
Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Theme 2
Program Design and Testing

Test-Driven Development

1

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Learning Objectives

• become familiar with the rhythm of test-driven
development.

• learn a set of principles that form a list of
potential actions that can be taken in each
step in the rhythm.

• learn the definition of refactoring

• learn about the liabilities and benefits of a test-
driven development process.

2

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Table of content

• Test-driven development values

• The Pay Station Case

• Fundamental TDD principles

• The TDD Rhythm

• In practice...

3

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Test-Driven Development

• Working software

• ensure reliable software

• ensure fast development process

• ensure restructuring software and its architecture

4

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

TDD Values

• Keep focus

• Make one thing only, at a time!

• Often

• “Fixing this, requires fixing that, hey this could be smarter, fixing it,
…”

• Take small steps

• Taking small steps allow you to backtrack easily when the
ground becomes slippery

• Often

• “I can do it by introducing these two classes, hum hum, no no, I
need a third, wait…”

5

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

TDD Values (c’td)

• Speed

• You are what you do! Deliver every 14 days!!!

• Often

• After two years, half the system is delivered, but works quite in
another way than the user anticipate/wants…

• Speed, not by being sloppy but by making less functionality of
superior quality!

• Simplicity

• Maximize the amount of work not done!

• Often

• I can make a wonderful recursive solution parameterized for
situations X, Y and Z (that will never ever occur in practice)

6

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 7

Before we can continue, we
introduce a case study.

The Pay Station Case

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 8

The Pay Station Case

•You are all
employees of
PayStation Ltd.

•You will develop the
main software to
run pay stations

•

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Customer AlphaTown

•Requirements

• accept coins for payment

• 5, 10, 25 cents

• show time bought on display

• print parking time receipts

• US: 2 minutes cost 5 cent

• handle buy and cancel

9

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Stories

10

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Design: Static View

11

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Design: Code View

12

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Design: Dynamic View

13

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Back to TDD...

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

The fundamental TDD
principles

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Principle: Test first

• TDD Principle: Test first
When should you write your tests? Before you
write the code that is to be tested.

• Because you won’t test afterwards!!

16

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Principle: Automated Test

• TDD principle: Automated Test
How do you test your software? Write an
automated test.

• Kent Beck:
“Software features that can’t be demonstrated by
automated tests simply don’t exist.”

17

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Principle: Test List

• TDD principle: Test List
What should you test? Before you begin, write a list
of all the tests you know you will have to write.
Add to it as you find new potential tests.

• “Never take a step forward unless you know where your
foot is going to land”. What is it we want to achieve
in this iteration ???

18

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

The Iteration Skeleton

• Each TDD iteration follows the Rhythm

• The TDD Rhythm:
1. Quickly add a test

2. Run all tests and see the new one fail

3. Make a little change

4. Run all tests and see them all succeed

5. Refactor and remove code duplication

19

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Refactoring?

• “Refactoring is the process of changing a
software system in such a way that it does not
alter the external behaviour of the code yet
improves its internal structure” Martin Fowler
www.martinfowler.com
www.refactoring.com

• improving (should) means: easier to maintain

20

http://www.refactoring.com
http://www.refactoring.com

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Size of an iteration

• An iteration is small
typically adding a very very small increment of
behaviour to the system.

• Iterations (= all 5 steps) typically last from 1
to 15 minutes. If it becomes bigger it is usually
a sign that you do not take small steps and have
lost focus!

21

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Exercise

22

Generate the Test List for these stories.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Possible Answer

23

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Iteration 0:
Setting Up

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Which one to pick?

25

• Where do I start??

• TDD Principle: One Step Test
Which test should you pick next from the test list?
Pick a test that will teach you something and that
you are confident you can implement.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Iteration 1:
5c = 2 min Parking

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Step 1: Quickly add a test

• The test case

• ps.addPayment(5);

• ps.readDisplay() == 2;

27

JUnit Code

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Step 2: Run all tests and see the
new one fail

• Requires the implementation of a
PayStationImpl Temporary Test Stub

• All methods are empty or return null

•
28

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Step 3: Make a little change

• Exercise: what should you do?

• Remember:

• Keep focus

• Take small steps

29

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Fake it!

• TDD Principle: Fake It!
What is your first implementation once you have
broken a test? Return a constant.Once you have the
tests running, gradually transform it!!!

• Might sound controversial: Implement a solution that
is known to be wrong and that must be deleted in two
seconds.

• Why???

30

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Test-driven!!

• Key point: no a single character is ever
put into the production code if there is
no test case defined to drive it into
existence!

• We only have one test case, 5c = 2 min, and the
simplest possible implementation is ’return 2;’. No
other test case forces us to anything more!

31

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Fake it???

• Fake it because:

- focus! You keep focus on the task at hand!
Otherwise you often are lead into implementing
all sorts of other code...

- small steps! You move faster by making many
small steps rapidly than leaping, falling, and
crawling back up all the time...

32

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Step 4: Run all tests and see
them all succeed

• Remember to note the success on the test list

• But – of course I am concerned! The
implementation is wrong!

33

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Step 4 c’td: Triangulation

• Key point: one test case is not enough
to ensure a reliable implementation of
the rate calculation! Need more test
cases to drive the implementation!!

• TDD Principle: Triangulation
How do you conservatively drive abstraction with
tests? Abstract only when you have two or more
examples.

34

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Triangulation

• The point is that return 2 is actually the
correct implementation of the readDisplay if
the only occurring use case is a person buying
for 5 cents!

• The conservative way to drive a more correct
implementation is to add more examples/
stories/scenarios => more test cases!

• The above implementation is not correct for
entering, e.g., 25 cents!

35

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Triangulation

36

• So I simply remind myself that Fake It is playing around
in the production code by adding it to the test list:

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Iteration 2:
Rate Calculation

25 cents = 10 minutes

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Step 1: Quickly add a test

• Where?

• TDD Principle: Isolated Test
How should the running of tests affect one
another? Not at all.

• Exercise: why??

38

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Step 1

• Isolated Test guards you against the ripple
effect

• Test 1 fails,
• leaving objects in another state than if it had passed

• Test 2 assumes the object state left by Test 1
• but is it different from that assumed – and Test 2 fails

• ... and all tests fail due to one single problem.

• !!Isolate in order to overview failure
consequences!!

39

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Do It...

• Step 2: write an isolated test for 25 cent parking.

• Run all tests and see the new one fails...

• Step 3: make a little change

• This is wrong?? No??
• What should you do?

40

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Test-driven Implementation

41

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Step 5: Refactoring

42

• Testing code is also best maintained!!

• Duplicated code that sets up the pay station
object.

• Move this to a Fixture which you define
using the @Before annotation (JUnit)

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 43

 /**
 * Entering 5 cents should make the display report 2 minutes
 * parking time.
 */
 @Test
 public void shouldDisplay2MinFor5Cents() throws IllegalCoinException {

 PayStation ps = new PayStationImpl();
 ps.addPayment(5);
 assertEquals("Should display 2 min for 5 cents",
 2, ps.readDisplay());
 }

 /**
 * Entering 25 cents should make the display report 10 minutes
 * parking time.
 */
 @Test
 public void shouldDisplay10MinFor25Cents() throws IllegalCoinException {
 PayStation ps = new PayStationImpl();
 ps.addPayment(25);
 assertEquals("Should display 10 min for 25 cents",
 10, ps.readDisplay());
 // 25 cent in 5 cent coins each giving 2 minutes parking
 }

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

@Before

44

The @Before method always run before each test method.
This way each test case starts in a known and stable object
configuration.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Magic Constants

45

TDD Principle: Evident Data
How do you represent the intent of the data? Include expected
and actual results in the tests itself, and make their relationship
apparent. You are writing tests for the reader, not just the
computer!!!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Evident Data

46

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Iteration 3:
Illegal Coin

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 48

JUnit allows you to state the exception a given
test method must throw to pass.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Iteration 4:
Valid Coins

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Representative Data

• What coins to use???

• used a 5 and 25 cent, but have not tried 10 cent
yet.

• TDD Principle: Representative Data
What data do you use for your tests? Select a small
set of data where each element represents a
conceptual aspect or a special computational
processing.

• Buy story states “5, 10, 25 coins are valid”

• So add a dime as a valid coin.

50

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 51

✐
✐

“book” — 2010/3/11 — 9:50 — page 62 — #90 ✐
✐

✐
✐

✐
✐

62 ❚ CHAPTER 5 Test-Driven Development

Sidebar 5.2: Defects in a Plotter Package

I once developed software to make graphical plots for a technical department in a
major telephone company. The software operated a pen based plotter and could
plot classic X-Y diagrams. As a feature I added that the creation date of the plot was
written in the corner of the plot. I developed this software package for more than a
week and it worked fine with all my test data.
However, two problems surfaced later. The first appeared instantly when the tech-
nical department tested it: I had tested with X-Y data in the range 0..1000 but the
data the technical department needed to plot was in the 10−7 range and my software
did not handle that well. After fixing this, all worked fine for several weeks—until
the package stopped working all together. It took me quite a long time to figure
out that the defect was in the code for writing the date in the corner! It turned out
that I had started on the package around the 12th in the month and thus for several
weeks the date integer had always consisted of two digits! As the date turned to
the next month all of a sudden the date only had one digit—and my production
code failed on converting the non-existing second digit into a string! Remember the
Representative Data principle.

illegal coin, and adding ten extra test cases that try to insert a 3 cent, 42 cent, 5433 cent,
etc., do not add much additional confidence in the reliability of the production code.
So select a small set of data values. On the other hand your set must not miss values
that do exhibit a computational difference. This is the case here in which the buy story
states that 5, 10, and 25 cent coins are valid and my implementation using a switch
treats each coin seperately. Thus I need test cases to cover all three types of coins. I
remember to keep focus, this iteration is about invalid coins and it is completed, so
the way to ensure I remember this observation is to add an item to the test list. In this
case I can actually just change one of the existing items:

✽ accept legal coin
✽ reject illegal coin, exception
✽ 5 cents should give 2 minutes parking time.
✽ readDisplay
✽ buy produces valid receipt
✽ cancel resets pay station
✽ 25 cents = 10 minutes
✽ enter two or more legal a 10 and 25 coin

Step 5: Refactor to remove duplication. Looking over the code I find no need for refac-
toring.

5.6 Iteration 4: Two Valid Coins
I decide to make the last item, enter a 10 and 25 coin, on the list my focus for the
next iteration. This is because it will allow me both to complete the coin validation
functionality as well as drive the summation of inserted payment into existence.
Step 1: Quickly add a test is trivial, I add a shouldDisplay14MinFor10And25Cents
method with the proper input and expected values. Step 2: Run all tests and see the
new one fail provides the answer:

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

The Rhythm

• Step 1: Quickly add a test

• Step 2: Run all tests and see the new one fails

• Step 3: Make a little change
add missing case in the switch statement

• Step 4: Run all tests
FAIL!! Why???

52

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 53

 public void addPayment(int coinValue)
 throws IllegalCoinException {
 switch (coinValue) {
 case 5: break;
 case 10: break;
 case 25: break;
 default:
 throw new IllegalCoinException("Invalid coin: "+coinValue);
 }
 insertedSoFar += coinValue;
}

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 54

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Iteration 5 :
Buy It

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

The Rhythm
• Step 1: Quickly add a test

• Step 2: Run all tests => new one fails

• Step 3: Make a little change.... but
56

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Step 3

• We need two changes:

• an implementation of Receipt

• implementing the buy method

• Small steps? What are the options?
1. The old way: Do both in one go!

2. Fix receipt first, buy next...

3. Fix buy first, implement receipt later...

57

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Answer...
• Take small steps tells us either 2 or 3 option:

• Fix receipt first, buy next...

• This is the natural order, because buy depends upon receipt,
and not the other way around

• but I break the buy iteration!!!
• I have lost focus!

• Implementing Receipt means fixing a bug in B, that require a new
class C, that would be better of if D had another method, that...

• Complete buy first – do receipt next

• But how can I do that given the dependency structure?

• What is your answer?

58

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Fake It!!!
• I can complete buy by making a fake receipt.

• I keep focus!

59

anonymous inner class,
but will be removed later on!!!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Step 4

• Pass

• Update the test list!! Triangulation!!!

60

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Iteration 6:
Receipt

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

The Rhythm
• Step 1

• Step 2: FAIL

• Step 3

• Step 4: PASS
62

 @Test
 public void shouldStoreTimeInReceipt() {
 Receipt receipt = new ReceiptImpl(30);
 assertEquals("Receipt can store 30 minute value",
 30, receipt.value());
 }

public class ReceiptImpl implements Receipt {
 private int value;
 public ReceiptImpl(int value) { this.value = value; }
 public int value() { return value;}
}

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Iteration 7:
Buy

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Step 1

• Buy for 100 cents

• Exercise:

• How to enter 100 cent?

• add 5, add 5, add 5, add10,

• for (int i = 0; i <= 20; i++) { add 5; }

• private method add2Quarters()

64

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Evident Tests

• TDD Principle: Evident Tests
How do we avoid writing defective tests? By
keeping the test code evident, readable, and as
simple as possible.

• avoid loops, conditionals, recursion, complexity in
your testing code.

• because testing code is code and you make
mistakes in code!

• assignment, creation, private method calls

• and not much else!

65

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Step 3, 4 and 5

66

• Code Duplication

• Refactoring: several possibilities

• introduce a new instance variable:

• int timeBought

• to hold the time bought so far

• How can I ensure that I do this reliably??

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Implementation of the Pay
Station so far...

67

public class PayStationImpl implements PayStation {
 private int insertedSoFar;
 private int timeBought;

 public void addPayment(int coinValue)
 throws IllegalCoinException {
 switch (coinValue) {
 case 5: break;
 case 10: break;
 case 25: break;
 default:
 throw new IllegalCoinException("Invalid coin: "+coinValue);
 }
 insertedSoFar += coinValue;
 timeBought = insertedSoFar / 5 * 2;
 }
 public int readDisplay() {
 return timeBought;
 }
 public Receipt buy() {
 return new ReceiptImpl(timeBought);
 }
 public void cancel() {
 }
}

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Do It Yourself!

• clearing after a buy operation

• cancel resets pay station

68

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Conclusions

• Test-driven development process is

• Clean code that works!!

• First - make it work

• quickly, taking small steps; sometimes faking it

• Next - make it clean

• refactoring (removing duplication)

69

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Conclusions

• TDD promises confidence for the developers

• Tests that pass give confidence

• Failing test cases tell exactly where to look

• Developers dare to refactor and experiment
because tests tell them if their ideas are OK.

• Developers have taken small steps, so getting back
is easy (put it under version control !!!)

• Reliability

• Code that is tested by good test cases is much
better than code that is not.

70

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Conclusions

• Test code is an asset that must be maintained!

• All unit tests run all the time!

• If you change production code API you update
the test cases as well!!! You do not throw them
away!!!

• Bug report from customer site?
A) Make a test case that demonstrate the failure

B) Correct the defect

71

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Conclusions

• Programming Process

• Developers can tell what they do when they
code.

• Can you explain to your friend why you code it that way
and another way? And why your way is better?

• It is reflected practice instead of divine inspiration
or black magic...

72

