testing

® Unit Testing

¢ Integration Testing \
Integration testing is the process of executing
a software unit in collaboration with other
units in order to find defects in their

Interactions.

e System Testing \
System testing is the process of executing a
whole software system in order to find
deviations from the specified requirements.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 30

Thursday, October 18, 2012

public class TestIntegration {

private PayStation ps; FLEXIBLE,
yettetiale
J**
* Integration testing for the linear rate configuration |
*/ i
@Test e

public void shouldIntegratelLinearRateCorrectly()
throws IllegalCoinException {
// Configure pay station to be the progressive rate pay station
ps = new PayStationImpl(new LinearRateStrategy());
// add $ 2.0:
addOneDollar(); addOneDollar();
assertkEquals("Linear Rate: 2% should give 80 min ",
80 , ps.readDisplay());
¥
/**
* Integration testing for the progressive rate configuration
*/
@Test
public void shouldIntegrateProgressiveRateCorrectly()
throws IllegalCoinException {
// reconfigure ps to be the progressive rate pay station
ps = new PayStationImpl(new ProgressiveRateStrategy());
// add $ 2.0: 1.5 gives 1 hours, next 0.5 gives 15 min
addOneDollar(); addOneDollar();
assertEquals("Progressive Rate: 2% should give 75 min ",
75 , ps.readDisplay());

}

private void addOneDollar() throws IllegalCoinException {
ps.addPayment(25); ps.addPayment(25);
ps.addPayment(25); ps.addPayment(25);

h
Ra%nhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3 31

Thursday, October 18, 2012

FLEXIBLE,

RELIABLE

Test Suites =

package paystation.domain;

import org.junit.runner.RunWith;
import org.junit.runners.Suite;

@RunWith (Suite.class)
@Suite.SuiteClasses(

{ TestPayStation.class,
TestLinearRate.class,
TestProgressiveRate.class,
TestIntegration.class })

public class TestAll {
// Dummy - it is the annotations that tell JUnit
what to do...

h

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3 32

Thursday, October 18, 2012

FLEXIBLE,
RELIABLE
SOFTWARE
g e e -t
A Teevepmane
: V— Bl Ty

e
P

Overview of the Iterations

|. refactor to introduce a rate strategy, make all existing test
cases pass

2. triangulate the first hour rate calculation into the rate
algorithm.

3. triangulate the second hour rate.
4. triangulate the third and following hours rate.

5. discover that the rate strategies can be tested as separate
software units, refactor the test cases for the Betatown’s rate
algorithm.

6. discover that the analyzability of the pay station test code can
be improved by introducing a simple rate strategy. Refactored
test cases. Introduced integration testing of the pay station
with the individual rate strategies.

/. introduce the JUnit annotations for handling test suites.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 33

Thursday, October 18, 2012

Conclusion

® Use the old functional tests to refactor
without adding new or changing existing
behaviour

® VWhen everything is green again then proceed
to introduce new/modified behaviour

® Review again to see if there is any dead code
lying around or other refactorings to do

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 34

Thursday, October 18, 2012

