
Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Theme 2
Program Design

Towards a Strategy Pattern

1

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Learning Objectives

• learn several different solutions to the
problem of one product, several versions and
see their respective benefits and liabilities.

• learn that one of the solutions, the
compositional one, is actually the strategy
design pattern.

2

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Remember: Pay Station

• The pay station must:

• accept coins for
payment

• show time bought

• print parking time
receipts

• 2 minutes cost 5 cent

• handle buy and cancel

• maintenance (empty it)

3

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

New Requirement

• New progressive pricing model for a new client
1. first hour: $1.5 (5 cent gives 2 minutes)

2. second hour: $2 (5 cent gives 1.5 minutes)

3. third and following hours: $3 (5 cents gives 1
minute)

• How can we handle these different products?

4

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Code to Change

5

Variability point!!

How do I introduce having two different behaviors of the rate
calculation variability point such that both the cost and the risk
of introducing defects are low?

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Exercise!

6

• Propose some solutions to handle variations in
the code. Think about these issues:

• most of the code is the same in the 2 products

• what about 20 or more variants?

• Find different solutions!!!

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Possible Solutions

• Model 1:

• Make a copy of the source tree

• Model 2:

• Parameterization

• Model 3:

• Polymorphic proposal

• Model 4:

• Compositional proposal

7

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Source Tree Copying

• Deep copy production code source tree

• Code the new variant by replacing the code at the
variability point.

• Benefits

• simple

• fast

• variant decoupling

• Liabilities

• Multiple maintenance problem

• changes in common code must be propagated to all copies,
duplicated test cases

8

Rehe
ars

al

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Parametrization

9

Throw in some ‘if ’-statements

1. Introduce a parameter (which town)
2. Switch on the parameter each time town specific behaviour
is needed.

Rehe
ars

al

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 10

• Benefits

• Simple

• Avoid the multiple maintenance problem

• Liabilities

• Reliability concerns: adding a new rate model => adding code to the
existing PayStationImpl class, potential of introducing errors, complete
regression testing

• Readability concerns: switching code becomes long!

• Responsibility erosion: new requirement: handle variations for different
towns

• Composition problem: a rate model that is a combination of existing
ones leads to code duplication

• CONCLUSION: it is tempting but it should turn on the
alarm bell!

Parametrisation

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Polymorphic Solution

11

Subclass and override

Rehe
ars

al

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Polymorphic Solution

12

• Benefits

• Avoid multiple maintenance

• Reliability concern: new requirements regarding rate policies by
adding new subclasses not by modifying existing classes.

• Code readability: no code bloating

• Liabilities

• Increased number of classes: one new class for each rate policy

• Inheritance relation spent on single variation type: ending up
with
“PayStationProgressivePriceButLiniarInWeekendsWithOracleDataBaseAccessDebu
ggingVersionAndBothCoinAndMobilePhonePaymentOptions” ???

• Reuse across variants difficult: new requirement:“We want a
rate policy similar to Alphatown during weekdays but similar to
Betatown during weekends.”

Rehe
ars

al

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Compositional Solution

13

Responsibilities of original system:

Divide the responsibilities over a set of objects and let
them collaborate: delegation

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Concrete Behaviour

14

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Compositional Solution

15

• Benefits

• Readability: no code bloat of conditional statements

• Run-time binding: change the rate policy while the system is
running

• Separation of responsibilities: responsibilities clearly stated in
interfaces.

• Variant selection is localized: There is only one place in the code
where we decide which rate policy to take

• Combinatorial: no inheritance used, can still be used to provide
new behaviour.

• Liabilities

• Increased number of interfaces, objects

• Clients must be aware of strategies

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

The Compositional Process

• We have identified some behaviour
that is likely to change…

• rate policies

• We have clearly stated a responsibility
that covers this behaviour and expressed
it in an interface.

• We get the full pay station behaviour by
delegating the rate calculation
responsibility to a delegate.

16

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Strategy Pattern

• Intent
define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from
clients that use it.

• Problem
Your product must support variable algorithms or business rules and you
want a flexible and reliable way of controlling the variability.

• Solution
Separate the selection of algorithm from its implementation by expressing
the algorithm’s responsibilities in an interface and let each implementation
of the algorithm realize this interface.

17

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Strategy Pattern

18

Roles:

Consequences:
+ Hierarchies of Strategy classes define a family of algorithms or behaviors to reuse.
+ Is alternative to subclassing.
+ Is an alternative to using conditional statements for selecting desired behavior
+ Can offer a choice of implementations for the same behavior

- Clients must be aware of different Strategies.
- Some communication overhead between Strategy and Context.
- The number of objects in the application increases.

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Theme 2
Program Design

Refactoring and Integration Testing

19

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Learning Objectives

• learn a small steps approach to refactoring as
well as see the Triangulation principle in action
on a more complex problem.

• learn about the different levels in testing and
the difference between unit and integration
testing in particular.

20

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Problem Statement

• How to introduce the Betatown rate structure?

• Two options:

• Write test cases that tests the behavior of Betatown
rate structure and get the new compositional design as
well as the rate calculation algorithm in place.

• Refactor the existing pay station to use a compositional
design first for Alphatown. Next write test cases and
algorithm for the Betatown rate structure.

21

Take small steps

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Take Small Steps

22

REMEMBER

Refactoring is the process of changing a software system in
such a way that is does not alter the external behaviour of the
code yet improves its internal structure

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Iteration 1: Refactoring

23

1. Introduce the RateStrategy interface.

2. Refactor PayStationImpl to use a reference to a
RateStrategy instance for calculating rate (test to see
it fail.)

3. Move the rate calculation algorithm to a class
implementing the RateStrategy interface.

4. Refactor the pay station setup to use a concrete
RateStrategy instance.

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 24

Step 1: introduce RateStrategy interface

Step 2: introduce a reference in the PayStationImpl

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 25

@Before
 public void setUp() {
 ps = new PayStationImpl(new LinearRateStrategy());
 }

/** Construct a pay station instance with the given
 rate calculation strategy.
 @param rateStrategy the rate calculation strategy to use
 */
 public PayStationImpl(RateStrategy rateStrategy) {
 this.rateStrategy = rateStrategy;
 }

public class LinearRateStrategy implements RateStrategy {
 public int calculateTime(int amount) {
 return 0;
 }}

public class LinearRateStrategy implements RateStrategy {
 public int calculateTime(int amount) {
 return amount * 2 / 5;
 }}

Change the setup in the test case class:

Change the constructor:

Fake it! Define a stub:

Change stub into a real application:

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 26

Key Points

• Key Point: Refactor the design before
introducing new features

• Introduce the design changes and refactor the system to
make all existing test suites pass before you begin
implementing new features.

• Key Point: Test cases support refactoring

• Refactoring means changing the internal structure of a
system without changing its external behavior. Therefore test
cases directly support the task of refactoring because when
they pass you are confident that the external behavior they
test is unchanged

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Iteration 2: BetaTown Rate Policy

• Introducing rate policy is an example of
Triangulation:

• Iteration 2: add test case for first hour

• Iteration 3: add test case for second hour

• Iteration 4: add test case for third (and following)
hour.

27

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Iteration 5: Unit and Integration
Testing

28

public class TestProgressiveRate {
 RateStrategy rs;

 @Before public void setUp() {
 rs = new ProgressiveRateStrategy();
 }

/** Test two hours parking */
 @Test public void shouldGive120MinFor350cent() {
 // Two hours: $1.5+2.0
 assertEquals(2 * 60 /*minutes*/ , rs.calculateTime(350));
 }

/** Test two hours parking */
 @Test public void
shouldDisplay120MinFor350cent()
 throws IllegalCoinException {
 // Two hours: $1.5+2.0
 addOneDollar();
 addOneDollar();
 addOneDollar();
 addHalfDollar();

 assertEquals(2 * 60 /*minutes*/ ,
ps.readDisplay());
 }

Compare

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Testing Types

29

• The ProgressiveRateStrategy is tested in
isolation of the pay station (Unit testing)

• The pay station is tested integrated with the
LinearRateStrategy (Integration testing)

• Thus the two rate strategies are tested by two
approaches: in isolation, as part of another unit
and

• The actual Betatown pay station is never
tested!

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Three levels of Testing

• Unit Testing

• Integration Testing
Integration testing is the process of executing
a software unit in collaboration with other
units in order to find defects in their
interactions.

• System Testing
System testing is the process of executing a
whole software system in order to find
deviations from the specified requirements.

30

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 31

public class TestIntegration {
 private PayStation ps;

 /**
 * Integration testing for the linear rate configuration
 */
 @Test
 public void shouldIntegrateLinearRateCorrectly()
 throws IllegalCoinException {
 // Configure pay station to be the progressive rate pay station
 ps = new PayStationImpl(new LinearRateStrategy());
 // add $ 2.0:
 addOneDollar(); addOneDollar();

 assertEquals("Linear Rate: 2$ should give 80 min ",
 80 , ps.readDisplay());
 }
 /**
 * Integration testing for the progressive rate configuration
 */
 @Test
 public void shouldIntegrateProgressiveRateCorrectly()
 throws IllegalCoinException {
 // reconfigure ps to be the progressive rate pay station
 ps = new PayStationImpl(new ProgressiveRateStrategy());
 // add $ 2.0: 1.5 gives 1 hours, next 0.5 gives 15 min
 addOneDollar(); addOneDollar();

 assertEquals("Progressive Rate: 2$ should give 75 min ",
 75 , ps.readDisplay());
 }

 private void addOneDollar() throws IllegalCoinException {
 ps.addPayment(25); ps.addPayment(25);
 ps.addPayment(25); ps.addPayment(25);
 }
}

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 32

Test Suites

package paystation.domain;

import org.junit.runner.RunWith;
import org.junit.runners.Suite;

@RunWith (Suite.class)
 @Suite.SuiteClasses(
 { TestPayStation.class,
 TestLinearRate.class,
 TestProgressiveRate.class,
 TestIntegration.class })

public class TestAll {
 // Dummy - it is the annotations that tell JUnit
what to do...
}

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Overview of the Iterations

33

1. refactor to introduce a rate strategy, make all existing test
cases pass

2. triangulate the first hour rate calculation into the rate
algorithm.

3. triangulate the second hour rate.

4. triangulate the third and following hours rate.

5. discover that the rate strategies can be tested as separate
software units, refactor the test cases for the Betatown’s rate
algorithm.

6. discover that the analyzability of the pay station test code can
be improved by introducing a simple rate strategy. Refactored
test cases. Introduced integration testing of the pay station
with the individual rate strategies.

7. introduce the JUnit annotations for handling test suites.

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Conclusion

• Use the old functional tests to refactor
without adding new or changing existing
behaviour

• When everything is green again then proceed
to introduce new/modified behaviour

• Review again to see if there is any dead code
lying around or other refactorings to do

34

Thursday, October 18, 2012

