
Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Theme 2
Program Design and Testing

Systematic Testing

1

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Learning Objectives

• to present a few systematic testing techniques
that increase the chance of finding defects
while keeping the number of test cases low.

2

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Discussion

• Remember:
If there is a defect, software may fail and is not
reliable.

• Discussion

• Find example of removing a defect does not
increase the system’s reliability at all

• Find example of removing defect 1 increase
reliability dramatically while removing defect 2
does not

3

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Question:
 What kind of defects should you correct

to get best return on investment?

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Terminology

• The probability of defects is a function of the code
complexity. Thus we may identify three different
testing approaches:

• No testing.
Complexity is so low that the test code will become more
complex. Example: set/get methods

• Explorative testing.
 “gut feeling”, experience. TDD relies heavily on ‘making
the smart test case’ but does not dictate any method.

• Systematic testing.
is a planned and systematic process with the explicit goal
of finding defects in some well-defined part of the system

5

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Testing Techniques

• Black-box testing
The unit under test is treated as a black box. The
only knowledge we have to guide our testing effort
is the specification of the UUT and a general
knowledge of programming, algorithms, and
common mistakes made by programmers

• White-box testing
The fill implementation of the unit under test is
known, the actual code can be inspected in order to
generate test cases.

6

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Equivalence Class Partitioning

• Math.abs(x): Absolute value of x

• If x is not negative, return x.

• If x is negative, return the negation of x.

• Will these five test cases ensure a reliable
implementation?

7

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Example

1. What is the probability that
x=38 will find a defect that
x=37 did not expose?

2. What is the probability that
there will be a defect in
handling negative x?

8

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Example (continued)

9

+37

+38

+39

+40

+41

-42

-2563

x = -42 42

x = -2563 2563

EC-1
EC-2

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Conclusion

10

• The specification will force an implementation
where (most likely!) all positive arguments are
treated by one code fragment and all negative
arguments by another.

• Thus we only need two test cases:
1. one that tests the positive argument handling code

2. one that tests the negative argument handling code

• For 1) x =37 is just as good as x =1232, etc. Thus
we simply select a representative element from
each EC and generate a test case based upon it.

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Equivalence Class

11

• We can find a single input value that
represents a large set of values!

• Equivalence Class (EC)
A subset of all possible inputs to the UUT that has
the property that if one element in the subset
demonstrates a defect during testing, then we
assume that all other elements in the subset will
demonstrate the same defect.

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Remark

• Systematic testing ...

does not mean

• systematically find all defects and guaranty none
are left!!!

does mean

• systematically derive a small test case with high
probability of finding many defects!!!

12

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Soundness

• Partitioning is sound if two properties are
fulfilled:

• Coverage
every possible input element belongs to at least
one of the equivalence classes.

• Representation
if a defect is demonstrated on a particular
member of an equivalence class, the same defect
is assumed to be demonstrated by any other
member of the class.

13

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Notation

• Equivalence class table

• Input values that leads to abnormal
processing/giving up, we classify as belonging to
invalid ECs.

• Those input values that process normally we
say belong to valid ECs.

14

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Process

• Finding a good set of ECs is often a difficult
process requiring skills and experience!!

• set of guidelines, heuristics

• finding ECs is an iterative process!!!

• take small steps!

15

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Reality Example

• Example: Backgammon move validation

• validity = v (move, player, board-state, die-value)

• is Red move (B1-B2) valid on this board given this die?

• Problem:

• multiple parameters: player, move, board, die

• complex parameters: board state

• coupled parameters: die couples to move!

16

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Guidelines

• Look for conditions in the specification of the
UUT.

• conditions express choices in our algorithms and
therefore typically defines disjoint algorithm
parts!

• and as the test cases should at least run through
all parts of the algorithms, it defines the
boundaries for the ECs.

• Consider typical programming techniques

• will a program contain if ’s and while’s here?

17

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Heuristics: Range of Values
• If you have a range of values specification

• make 3 ECs

• [1] in range	
 	
 	
 valid

• [2] above range	
	
 invalid

• [3] below range	
	
 invalid

• Example: Standard chess notation
 Are “a8” or “x17” valid positions?

18

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Heuristics: Set of Values

• If you have a set, S, of values specification:

• make |S|+1 ECs

• [1]..[|S|] one for each member in S	
 valid

• [|S|+1] for a value outside S	
 	
 invalid

• Example: PayStation accepting coins

• Set of {5, 10, 25} cents coins

19

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Heuristics: Boolean Condition

• If you have a boolean condition specification

• make 2 ECs

• Example: the first character must be a letter

20

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Test-case Generation
• Combination of conditions

need to combine ECs to generate test cases

• Example: chess board validation (i.e., valid
positions)

21

Extended test case table

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Myers Heuristic
• To limit the number of test cases, Myers suggests

1. Until all valid ECs have been covered, define a test case
that covers as many uncovered valid ECs as possible

2. Until all invalid ECs have been covered, define a test
case whose element only lies in a single invalid EC.

22

Rule 2

Rule 1

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Why Rule 2?
• Letting only one condition be invalid at a time,

avoid test cases that pass due to masking.

• Example

23

 Test case (‘ ‘,0) will pass which is expected
Code deemed correct, but this is a wrong conclusion!

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

The Process

24

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Example

25

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Example: Process Step 1

26

Which heuristic to use on the specification?
[Remember: range, set or boolean?]

Representation property??
If a defect is demonstrated on a particular member of
an equivalence class, the same defect is assumed to be
demonstrated by any other member of the class.

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Example: leap years!!

27

Weekday calculation is influenced by leap years
w.r.t. months

Coverage??
Every possible input element belongs to at least
one of the equivalence classes.

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Example: Process step 4

28

Generate using Myers heuristics test cases

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Boundary Analysis

29

• Experience shows that test cases focusing on
boundary conditions have high payoff.

• Some common examples:

• iteration over an array at its max size

• ”off by one” errors in comparisons

• if (x <= MAX_SIZE) and not if (x < MAX_SIZE)

• null as value for a reference/pointer

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Boundary Value

• Boundary Value
A boundary value is an element that lies right on or
next to the edge of an equivalence class.

• Example: chess board position has strong boundary, ‘a’,
‘h’, 1 and 8.

It is thus very interesting to test row = 1, row = 8,
column = ‘a’, column = ‘h’ as boundary.

• complements EC analysis

30

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Key Points
• Observe unit preconditions

Do not generate ECs and test cases for conditions
that a unit specifically cannot or should not handle.

• Systematic testing assumes competent
programmers
Equivalence partitioning and other testing
techniques rely on honest and competent
programmers that are using standard techniques

• Do not use Myers combination heuristics
blindly
Myers heuristics for generating test cases from valid
and invalid ECs can lead to omitting important test
cases.

31

Thursday, October 18, 2012

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Reading Material:
Pair-wise Testing

Thursday, October 18, 2012

