Theme |
Software Processes

Quality in Software Engineering
Focus on Reliability, Maintainability and Flexibility

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Learning Objective

® develop the foundations for practices and skills to
develop reliable software by presenting basic
definitions and terminology and testing as a
technique to achieve this

® establish solid terminology of the different qualities
or characteristics influencing ease of change,
allowing to discuss techniques at a precise level

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Table of content

® Software quality?
® Reliability
® TJesting Terminology
® Automated Testing
® Maintainability
® subqualities of maintainability

® Flexibility

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

What is quality?

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Meaning of Software
Quality

® varying views on meaning of software quality
® reliability, portability
® how well a development process is followed

® => organization needs to define what quality means together
with customers

e A possible definition: \
The more closely a software product meets its specified
requirements, and those requirements meet the wants
and the needs of its customers, the higher the quality is.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Working Software

® One important aspect is that the software does not
fail to allow users to perform their work.

* Reliability (ISO 9126) \
The capability of the software product to maintain a
specified level of performance when used under
specified conditions.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

How to achieve reliability?

® Evolution in programming languages
® from Fortran to Java and on...

® type system

® Review techniques

® Jesting

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

® Defect \
A deviation from what is required in the respective

phase of the software application

® Quality goals:

® remove as many defects as is reasonably possible before project
is completed

remove as many of these defects as early in the development
process as possible

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Defect Repair Cost

Requirements Maintenance

Implementation

copyright owned by 2010 John Wiley and Sons

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3 9

FLEXIBLE,
RELIABLE

Testing \
Testing is the activity of executing a program with

the intent of finding a defect.
A successful test is one that finds a defect!

¢ Test Case
A test case is a definition of input values and
expected output values for the unit under test.

e Unit under Test \
The unit under test is some part of the system that
we consider to be a whole.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Golden Rules of Testing

® (Goal of testing:

® maximize the number and severity of defects.

® Limits of testing

® testing can only determine the presence of defects, never their
absence.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

public class Date {
public enum Weekday {
MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY,
SATURDAY , SUNDAY };

_,-"""'""'

* Construct a date object.

* [@param year the year as integer, i.e. year 2010 is 2010.

* [@param month the month as integer, i.e. januar is 1, december is 12.
@param day0fMonth the day number in the month, range 1..31.
PRECONDITION: The date parameters must represent a valid date.

.-
"

*

*f
public Date(int year, int month, int day0fMonth) {}

,"“'.'"'.'-

* Calculate the weekday that this Date object represents.

* [@return the weekday of this date.

*/

public Weekday day0flleek() {
/7 Fake implementation, only for demonstrating testing.
return Weekday. SATURDAY;

}

}

How complete is the above implementation!?

Give some test cases!!!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE
SOFTWARE

INeng Pomarcs cod

Test Case Table

o
| —y

g

® shows:

® Uunit under test

® input values (all of them)

expected output

Example:

Unit under test: dayOfWeek

Input Expected output
year=2008, month=May, dayOfMonth=19 Monday
year=2008, month=Dec, dayOfMonth=25 Thursday
year=2010, month=Dec, dayOfMonth=25 Saturday

® A test case may:

® pass: computed output equals expected output

e fail

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Final Terminology EE

A — .
P Borber CVoadirmen

¢ Manual Testing \
is a process in which suites of test cases are
executed and verified manually by humans.

e Automated Testing\

is a process in which suites of test cases are
executed and verified automatically by computer
programs.

Regression Testing \

is the repeated execution of test suites to ensure
they still pass and the system does not regress after
a modification.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Final ferminology E=
® Production code\ =

The production code is the code that defines the
behavior implementing the software’s requirements

e Test code'\

The test code is the source code that defines the test
cases for the production code.

® Why can | improve reliability by writing more code?

® Fact:| know | make mistakes when | code.

® Fact: To verify that my code has no defects | write
more code.

® s this not absurd??

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Flexibility and Maintainability E=

® What is this?

public class X{private int y;public X(){y = 0;} public int z ()|
return y;| public void z1(int z0){y += z0;} public static void main(

String[] args){X y=new X();y.z1(200);y.z1(3400);System.out. println
("Result 1s "+ y.z());}}

® VWhat does it do!?

® What abstraction is this code implementing?

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

|ssue?

® The customers / executing software do not
care if the code is

® Readable / understandable / well documented

® As long as it serves its purpose well...

® However, developers do

® Unless you are about to quit tomorrow

Software needs to be maintainable!!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,
RELIABLE

Maintainability

e Maintainability (1ISO 9126) \
The capability of the software product to be
modified. Modifications may include corrections,
improvements or adaptations of the software to
changes in environment, and in requirements and
function specifications.

® Maintainability is a quality that our code has to a
varying degree

® | ow maintainability -> high maintainability

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

FLEXIBLE,
RELIABLE
SOFTWARE

g Pomarcs eod
Ag e Drve mpoms o

Maintainability RELABLE

Analyzability Changeability Stability Testability

e Analyzability (ISO 9126) \
The capability of the software product to be

diagnosed for deficiencies or causes of failures in

the software, or for the parts to be modified to be
identified.

Can | understand the code?

- Indentation

- Naming conventions for classes/methods
- Useful comments and documentation

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE

e Changeability (1ISO 9126)\|
The capability of the software product to enable a e
specified modification to be implemented.

Cost of modifying the code
160x45 maze?

public class Maze |
private boolean|[] isWall = new boolean[2000];
public void print() |
for (int ¢ = 0; ¢ < 80; c++) {
for (int r = 0; r < 25; r++) |{
char toPrint = (isWall[r*80+c]| ? ’#’
System.out.print(toPrint);
|
System.out. println ();
|
|

public void generate() |
// generate the maze
|
|

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

FLEXIBLE,
RELIABLE

o Stability (ISO 9126) \
The capability of the software product to avoid
unexpected effects from modifications of the

system.

® Changing a software unit may lead to failures in other
units.

o Testability (ISO 9126) \,
The capability of the software product to enable a
modified system to be validated.

® Everything can be tested?

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

* Flexibility \

FLEXIBLE,
RELIABLE
SOFTWARE

INng Pomares ond
Agie Dove mpoma o

The capability of the software product to support
added/enhanced functionality purely by adding
software units and not by modifying existing software units.

public class PointOfSale {

h

private State state;
public double calculateSalesTax(double price){
switch (state) {
case CALIFORNIA: return price * 8.25 / 100.0;
case NEVADA: return price * 8.10 / 100.0;

default:
throw new RuntimeException("Unknown state™);

}

ks
public enum State{

CALIFORNIA, NEVADA}
//rest of functionality omitted

Adding point of sale system for a new state!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

v Coupllng and Cohesion

Metrics for maintainability of software

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/201 3

Measuring Software

® Programmers with some experience has a sense of
good and bad software.

® Kent Beck and Martin Fowler also talk about code
smell. But... what is good and what is bad?

® Measure software according to some defined metric.

e Metric\|
Numerical measures that quantify the degree to
which software or a process possesses a given
attribute.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Examples of Metrics

Defects/KLOC
Average module size
mean time to failure
customer problems

customer satisfaction

Collected and analyzed throughout software
project.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Coupling and Cohesion

® Cohesion is a measure of how strongly related and
focused the responsibilities and provided behaviors
of a software unit are.

® The higher the better.

® Coupling is a measure on how strongly dependent
one software unit is on other software units.

® [he weaker the better.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Cohesion and Coupling
Heuristics

® |t is good practice:

® For two classes to either be not dependent on one
another, or for one class to be only dependent on the
interface of another class.

® To keep attributes and the related methods together in
one class.

® For a class to capture one and only one abstraction -
unrelated information to be kept in separate classes.

® To distribute the system intelligence as uniformly as
possible

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Kinds of Class Coupling

® X inherits fromY.
® X has an attribute of classY.

® X has a template attribute with a parameter of class
Y.

® X has a method with an argument of classY.
® X knows of a global variable of class Y.

® X knows of a method containing a local variable of
classY.

® Xis friend of Y (in C++).

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Trade-off

® Maintainable software generally has weak coupling
and high cohesion.

® Weak coupling means one change does not
influence all other parts of the software

® |owering cost of change

® High cohesion means that a change is likely
localized in a single subsystem, easier to spot

® |owering the cost of change

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Trade-off

® Need to find the right balance between coupling
and cohesion.

® Example: Making a subclass increases coupling (bad), but
increases cohesion (good, when done right).

® So adding tons of classes each overriding a single
method might not be a good idea, even if the subclass
semantics is right.

® Plays well together with encapsulation.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

