Loose ends

Integration and System Tests

Integration and System Testing

- Integration: Building a (partial) system out of the different modules. Integration proceeds by iterations.
- **Builds:** A build is a partial system made during integration. An iteration may involve several builds.
- Associated tests: interface tests, regression tests, integration tests, system tests, usability tests, acceptance test.

Planning Integration

- Identify parts of architecture that will be integrated in each iteration:
 - Try to build bottom-up (no stubs for lower levels).
 - Document requirements and use cases supported by iteration.
 - Retire risks as early as possible.
- Plan inspection, testing and review process.
- Make schedule.

Testing during Integration

- **Retest** functions, modules in the context of the system (e.g. using no or higher level stubs).
- Interface testing of integration.
- **Regression tests** ensures that we did not break anything that worked in the previous build.
- Integration tests exercise the combination of modules, verifying the architecture (and the requirements).
- System tests test the whole system against the architecture and the requirements.
- Usability testing validates the acceptability for the end user.
- Acceptance testing is done by the customer to validate the acceptability of the product.

Integration Test Road Map

- Plan integration.
- For each iteration:
 - For each build:
 - Perform regression tests from previous build.
 - Retest functions, classes, modules.
 - Test interfaces.
 - Perform integration tests.
 - Perform iteration system and usability tests.
- Perform installation test.
- Perform acceptance test.

Integration Testing

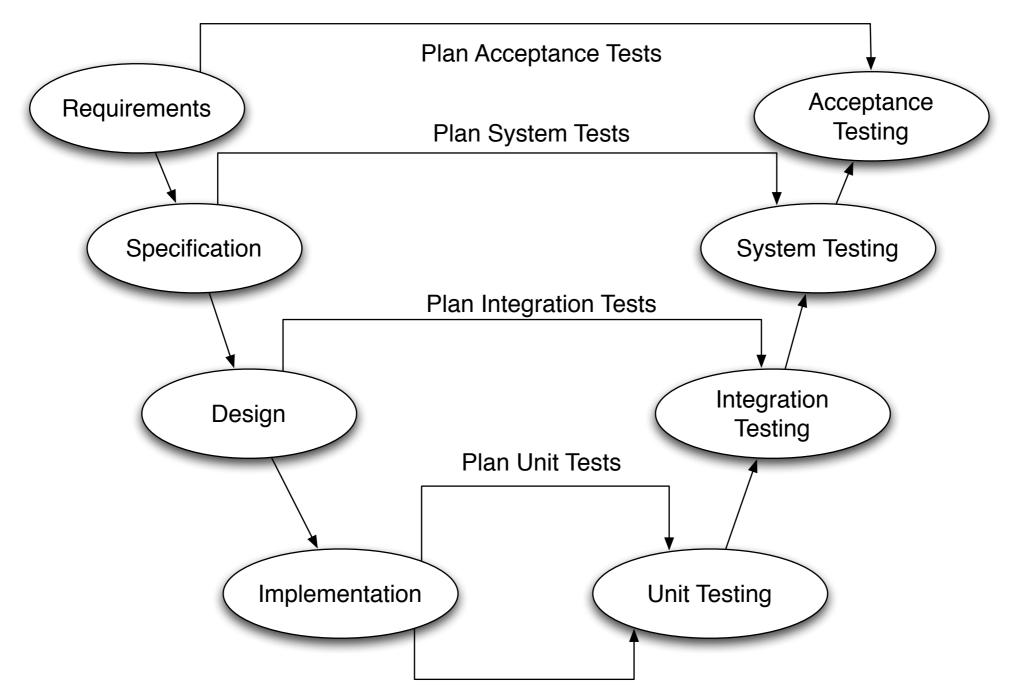
- Decide how and where to store, reuse, code the integration tests (show in project schedule).
- Execute unit tests in context of the build.
- Execute regression tests.
- Ensure build requirements and (partial) use cases are known.
- Test against these requirements and use cases.
- Execute system tests supported by this build.

Interface Testing

- When testing integrated components or modules: look for errors that misuse, or misunderstand the interface of a component:
 - Passing parameters that do not conform to the interface specification, e.g. unsorted array where sorted array expected.
 - Misunderstanding of error behaviour, e.g. no check on overflow or misinterpretation of return value.

System Testing

9


- A test (script) for each requirement/use case.
 In addition, do tests for:
 - High volume of data.
 - Performance.
 - Compatibility.
 - Reliability and availability (uptime).
 - Security.
 - Resource usage.
 - Installability.
 - Recoverability.
 - Load/Stress resistance.

Usability Testing

- Against requirements.
- Typically measured by having a sample of users giving a score to various usability criteria.
- Usability criteria should have been specified in advance in the SRS.

Traditional Elements of a Test Process

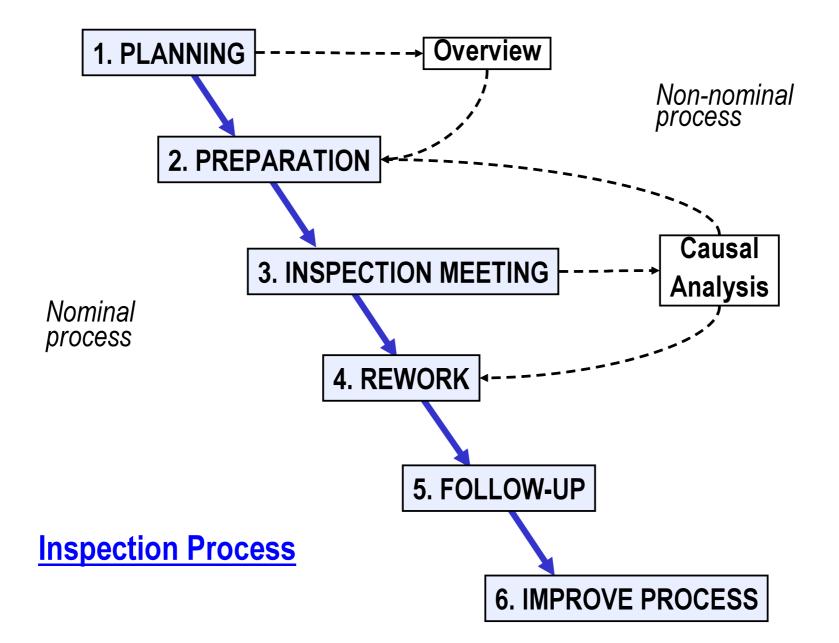
Inspections, process metrics and process improvement

Inspections

• inspection is

- a quality technique that focuses on reviewing the details of a project artifact in an organised and thorough manner.
- performed periodically during all software engineering phases.
- **purpose**: to assure the artifact's correctness by seeking defects.
- meeting of inspectors is held at which defects are identified.

Inspection Principles



• Defect **detection** only.

- Peer (not supervisor-subordinate) process.
- Only **best effort** of author should be examined.
- Specified roles:
 - Moderator (is also inspector).
 - Author (is also inspector, answers questions)
 - Reader (is also inspector): leads team through the work.
 - Recorder (is also inspector).
- Inspectors should **prepare** the inspection.

Inspection Process

copyright owned by 2010 John Wiley and Sons

15

Example

Inspecting requirements.

faulty:

If the temperature is within 5.02% of the maximum allowable limit, as defined by standard 67892, then the motor is to be shut down.

Correct:

If the temperature is within 5.02% of the maximum allowable limit, as defined by standard 67892, then the motor is to be powered down.

! "shut down'/ = "power down" ! Very expensive to find and fix after implementation.

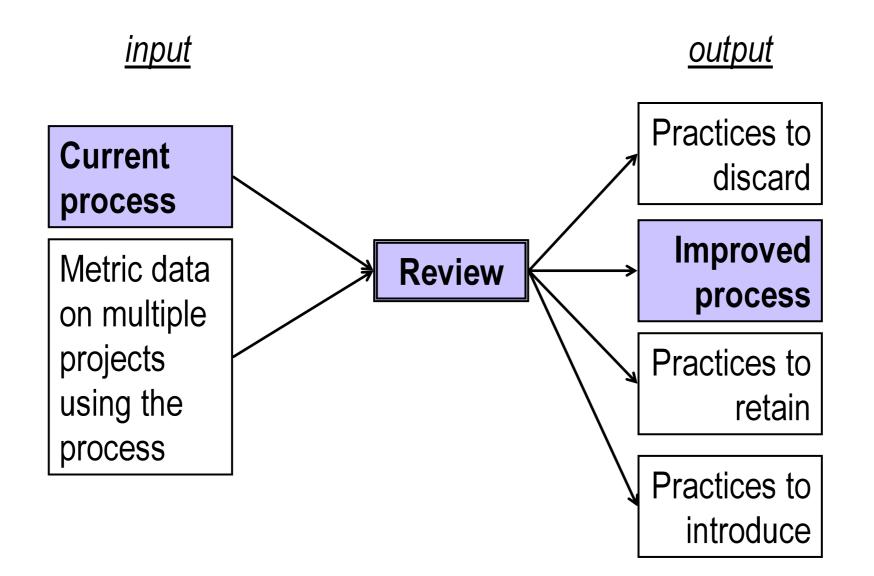
One way to prepare and conduct inspections

- Build inspections into schedule (time for preparation, meeting).
- Prepare for collection of inspection data.
 - Number of defects/KLOC, time spent.
 - Form, e.g. with description, severity.
 - Who keeps inspection data, usage of ...
- Assign roles. E.g. author, moderator/recorder, reader or, minimally, author/inspector.
- Ensure that each participant prepares: bring filled defect forms to meeting.

Defect Tracking

copyright owned by 2010 John Wiley

Defect Tracking									
Name	Description	Discov -ering enginr.	Respo n-sible enginr.	Date opene d	Source	Seve -rity	Туре	Status	
Check- out flicker	Checkout screen 4 flickers when old DVDs are checked out by hitting the Checkout button.	Kent Bain	Fannie Croft	1/4/04	Inte- gration	Med	GUI	Being worked begun 2/10/04	
Bad fine	Fine not correct for first-run DVD's checked out for 2 weeks, as displayed on screen 7.	Fannie Croft	April Breen	1/4/06	Re- quire- ments	High	Math	Not worked yet	
								Tested with	
								Resolved	


Quality in Process Management

- Establish process metrics and targets.
- Collect data.
- Improve process, based on data.

The Meta-Process

The Process Improvement Meta-Process

copyright owned by 2010 John Wiley and Sons

Example Process Metric

- Number of defects per KLOC detected within 12 months of delivery.
- Variance in schedule on each phase: (duration_{actual} -duration_{projected})/duration_{projected}
- Variance in cost : (cost_{actual} - cost_{projected})/cost_{projected}
- Total design time as % of total programming time.
- Defect injection and detection rates per phase.
 E.g. "one defect in requirements detected during implementation".

Example Process Metri

22

- Time spent
 - detailed design (extra members..)
 - coding
 - self-inspection
 - unit testing
 - review
 - repair
- Defects
 - Severity: major (requirements unsatisfied), trivial, other.
 - Type (see quality).
 - Source: requirements, design, implementation.

Measure Process Effectiveness

copyright owned by 2010 John Wiley

Process →	Waterfall	Waterfall + Incremental	Pro- cess U	Pro- cess V
Average over 10 projects:				
Major defects identified within first 3 months per 1000SLOC in delivered product	1.3	0.9	0.7	2.1
Development cost per detailed requirement	\$120	\$100	\$85	\$135
Developer satisfaction index (1 to 10=best)	4	3	4	3
Customer satisfaction index (1 to 10=best)	4	6	6	2
Cost per maintenance request	\$130	\$140	\$95	\$165
Variance in schedule on each phase: 100 × actual duration - projected duration projected duration	+20%	+70%	-10%	+80%
Variance in cost:: 100 × actual cost - projected cost projected cost	+20%	+65%	-5%	+66%
Design fraction: <u>total design time</u> total programming time Humphrey: Should be at least 50%.	23%	51%	66%	20%

Requirements Document: 200 detailed requirements	Meeting	<u>Research</u>	Execution	<u>Personal</u> <u>Review</u>	Inspection		
Hours spent	0.5 x 4	4	5	3	6		
% of total time	10%	20%	25%	15%	30%		
% of total time: norm for the organization	15%	15%	30%	15%	25%		
Self-assessed quality 1-10	<u>2</u>	8	<u>5</u>	<u>4</u>	6		
Defects per 100	N/A	N/A	N/A	5	<u>6</u>		
Defects per 100: organization norm	N/A	N/A	N/A	3	4		
Hours spent per detailed requirement	0.01	0.02	0.025	0.015	0.03		
Hours spent per detailed requirement: organization norm	0.02	0.02	0.04	0.01	0.03		
Process improvement	Improve strawman brought to meeting		Spend 10% more time executing	Project Metric Collection for Phases			
Summary	Productivity: 200/22 = 9.9 detailed requirements per hour						

25

Capability Assessment

- **CMMI Initial**: undefined ad-hoc process, outcome depends on individuals (heroes).
- **CMM2 Repeatable**: track documents (CM), schedule, functionality. Can predict performance of same team on similar project.
- **CMM3 Defined**: CMM2 + documented standard process that can be tailored.
- **CMM4 Managed**: CMM3 + ability to predict quality & cost of new project, depending on the attributes of its parts, based on historical data.
- **CMM5 Optimized**: CMM4 + continuous process improvement, introduction of innovative ideas and technologies.