Theme 2
Program Design and lesting

Test-Driven Development

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Learning Objectives

® become familiar with the rhythm of test-driven
development.

® |earn a set of principles that form a list of
potential actions that can be taken in each
step in the rhythm.

® |earn the definition of refactoring

® |earn about the liabilities and benefits of a test-
driven development process.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Table of content

® Jest-driven development values
® The Pay Station Case
® Fundamental TDD principles

® The TDD Rhythm

® In practice...

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,
RELIABLE

Test-Driven Development E=

® Working software
® ensure reliable software
® ensure fast development process

® ensure restructuring software and its architecture

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,

TDD Values *=*

o Keep focus

® Make one thing only, at a time!
e Often

® “Fixing this, requires fixing that, hey this could be smarter, fixing it,

¢ Take small steps

® Taking small steps allow you to backtrack easily when the
ground becomes slippery

e (Often

® “| can do it by introducing these two classes, hum hum, no no, |
need a third, wait...”

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

TDD Values (c’'td) =

¢ Speed
® You are what you do! Deliver every |4 days!!!

e (Often

® After two years, half the system is delivered, but works quite in
another way than the user anticipate/wants. ..

® Speed, not by being sloppy but by making less functionality of
superior quality!

e Simplicity

® Maximize the amount of work not done!
® Often

® | can make a wonderful recursive solution parameterized for
situations X,Y and Z (that will never ever occur in practice)

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Before we can continue, we
introduce a case study.

The Pay Station Case

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

The Pay Station Case

® You are all
employees of
PayStation Ltd.

® You will develop the
main software to
run pay stations

B raystation GuI fimif- B Rreceipt
Yariant Selection
PARKING R-E'CE I P T
Value 012 minutes.
Car parked at 14:32
0111010 U 1 00 1V 117 L 1 1) 1 10 1)1 Y 11V 11110 X 1V 1V g 1) 14

Cancel

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,
RELIABLE

® Requirements

® accept coins for payment

®5 10,25 cents

® show time bought on display

® print parking time receipts
® US: 2 minutes cost 5 cent

® handle buy and cancel

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,
RELIABLE

Stories

Story 1: Buy a parking ticket. A car driver walks to the pay station to buy parking
time. He enters several valid coins (5, 10, and 25 cents) as payment. For each payment
of 5 cents he receives 2 minutes parking time. On the pay station’s display he can see
how much parking time he has bought so far. Once he is satisfied with the amount of
time, he presses the button marked “Buy”. He receives a printed receipt, stating the
number of minutes parking time he has bought. The display is cleared to prepare for
another transaction.

Story 2: Cancel a transaction. A driver has entered several coins but realize that the
accumulated parking time shown in the display exceeds what she needs. She presses
the button marked “Cancel” and her coins are returned. The display is cleared to
prepare for another transaction.

Story 3: Reject illegal coin. A driver has entered 50 cents total and the display reads
“20”. By mistake, he enters a 1 euro coin which is not a recognized coin. The pay
station rejects the coin and the display is not updated.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE
SOFTWARE

[et
e

Design: Static View

PayStationHardware

«interface»
Receipt

\\ /" \ *

«interface» 1
PayStation

PayStationimpl

issuer

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE

<

Design: Code View

public interface PayStation {

),n".‘.".'-'

*# Insert coin into the pay station and adjust state accordingly.

* [param coinValue i3 an integer value representing the coin in
cent. That is, a quarter is coinValue=25, etc.

* [@throws IllegalCoinException in case coinValue is not

* a valid coin walue

*/
public woid addPayment(int coinValue) throws IllegalCoinException;

*

_,"’-""""'
* Read the machine's display. The display shows a numerical public interface Receipt {
* description of the amount of parking time accumulated so far
* based on inserted payment. A
* @return the number to display on the pay station display * Return the number of minutes this receipt is walid for.

* * @Breturn number of minutes parking time
public int readDisplayi():’ * 7

. public int wvalue():
* Buy parking time. Terminate the ongoing transaction and :
* return a parking receipt. A non-null object is always returned.
* @return a valid parking receipt object.

*/
public Receipt buy():

),u".'.".'.'
* Cancel the present transaction. Resets the machine for a new
* transaction.
*f

public woid cancel():;

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Design: Dynamic View

SOFTWARE

| sd BuyOperation

ps: PayStationHardware payStation:PayStationImpl

loop ‘ .|

T
T
:
’ |
insert coin [
® > addPayment

T
T
|
|
|
|
|
|

~updateDisplay
/‘

readDisplay

push Buy button

> pushBuyButton

create

recipt: Reciptimpl

recipt

updateDisplay

readDisplay

|
|
|
|
|
|
|
|

H |
Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Back to TDD...

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

The fundamental TDD

principles

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Principle: Test first

e TDD Principle: Test first

When should you write your tests! Before you
write the code that is to be tested.

® Because you won't test afterwards!!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Principle: Automated Test

¢ TDD principle: Automated Test
How do you test your software! Write an
automated test.

® Kent Beck:
“Software features that can’t be demonstrated by

automated tests simply don’t exist.”

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Principle: Test List

¢ TDD principle: Test List
What should you test? Before you begin, write a list

of all the tests you know you will have to write.
Add to it as you find new potential tests.

® “Never take a step forward unless you know where your

foot is going to land”. What is it we want to achieve
in this iteration ???

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

The lteration Skeleton

® Each TDD iteration follows the Rhythm

® The TDD Rhythm:
|. Quickly add a test
2. Run all tests and see the new one fail
3. Make a little change
4. Run all tests and see them all succeed

5. Refactor and remove code duplication

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Refactoring!?

® “Refactoring is the process of changing a
software system in such a way that it does not
alter the external behaviour of the code yet
improves its internal structure” Martin Fowler
www.martinfowler.com
www.refactoring.com

® improving (should) means: easier to maintain

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

http://www.refactoring.com
http://www.refactoring.com

Size of an iteration

® An iteration is small
typically adding a very very small increment of
behaviour to the system.

® |terations (= all 5 steps) typically last from |
to |5 minutes. If it becomes bigger it is usually
a sign that you do not take small steps and have
lost focus!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,

Exercise

Generate the Test List for these stories.

Story 1: Buy a parking ticket. A car driver walks to the pay station to buy parking
time. He enters several valid coins (5, 10, and 25 cents) as payment. For each payment
of 5 cents he receives 2 minutes parking time. On the pay station’s display he can see
how much parking time he has bought so far. Once he is satisfied with the amount of
time, he presses the button marked “Buy”. He receives a printed receipt, stating the
number of minutes parking time he has bought. The display is cleared to prepare for
another transaction.

Story 2: Cancel a transaction. A driver has entered several coins but realize that the
accumulated parking time shown in the display exceeds what she needs. She presses
the button marked “Cancel” and her coins are returned. The display is cleared to
prepare for another transaction.

Story 3: Reject illegal coin. A driver has entered 50 cents total and the display reads
“20”. By mistake, he enters a 1 euro coin which is not a recognized coin. The pay
station rejects the coin and the display is not updated.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,

Possible Answer E=

accept legal coin

5 cents should give 2 minutes parking time
reject illegal coin

readDisplay

buy produces valid receipt

cancel resets pay station

P S

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Iteration O:

Setting Up

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE
SOFTWARE

Uning Potiorrs emd
Agin Developrere

Which one to pick!?

® \Where do | start??

¢ TDD Principle: One Step Test

Which test should you pick next from the test list?
Pick a test that will teach you something and that
you are confident you can implement.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Iteration |:

5¢c = 2 min Parking

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Step |: Quickly add a test EE

® The test case
o ps.addPayment(S);
® ps. realespIay()

mport org.junit.*;
import static ordg. Junlt.Assert.*;

or the Pay Station systen.

From the book "Reliable and Flexible Software Explained”
Copyright: 2010 CRC Pr
Author: Henrik B Chri

public class TestPayStation {

JUnit Code

“+
"

* Entering 5 cents should make the display report 2 minutes parking
time.

* /7
J

@Test
public void shouldDisplayzZMinForSCents() throws IllegalCoinException {
PayStation ps = new PayStationImpli():’
ps.addPayment(5)’
assertEquals("Should display 2 min for 5 cents”™,
2, ps.readDisplavy())’

}
'

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Step 2: Run all tests and see the
new one fail

RELIABLE
SOFTWARE

u-.h—-—

® Requires the implementation of a
PayStationimpl Temporary Test Stub

® All methods are empty or return null

public class PayStationlImnpl implements PayStation {
private int inserted3oFar;
private int timeBought;

public void addPayment(int coinValue)
throws IllegalCoinException {

}

public int readDisplavy() {
return 0;

¥

public Receipt buy() {
return null;

}

public void cancel() {

}

)

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Step 3: Make a little change

® Exercise: what should you do?

public class PayStationlmpl implements PayStation {
private int insertedSoFar;

® Re m c m b er. private int timeBought;

public void addPayment(int coinValue)

® KeeP focus throws IllegalCoinException {
}

® Take Sma” StePS public int readDisplavyi) {

return 0;
}
public Receipt buy() {

return null:;

}

public woid cancel() {

}

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Fake it!

¢ TDD Principle: Fake It!
What is your first implementation once you have

broken a test? Return a constant.Once you have the

tests running, gradually transform it!!!

® Might sound controversial: Implement a solution that
is known to be wrong and that must be deleted in two

seconds.
o Why???

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Test-driven!!

¢ Key point: no a single character is ever
put into the production code if there is
no test case defined to drive it into
existence!

® We only have one test case, 5¢ = 2 min, and the

simplest possible implementation is return 2;’. No
other test case forces us to anything more!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Fake it???

® Fake it because:

- focus! You keep focus on the task at hand!
Otherwise you often are lead into implementing
all sorts of other code...

- small steps! You move faster by making many
small steps rapidly than leaping, falling, and
crawling back up all the time...

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Step 4: Run all tests and see
them all succeed

® Remember to note the success on the test list

. jegat-coin

~

insert illegal coin
readDisplay
buy

cancel

® But — of course | am concerned! The
implementation is wrong!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Step 4 c’td: Triangulation

¢ Key point: one test case is not enough
to ensure a reliable implementation of
the rate calculation! Need more test
cases to drive the implementation!!

¢ TDD Principle: Triangulation
How do you conservatively drive abstraction with

tests? Abstract only when you have two or more
examples.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Triangulation

® The point is that return 2 is actually the
correct implementation of the readDisplay if
the only occurring use case is a person buying
for 5 cents!

® The conservative way to drive a more correct
implementation is to add more examples/
stories/scenarios => more test cases!

® The above implementation is not correct for
entering, e.g., 25 cents!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Triangulation ==

® So | simply remind myself that Fake It is playing around
in the production code by adding it to the test list:

insert illegal coin, exception
; hould_cive 2 mi ailbine fime
readDisplay

25 cents = 10 minutes 2

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Iteration 2:

Rate Calculation
25 cents = |0 minutes

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Step |: Quickly add a test E&

® Where!
¢ TDD Principle: Isolated Test

How should the running of tests affect one
another?! Not at all.

® Exercise: why!??

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Step |

¢ Isolated Test guards you against the ripple
effect

® Jest | fails,

® |eaving objects in another state than if it had passed

® TJest 2 assumes the object state left by Test |

® but is it different from that assumed — and Test 2 fails

® ..and all tests fail due to one single problem.

e 'Isolate in order to overview failure
consequences!!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,

RELIABLE

SOFTWARE
00

| e

® Step 2: write an isolated test for 25 cent parking.
® Run all tests and see the new one fails...

® Step 3: make a little change

public class PayStationlmpl implements PayStation {
private int insertedScFar;
public veid addPayment(int ccinValue)
throws IllegalCeoinException {
insertedSoFar = coinValue;
}
public int readDisplav() {
return insertedSoFar / 5 * 2;
}
public Receipt buy() {
return null;
}
. . public wvoid cancel() {
® This is wrong?! No??
}

® What should you do?

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE
SOFTWARE

Test-driven Implementation

acceptHegal-coin

reject illegal coin, exception

buy produces valid receipt
cancel resets pay station
25 cents=1o-minttes

enter two or more legal coins

o
S
S
o
o
S
S
S

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Step 5: Refactoring

® Testing code is also best maintained!!

® Duplicated code that sets up the pay station
object.

® Move this to a Fixture which you define
using the (@Before annotation (JUnit)

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,

/**
* Entering 5 cents should make the display report 2 minutes
* parking time.
*/
@Test
public void shouldDisplayZMinFor5Cents() throws IllegalCoinException {

PayStation ps = new PayStationImpl();

ps.addPayment(5);

assertEquals("Should display 2 min for 5 cents",
2, ps.readDisplay());

}

/**
* Entering 25 cents should make the display report 10 minutes
* parking time.
*/
@Test
public void shouldDisplayl@MinFor25Cents() throws IllegalCoinException {
PayStation ps = new PayStationImpl();
ps.addPayment(25);
assertEquals("Should display 10 min for 25 cents"”,
10, ps.readDisplay());
// 25 cent 1n 5 cent coins each giving 2 minutes parking

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE

@ B f r SOFTWARE
inport org.junit.*;

inport static org.junit.Assert.?®;

/%% Testcases
|l

for the Pay Station s
Author: (c)

Henrik B&rbak

public class TestPayStation {
PAVSLAtION DS2 s

Yl R TR TR T e
§ @Before

¥ public void setUp() {

! ps = new PayStationImpl():;

PP S
t ow

/%% Testing that a nickel gives two minutes parking tin

@Test
public void testEnterNickel() throws IllegalCoinException {

ps.addPayment|{ 5);
assertEcquals(2, ps.readDisplayi)):

}

The @Before method always run before each test method.
This way each test case starts in a known and stable object

configuration.
Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE
SOFTWARE

Magic Constants

import static org.junit.Assert.?®;

/%% Testcases for the Pay Station systen.
Author: (c) Henrik B#zrbak Christensen 2006 */

public class TestPayStation {
PayStation ps;
/%% Fixture for pay station testing.
@Before
public volid setUp() {
ps = new PayStationImpl():;
}

/7

%/
;

/%% Testing that a nickel gives two minutes parking time
@Test
public vold tesgBmgerNickel() throws IllegalColnException {
ps.addPaymentf{ 5 §;
assertEqualsﬁg? fis.readDisplay[))2

|
TDD Principle: Evident Data

How do you represent the intent of the data? Include expected
and actual results in the tests itself, and make their relationship
apparent.You are writing tests for the reader; not just the
computer!!!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE
SOFTWARE

e
Mg Cvevepmane

Evident Data

S *x*x

* Entering 5 cents should make the display report 2 minutes

* parking time.

% /

@Test
public veoid shouldDisplay2MinForSCents() throws IllegalCoinException {

ps.addPayment(5);

assertEquals (__S@eessalisplay 2 min for 5 cents”,
4 ~_Ps.readDisplay()):

}

[**x
* Entering 25 cents should make the display report 10 minutes
* parking time.
* ,.f
@Test
public void shouldDisplaylOMinFor25Cents() throws IllegalCoinException {
ps.addPayment(25):;
assertEquals (awemisedd arlay 10 min for 25 cents”,
.), Jbs.readDisplay()):
// 25 cent in SEAesETT - cach giving 2 minutes parking

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Iteration 3:

lllegal Coin

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

public interface PayStation { FLEXIBLE.
RELIABLE
’,-' ko
* Insert coin into the pay station and adjust state accordingly.
@param coinValue is an integer value representing the coin in
* cent. That is, a quarter is coinValue=25, etc.
* [@throws IllegalCoinException in case coinValue is not
* a valid coin value
*7
public void addPayment|

* Read the machine's display. The display shows a numerical
* description of the amount of parking time accumulated so far
* based on inserted payuent.
* [@return the number to display on the pay station display
*f
public int readDisplay():

,""""""'
* Buy parking time. Terminate the ongoing transaction and
* return a parking receipt. A non-null object is always returned.
* [@return a valid parking receipt object.
*/
public Receipt buy():

,"“"'"‘."

* Cancel the present transaction. Resets the machine for a new
* transaction.

LF

swiic veia cancer); - JUNIt allows you to state the exception a given
test method must throw to pass.

{iTest (expe

=

nlCoinException {
ps.addPayment(17);
}
Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Iteration 4:

Valid Coins

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Representative Data

® VWhat coins to use!???

® used a 5 and 25 cent, but have not tried |10 cent
yet.

¢ TDD Principle: Representative Data
What data do you use for your tests? Select a small
set of data where each element represents a

conceptual aspect or a special computational
processing.

® Buy story states 5, 10,25 coins are valid”

® So add a dime as a valid coin.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

** buy produces valid receipt
*% cancel resets pay station

’en ter . al 0 a7 and 25 | cozn

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,

The Rhythm =

® Step |: Quickly add a test

@Test

public veoid shouldDisplayl4dMinForlOand25Cents() throws IllegalCoinException {
ps.addPayment (25) ;
p3.addPayment (10);
assert (10+4235) / 5 * 2 == ps.readDisplay()’

1

® Step 2: Run all tests and see the new one fails

® Step 3: Make a little change
add missing case in the switch statement

® Step 4: Run all tests
FAIL!! Why???

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE

public void addPayment(int coinValue)
throws IllegalCoinException {
switch C coinValue) {
case 5: break;
case 10: break;
case 25: break;

default:
throw new IllegalCoinException("Invalid coin: "+coinValue);

¥

1nsertedSoFar += coinValue;

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE

%D uV procluces vahd rece1

>z< cancel Tesetspay station

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,
RELIABLE
SOFTWARE

g P s
A Sy

Iteration 5 :

Buy It

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

The Rhythm

® Step |: Quickly add a test

* Buy should return a valid receipt of the
* proper amount of parking time
ny
@Test
public void shouldReturnCorrectReceiptWhenBuy()
throws IllegalCoinException {
p3s.addPayment(5);
ps.addPayment (10) ;
ps.addPayment (23);
Recelpt receipt;
receipt = ps.buy():
assertNotNull("Receipt reference cannot be 1
receipt);
assertEquals("Receipt wvalue must be 16 min.",
(5+10+4235) / 5 * 2 , receipt.value()):;

}
® Step 2: Run all tests => new one fails

® Step 3: Make a little change.... but

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE
SOFTWARE

g Porne -t
B S epmane

Step 3

® VWe need two changes:
® an implementation of Receipt

® implementing the buy method

® Small steps? What are the options!?
|. The old way: Do both in one go!
2. Fix receipt first, buy next...

3. Fix buy first, implement receipt later...

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,
RELIABLE

Answer...

® Take small steps tells us either 2 or 3 option:

® Fix receipt first, buy next...

® This is the natural order, because buy depends upon receipt,
and not the other way around

® but | break the buy iteration!!!

e | have lost focus!

® [Implementing Receipt means fixing a bug in B, that require a new
class C, that would be better of if D had another method, that...

® Complete buy first — do receipt next

® But how can | do that given the dependency structure!

® What is your answer?!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,
RELIABLE

Fake It!!! .

e e

® | can complete buy by making a fake receipt.

® | keep focus!

public class PayStaticnImpl implements PayStation {

private int insertedScoFar;

public veoid addPayment(int coinValue)
throws IllegalCocinException {
switch (coinValue) {
case 5: break;
case 10: break;
case 25: break;
default: throw new IllegalCoinException("Invalid cocin: "+coinValue);
}

insertedSoFar += coinValue;

) anonymous inner class,

public int readDisplay() {

revurn insertedsofer / 3 * 2 but will be removed later on!!!

}

public void cancel() {
}

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE
SOFTWARE

g Pone

Step 4

® Pass

® Update the test list!! Triangulation!!!

buy for 40 cents ™,

. receipt value 2

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Iteration 6:

Receipt

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

The Rhythm

® Step |

@Test
public void shouldStoreTimeInReceipt() {
Receipt receipt = new ReceiptImpl(30);
assertEquals("Receipt can store 30 minute value",
30, receipt.value());

® Step 2: FAIL

public class ReceiptImpl implements Receipt {
o SteP 3 private int value;
public ReceiptImpl(int value) { this.value = value; }

public int value() { return value;}

}

® Step 4: PASS

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE
SOFTWARE

[]
A Sy

FLEXIBLE,
RELIABLE
SOFTWARE

[]
- - ~
=
o A

e a D et

Iteration /:

Buy

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Step |

® Buy for 100 cents

® Exercise:

® How to enter 100 cent?
® add 5,add 5,add 5,addl0,....
® for (inti=0;i<=20;i++){add5;}

® private method add2Quarters()

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,

Evident lests ==

D]
— B Ty

e TDD Principle: Evident Tests

How do we avoid writing defective tests! By
keeping the test code evident, readable, and as

simple as possible.

® avoid loops, conditionals, recursion, complexity in
your testing code.

® because testing code is code and you make
mistakes in code!

® assignment, creation, private method calls

® and not much else!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Step 3,4 and 5 .

public int readDisplay() {
return insertedSoFar * 2 / 5;
}

public Receipt puby() {
return new Receiptimpl(insertedSoFar * 2 / 5);

}
® Code Duplication

® Refactoring: several possibilities

® introduce a new instance variable:

® int timeBought
® to hold the time bought so far

® How can | ensure that | do this reliably??

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE

Implementation of the Pay E=
Station so far...

public class PayStationImpl implements PayStation {
private int insertedSoFar;
private int timeBought;

public void addPayment(int coinValue)
throws IllegalCoinException {
switch (coinValue) {
case 5: break;
case 10: break;
case 25: break;
default:
throw new IllegalCoinException("Invalid coin: "+coinValue);
¥
insertedSoFar += coinValue;
timeBought = insertedSoFar / 5 * 2;
¥
public int readDisplay() {
return timeBought;
¥
public Receipt buy() {
return new ReceiptImpl(timeBought);
Iy
public void cancel() {
Iy
¥

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,

Do It Yourself!

® clearing after a buy operation

® cancel resets pay station

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Conclusions

® Jest-driven development process is

® Clean code that works!!

® First - make it work

® quickly, taking small steps; sometimes faking it

® Next - make it clean

® refactoring (removing duplication)

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Conclusions

® TDD promises confidence for the developers
® TJests that pass give confidence
® Failing test cases tell exactly where to look

® Developers dare to refactor and experiment
because tests tell them if their ideas are OK.

® Developers have taken small steps, so getting back
is easy (put it under version control !!!)

® Reliability

® Code that is tested by good test cases is much
better than code that is not.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Conclusions

® Jest code is an asset that must be maintained!
® All unit tests run all the time!

® |f you change production code API you update
the test cases as well!!! You do not throw them
away!!!

® Bug report from customer site?

A) Make a test case that demonstrate the failure

B) Correct the defect

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,
RELIABLE
SOFTWARE

Conclusions

® Programming Process
® Developers can tell what they do when they
code.

® Can you explain to your friend why you code it that way
and another way? And why your way is better?

® |t is reflected practice instead of divine inspiration
or black magic...

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

