
Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Theme 1
Software Processes

Quality in Software Engineering
Focus on Reliability, Maintainability and Flexibility

1

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Learning Objective

• develop the foundations for practices and skills to
develop reliable software by presenting basic
definitions and terminology and testing as a
technique to achieve this

• establish solid terminology of the different qualities
or characteristics influencing ease of change,
allowing to discuss techniques at a precise level

2

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Table of content

• Software quality?

• Reliability

• Testing Terminology

• Automated Testing

• Maintainability

• subqualities of maintainability

• Flexibility

3

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

What is quality?

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Meaning of Software
Quality

• varying views on meaning of software quality

• reliability, portability

• how well a development process is followed

• => organization needs to define what quality means together
with customers

• A possible definition:
The more closely a software product meets its specified
requirements, and those requirements meet the wants
and the needs of its customers, the higher the quality is.

5

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Working Software

• One important aspect is that the software does not
fail to allow users to perform their work.

• Reliability (ISO 9126)
The capability of the software product to maintain a
specified level of performance when used under
specified conditions.

6

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

How to achieve reliability?

• Evolution in programming languages

• from Fortran to Java and on...

• type system

• Review techniques

• Testing

7

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Testing Terminology

• Defect
A deviation from what is required in the respective
phase of the software application

• Quality goals:

• remove as many defects as is reasonably possible before project
is completed

• remove as many of these defects as early in the development
process as possible

8

Rehe
ars

al

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Defect Repair Cost

9

Requirements

Design Implementation Test

Maintenance

copyright owned by 2010 John Wiley and Sons

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Testing Terminology

10

• Testing
Testing is the activity of executing a program with
the intent of finding a defect.
A successful test is one that finds a defect!

• Test Case
A test case is a definition of input values and
expected output values for the unit under test.

• Unit under Test
The unit under test is some part of the system that
we consider to be a whole.

Rehe
ars

al

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 11

Golden Rules of Testing

• Goal of testing:

• maximize the number and severity of defects.

• Limits of testing

• testing can only determine the presence of defects, never their
absence.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Example

12

How complete is the above implementation?

Give some test cases!!!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Test Case Table

13

• shows:

• unit under test

• input values (all of them)

• expected output

• Example:

• A test case may:

• pass: computed output equals expected output

• fail

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Final Terminology

• Manual Testing
is a process in which suites of test cases are
executed and verified manually by humans.

• Automated Testing
is a process in which suites of test cases are
executed and verified automatically by computer
programs.

• Regression Testing
is the repeated execution of test suites to ensure
they still pass and the system does not regress after
a modification.

14

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Final Terminology
• Production code

The production code is the code that defines the
behavior implementing the software’s requirements

• Test code
The test code is the source code that defines the test
cases for the production code.

• Why can I improve reliability by writing more code?

• Fact: I know I make mistakes when I code.

• Fact: To verify that my code has no defects I write
more code.

• Is this not absurd??

15

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Flexibility and Maintainability

• What is this?

• What does it do?

• What abstraction is this code implementing?

16

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Issue?

• The customers / executing software do not
care if the code is

• Readable / understandable / well documented

• As long as it serves its purpose well...

• However, developers do

• Unless you are about to quit tomorrow

Software needs to be maintainable!!

17

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Maintainability

• Maintainability (ISO 9126)
The capability of the software product to be
modified. Modifications may include corrections,
improvements or adaptations of the software to
changes in environment, and in requirements and
function specifications.

• Maintainability is a quality that our code has to a
varying degree

• Low maintainability -> high maintainability

18

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 19

• Analyzability (ISO 9126)
The capability of the software product to be
diagnosed for deficiencies or causes of failures in
the software, or for the parts to be modified to be
identified.

Can I understand the code?
- Indentation
- Naming conventions for classes/methods
- Useful comments and documentation

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 20

Cost of modifying the code
160x45 maze?

• Changeability (ISO 9126)
 The capability of the software product to enable a
 specified modification to be implemented.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 21

• Stability (ISO 9126)
The capability of the software product to avoid
unexpected effects from modifications of the
system.

• Changing a software unit may lead to failures in other
units.

• Testability (ISO 9126)
The capability of the software product to enable a
modified system to be validated.

• Everything can be tested?

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 22

public class PointOfSale {
	
	 private State state;
	 public double calculateSalesTax(double price){
	 	 switch (state) {
	 	 	 case CALIFORNIA: return price * 8.25 / 100.0;
	 	 	 case NEVADA: return price * 8.10 / 100.0;
	 	 	 default:
	 	 	 	 throw new RuntimeException("Unknown state");
	 	 }
	 }
	 public enum State{
	 CALIFORNIA, NEVADA}
	 //rest of functionality omitted
}

Adding point of sale system for a new state?

• Flexibility
 The capability of the software product to support
 added/enhanced functionality purely by adding
 software units and not by modifying existing software units.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Coupling and Cohesion
Metrics for maintainability of software

Rehe
ars

al

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Measuring Software

24

• Programmers with some experience has a sense of
good and bad software.

• Kent Beck and Martin Fowler also talk about code
smell. But... what is good and what is bad?

• Measure software according to some defined metric.

• Metric
Numerical measures that quantify the degree to
which software or a process possesses a given
attribute.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Examples of Metrics

• Defects/KLOC

• Average module size

• mean time to failure

• customer problems

• customer satisfaction

• ...

• Collected and analyzed throughout software
project.

25

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 26

Coupling and Cohesion

• Cohesion is a measure of how strongly related and
focused the responsibilities and provided behaviors
of a software unit are.

• The higher the better.

• Coupling is a measure on how strongly dependent
one software unit is on other software units.

• The weaker the better.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013
27

Cohesion and Coupling
Heuristics

• It is good practice:

• For two classes to either be not dependent on one
another, or for one class to be only dependent on the
interface of another class.

• To keep attributes and the related methods together in
one class.

• For a class to capture one and only one abstraction -
unrelated information to be kept in separate classes.

• To distribute the system intelligence as uniformly as
possible

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013
28

Kinds of Class Coupling

• X inherits from Y.

• X has an attribute of class Y.

• X has a template attribute with a parameter of class
Y.

• X has a method with an argument of class Y.

• X knows of a global variable of class Y.

• X knows of a method containing a local variable of
class Y.

• X is friend of Y (in C++).

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Trade-off

• Maintainable software generally has weak coupling
and high cohesion.

• Weak coupling means one change does not
influence all other parts of the software

• lowering cost of change

• High cohesion means that a change is likely
localized in a single subsystem, easier to spot

• lowering the cost of change

29

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013
30

Trade-off

• Need to find the right balance between coupling
and cohesion.

• Example: Making a subclass increases coupling (bad), but
increases cohesion (good, when done right).

• So adding tons of classes each overriding a single
method might not be a good idea, even if the subclass
semantics is right.

• Plays well together with encapsulation.

