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Theme 2
Program Design and Testing

Systematic Testing
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Learning Objectives

• to present a few systematic testing techniques 
that increase the chance of finding defects 
while keeping the number of test cases low. 
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Discussion

• Remember:
If there is a defect, software may fail and is not 
reliable.

• Discussion

• Find example of removing a defect does not 
increase the system’s reliability at all

• Find example of removing defect 1 increase 
reliability dramatically while removing defect 2 
does not
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Question:
 What kind of defects should you correct 

to get best return on investment? 
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Terminology

• The probability of defects is a function of the code 
complexity. Thus we may identify three different 
testing approaches:

• No testing. 
Complexity is so low that the test code will become more 
complex. Example: set/get methods

• Explorative testing.
 “gut feeling”, experience. TDD relies heavily on ‘making 
the smart test case’ but does not dictate any method.

• Systematic testing.
is a planned and systematic process with the explicit goal 
of finding defects in some well-defined part of the system
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Testing Techniques

• Black-box testing
The unit under test is treated as a black box. The 
only knowledge we have to guide our testing effort 
is the specification of the UUT and a general 
knowledge of programming, algorithms, and 
common mistakes made by programmers

• White-box testing
The fill implementation of the unit under test is 
known, the actual code can be inspected in order to 
generate test cases.
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Equivalence Class Partitioning

•  Math.abs(x ): Absolute value of  x 

• If x is not negative, return x.

• If x is negative, return the negation of x. 

•  Will these five test cases ensure a reliable 
implementation?
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Example

1. What is the probability that 
x=38 will find a defect that 
x=37 did not expose?

2. What is the probability that 
there will be a defect in 
handling negative x?
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Example (continued)
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+38
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+40

+41

-42

-2563

x = -42 42

x = -2563 2563

EC-1
EC-2

Thursday, October 18, 2012



Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Conclusion
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•  The specification will force an implementation 
where (most likely!) all positive  arguments are 
treated by one code fragment and all negative  
arguments by another.

• Thus we only need two test cases: 
1. one that tests the positive argument handling code

2. one that tests the negative argument handling code

• For 1)  x =37 is just as good as  x =1232, etc. Thus 
we simply select a representative element  from 
each EC and generate a test case based upon it. 
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Equivalence Class
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• We can find a single input value that 
represents a large set of values!

• Equivalence Class (EC)
A subset of all possible inputs to the UUT that has 
the property that if one element in the subset 
demonstrates a defect during testing, then we 
assume that all other elements in the subset will 
demonstrate the same defect.
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Remark

• Systematic testing ...

does not mean

• systematically find all defects and guaranty none 
are left!!!

does mean

• systematically derive a small test case with high 
probability of finding many defects!!!

12

Thursday, October 18, 2012



Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Soundness

• Partitioning is sound if two properties are 
fulfilled:

• Coverage
every possible input element belongs to at least 
one of the equivalence classes.

• Representation
if a defect is demonstrated on a particular 
member of an equivalence class, the same defect 
is assumed to be demonstrated by any other 
member of the class.
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Notation

• Equivalence class table

• Input values that leads to abnormal 
processing/giving up, we classify as belonging to 
invalid ECs. 

• Those input values that process normally we 
say belong to valid ECs. 
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Process

• Finding a good set of ECs is often a difficult 
process requiring skills and experience!!

• set of guidelines, heuristics

• finding ECs is an iterative process!!!

• take small steps!
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Reality Example

• Example: Backgammon move validation

• validity = v (move, player, board-state, die-value)

• is Red move (B1-B2) valid on this board given this die?

• Problem:

• multiple parameters: player, move, board, die

• complex parameters: board state

• coupled parameters: die couples to move!
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Guidelines

• Look for conditions in the specification of the 
UUT.  

• conditions express choices in our algorithms and 
therefore typically defines disjoint algorithm 
parts!

• and as the test cases should at least run through 
all parts of the algorithms, it defines the 
boundaries for the ECs.

• Consider typical programming techniques

• will a program contain if ’s and while’s here?

17

Thursday, October 18, 2012



Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Heuristics: Range of Values
• If you have a range of values specification

• make 3 ECs

• [1] in range	
 	
 	
 valid 

• [2] above range	
	
 invalid

• [3] below range	
	
 invalid

• Example:  Standard chess notation
 Are “a8” or “x17” valid positions?
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Heuristics: Set of Values

• If you have a set, S, of values specification:

• make |S|+1 ECs

• [1]..[|S|] one for each member in S	
 valid

• [|S|+1] for a value outside S	
 	
     invalid

• Example: PayStation accepting coins

• Set of {5, 10, 25} cents coins
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Heuristics: Boolean Condition

• If you have a boolean condition specification 

• make 2 ECs

• Example: the first character must be a letter
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Test-case Generation
• Combination of conditions

need to combine ECs to generate test cases

• Example: chess board validation (i.e., valid 
positions)
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Extended test case table
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Myers Heuristic
• To limit the number of test cases, Myers suggests 

1. Until all valid ECs have been covered, define a test case 
that covers as many uncovered valid ECs as possible

2. Until all invalid ECs have been covered, define a test 
case whose element only lies in a single invalid EC.
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Rule 2

Rule 1
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Why Rule 2?
• Letting only one condition be invalid at a time, 

avoid test cases that pass due to masking.

• Example
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 Test case (‘ ‘,0) will pass which is expected
Code deemed correct, but this is a wrong conclusion!
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The Process
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Example
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Example: Process Step 1
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Which heuristic to use on the specification?
[Remember: range, set or boolean?]

Representation property??
If a defect is demonstrated on a particular member of 
an equivalence class, the same defect is assumed to be 
demonstrated by any other member of the class.
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Example: leap years!!
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Weekday calculation is influenced by leap years 
w.r.t. months

Coverage??
Every possible input element belongs to at least 
one of the equivalence classes.
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Example: Process step 4
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Generate using Myers heuristics test cases
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Boundary Analysis
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• Experience shows that test cases focusing on 
boundary conditions have high payoff.

• Some common examples:

• iteration over an array at its max size

• ”off by one” errors in comparisons

• if ( x <= MAX_SIZE ) and not if ( x < MAX_SIZE )

• null as value for a reference/pointer
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Boundary Value

• Boundary Value
A boundary value is an element that lies right on or 
next to the edge of an equivalence class.

• Example: chess board position has strong boundary, ‘a’, 
‘h’, 1 and 8.

It is thus very interesting to test row = 1, row = 8, 
column = ‘a’, column = ‘h’ as boundary.

• complements EC analysis
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Key Points
• Observe unit preconditions

Do not generate ECs and test cases for conditions 
that a unit specifically cannot or should not handle.

• Systematic testing assumes competent 
programmers
Equivalence partitioning and other testing 
techniques rely on honest and competent 
programmers that are using standard techniques

• Do not use Myers combination heuristics 
blindly
Myers heuristics for generating test cases from valid 
and invalid ECs can lead to omitting important test 
cases.
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Reading Material:
Pair-wise Testing
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