
Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Theme 2
Program Design

MVC and MVP

1

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

References
• Next to the books used for this course, this part is

based on the following references:

• Interactive Application Architecture Patterns, http://
aspiringcraftsman.com/2007/08/25/interactive-
application-architecture/

• Android Architecture: Part 10, The Activity Revisited
http://www.therealjoshua.com/

• Catalog of Patterns of Enterprise Application
Architecture (Martin Fowler) http://
martinfowler.com/eaaCatalog/

• GUI Architectures (Martin Fowler) http://
martinfowler.com/eaaDev/uiArchs.html

2

http://aspiringcraftsman.com/2007/08/25/interactive-application-architecture/
http://aspiringcraftsman.com/2007/08/25/interactive-application-architecture/
http://aspiringcraftsman.com/2007/08/25/interactive-application-architecture/
http://aspiringcraftsman.com/2007/08/25/interactive-application-architecture/
http://aspiringcraftsman.com/2007/08/25/interactive-application-architecture/
http://aspiringcraftsman.com/2007/08/25/interactive-application-architecture/
http://www.therealjoshua.com
http://www.therealjoshua.com
http://martinfowler.com/eaaCatalog/
http://martinfowler.com/eaaCatalog/
http://martinfowler.com/eaaCatalog/
http://martinfowler.com/eaaCatalog/
http://martinfowler.com/eaaDev/uiArchs.html
http://martinfowler.com/eaaDev/uiArchs.html
http://martinfowler.com/eaaDev/uiArchs.html
http://martinfowler.com/eaaDev/uiArchs.html

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

MVC

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Some history

• remember that this was one of the first
attempts to do serious UI work on any kind of
scale

• Smalltalk 80 MVC

• Different people reading about MVC in
different places take different ideas from it and
describe these as 'MVC'

4

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Two central ideas

• Separated Presentation:

• to make a clear division between domain objects
that model our perception of the real world,

• and presentation objects that are the GUI
elements we see on the screen.

• Domain objects should be

• completely self contained and

• work without reference to the presentation,

• able to support multiple presentations, possibly
simultaneously.

5

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Two central ideas

• Observer Synchronization

• have views (and controllers) observe the model
to allow multiple widgets to update without need
to communicate directly

• all the views and controllers observe the model.
When the model changes, the views react.

• the controller is very ignorant of what other
widgets need to change when the user
manipulates a particular widget.

6

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

rephrasing....

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Problem Statement

• Challenge:

• writing programs with a graphical user interface

• multiple open windows showing the same data

• keeping them consistent

• manipulating data in many different ways by direct
manipulation (e.g. move, resize, delete, create, ...)

• process input events from multiple windows

8

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Solution: MVC

• The Model-View-Controller is an
architectural pattern because:

• it defines a solution to the problem of structuring
the ’large-scale’ / architectural challenge of
building graphical user interface applications.

• But the ’engine behind the scene’ is a careful
combination of strategy and observer...

9

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

First challenge

• need to keep the windows consistent:

• solved by the Observer pattern

• remember: underlying information must be stored
in a Subject object that can notify its
Observers.

• In MVC : Model (containing state and notifying
upon state changes) and View (rendering the
graphics) respectively.

10

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Second Challenge

• receiving and interpreting events from the
user

• solved by the Strategy pattern

• change the way a view responds to user input
without changing its visual representation.

• response mechanism is encapsulated in a
Controller object.

• a View uses an instance of a Controller
subclass to implement a particular response
strategy.

11

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 12

http://aspiringcraftsman.com/wp-content/uploads/2010/02/MVC1.png

http://aspiringcraftsman.com/wp-content/uploads/2010/02/MVC1.png
http://aspiringcraftsman.com/wp-content/uploads/2010/02/MVC1.png

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 13

The Model represents the state, structure, and behaviour of the data being viewed and
manipulated by the user. The Model contains no direct link to the View or Controller, and
may be modified by the View, Controller, or other objects with the system. When notification
to the View and Controller are necessary, the Model uses the Observer Pattern to send a
message notifying observing objects that its data has changed.

The View and Controller components work together to allow the user to view and interact
with the Model. Each View is associated with a single Controller, and each Controller is
associated with a single View. Both the View and Controller components maintain a direct
link to the Model.

The View’s responsibility can be seen as primarily dealing with output while the Controller’s
responsibility can be seen as primarily dealing with input. It is the shared responsibility of
both the View and the Controller to interact with the Model. The Controller interacts with
the Model as the result of responding to user input, while the View interacts with the
Model as the result of updates to itself. Both may access and modify data within the
Model as needed.

As data is entered by the user, the Controller intercepts the user’s input and responds
appropriately. Some user actions will result in interaction with the Model, such as changing
data or invoking methods, while other user actions may result in visual changes to the
View, such as the collapsing of menus, the highlighting of scrollbars, etc.

http://aspiringcraftsman.com/2007/08/25/interactive-application-architecture/

http://en.wikipedia.org/wiki/Observer_Pattern
http://en.wikipedia.org/wiki/Observer_Pattern
http://aspiringcraftsman.com/wp-content/uploads/2010/02/MVC1.png
http://aspiringcraftsman.com/wp-content/uploads/2010/02/MVC1.png

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 14

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 15

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 16

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 17

MVC misconception

• “The purpose of the Controller is to separate the
View from the Model.”
WRONG!!!

• The MVC pattern does decouple the application’s
domain layer from presentation concerns, this is
achieved through the Observer Pattern, not
through the Controller.

• The Controller was conceived as a mediator
between the end user and the application, not
between the View and the Model.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Some complications
• Suppose an application with a text field “variance”

and need to set the colour of the text depending
on the value of “variance”

• who is responsible for colour?

• domain object? NO

• view? YES BUT mapping values to colours and
altering the variance field is not part of a standard
text field.

• Presentation state:

• basic MVC assumption: all the state of a view can
be derived from the state of the model

18

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Solutions

• Presentation Model

• make a new kind of model object, one that's
oriented around the screen,

• but is still independent of the widgets.

• would be the model for the screen.

• it's a model that is really designed for and thus
part of the presentation layer.

• example: VisualWorks Application Model

19

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

MVP

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Model-View-Presenter

• first appeared in IBM (90’s), paper of Potel

• popularised and described by the developers of
Dolphin Smalltalk

• Ideas:

• treat the view as a structure of widgets

• view does not contain any behaviour that
describes how widgets react to user interaction

• presenter decides how to react to an event,
updates the model, the view is updated through
the Observer Synchronization

21

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Variations

• the degree to which the presenter controls
the widgets in the view.

• all view logic is left in the view and the presenter
doesn't get involved in deciding how to render
the model (approach implied by Potel).

• Supervising Controller: where the view handles a
good deal of the view logic that can be describe
declaratively and the presenter then comes in to
handle more complex cases.

• Passive View: the presenter does all the
manipulation of the widgets.

22

http://www.martinfowler.com/eaaDev/SupervisingPresenter.html
http://www.martinfowler.com/eaaDev/SupervisingPresenter.html
http://www.martinfowler.com/eaaDev/PassiveScreen.html
http://www.martinfowler.com/eaaDev/PassiveScreen.html

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

MVC versus MVP
• Commonalities

• both contain a Model and View

• both the controller and presenter are involved in
updating the model

• both use observer synchronization to update
view when model has changed

• Differences

• MVC controller: intercepting user input, updating
the model is a byproduct

• MVP presenter: update the model, view intercepts
the user’s input.

23

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

to Android...

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 25

from: stackoverflow.com

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 26

MV(C)(P) in Android
• Model role: domain model code

• View role: Activity, but:

• Android creates an Activity and manages the lifecycle

• controller-ish hooks like:
• boolean dispatchKeyEvent(KeyEvent event); and

boolean onOptionsItemSelected(MenuItem item); and
void onCreateContextMenu(….);

• Suppose you want to use it as View

• data binding: bind to the model on creation and set the
activity as an observer of the model

• sending messages: delegate user input to the controller

• handles messages from the controller

• Controller

• updates the model

• handles messages from the view

• sends messages to the view

Android Architecture: Part 10, The Activity Revisited

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Problem

• Hooks in the View (i.e., Activity) are not related
to view behaviour.

• The view is too heavy weight

• !!!Need a clear separation of the MVC parts
without overlap!!

27

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 28

public class MainActivity extends Activity {

" private AppModel model;
" private MainView view;
" private Handler handler;
" private boolean isTimerRunning = true;
" private long initTime = 0;

" @Override
" protected void onCreate(Bundle savedInstanceState) {
" " super.onCreate(savedInstanceState);
" " initTime = System.currentTimeMillis();
" " model = AppModel.getInstance();
" " view = (MainView)View.inflate(this, R.layout.main, null);
" " view.setViewListener(viewListener);
" " setContentView(view);
" " handler = new Handler();
" }

" @Override
" protected void onResume() {
" " super.onResume();
" " timerRun.run();
" }

" @Override
" protected void onPause() {
" " super.onPause();
" " handler.removeCallbacks(timerRun);
" }

" @Override
" protected void onDestroy() {
" " super.onDestroy();
" " view.destroy();
" }

" /**
! * Simple runnable to update our current time in the model
! */
" private Runnable timerRun = new Runnable() {
" " @Override
" " public void run() {
" " " if (isTimerRunning) {
" " " " long change = System.currentTimeMillis() - initTime;
" " " " initTime = System.currentTimeMillis();
" " " " model.setElapsedTime(model.getElapsedTime() + change); // controller is responsible for updating the model
" " " " handler.postDelayed(timerRun, 100);
" " " }
" " }
" };

controller

view
instantiated

Android Architecture: Part 10, The Activity Revisited

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 29

" /**
! * This is how we receive events from the view.
! * The view takes user actions
! * The controller/activity responds to user actions
! */
" private MainView.ViewListener viewListener = new MainView.ViewListener() {
" " @Override
" " public void onToggleTimer() {
" " " isTimerRunning = !isTimerRunning;
" " " view.setPausedState(isTimerRunning); // controller can call method directly on the view
" " " if (isTimerRunning) timerRun.run();
" " }

" " @Override
" " public void onAddTime(long amountToAdd) {
" " " model.setElapsedTime(model.getElapsedTime() + amountToAdd);
" " }
" };
}

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 30

public class MainView extends LinearLayout {

" /**
! * The interface to send events from the view to the controller
! */
" public static interface ViewListener {
" " public void onToggleTimer();
" " public void onAddTime(long amountToAdd);
" }

" private static boolean DEBUG = false;
" private static final String TAG = MainView.class.getSimpleName();
" private static final long AMOUNT_TO_ADD = 1234 * 60 * 2;
" private Digit d1, d2, d3, d4, d5;
" private Button toggleBtn, addBtn;
" private AppModel model;

" /**
! * The listener reference for sending events
! */
" private ViewListener viewListener;
" public void setViewListener(ViewListener viewListener) {
" " this.viewListener = viewListener;
" }

" /**
! * Constructor for xml layouts
! */
" public MainView(Context context, AttributeSet attrs) {
" " super(context, attrs);
" " model = AppModel.getInstance();
" }

" /**
! * Exposed method so the controller can set the button state.
! */
" public void setPausedState(boolean isTimerRunning) {
" " String txt = (isTimerRunning) ? getContext().getString(R.string.stop) : getContext().getString(R.string.start);
" " toggleBtn.setText(txt);
" }

" /**
! * Remove the listener from the model
! */
" public void destroy() {
" " model.removeListener(AppModel.ChangeEvent.ELAPSED_TIME_CHANGED, elapsedTimeListener);
" }

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 31

 /**
! * Does the work to update the view when the model changes.
! */
" private void bind() {
" " int milli = (int)Math.floor((model.getElapsedTime() % 1000));
" " int secs = (int)Math.floor((model.getElapsedTime() / 1000) % 60);
" " int mins = (int)Math.floor((model.getElapsedTime() / 1000 / 60) % 60);

" " if (DEBUG) {
" " " Log.i(TAG, "elapsed: " + model.getElapsedTime());
" " " Log.i(TAG, "secs: " + secs);
" " " Log.i(TAG, "mins: " + mins);
" " }

" " d1.showTime((int)Math.floor(mins/10));
" " d2.showTime(mins % 10);
" " d3.showTime((int)Math.floor(secs/10));
" " d4.showTime(secs % 10);
" " d5.showTime((int)Math.floor(milli/100));
" }

"

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 32

/**
! * Find our references to the objects in the xml layout
! */
" @Override
" protected void onFinishInflate() {
" " super.onFinishInflate();
" " toggleBtn = (Button)findViewById(R.id.toggleBtn);
" " addBtn = (Button)findViewById(R.id.addTimeBtn);
" " d1 = (Digit)findViewById(R.id.digit1);
" " d2 = (Digit)findViewById(R.id.digit2);
" " d3 = (Digit)findViewById(R.id.digit3);
" " d4 = (Digit)findViewById(R.id.digit4);
" " d5 = (Digit)findViewById(R.id.digit5);
" " DigitObjectPool pool = new DigitObjectPool(getContext(), 10);
" " d1.setPool(pool);
" " d2.setPool(pool);
" " d3.setPool(pool);
" " d4.setPool(pool);
" " d5.setPool(pool);

" " toggleBtn.setOnClickListener(new View.OnClickListener() {
" " " @Override
" " " public void onClick(View v) {
" " " " viewListener.onToggleTimer();
" " " }
" " });
" " addBtn.setOnClickListener(new View.OnClickListener() {
" " " @Override
" " " public void onClick(View v) {
" " " " viewListener.onAddTime(AMOUNT_TO_ADD);
" " " }
" " });
" " model.addListener(AppModel.ChangeEvent.ELAPSED_TIME_CHANGED, elapsedTimeListener);
" " bind();
" }

" /**
! * The listener for when the elapsed time property changes on the model
! */
" private EventListener elapsedTimeListener = new EventListener() {
" " @Override
" " public void onEvent(Event event) {
" " " bind();
" " }
" };
}

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 33

REMEMBER

• Application of a pattern needs to be
considered for its applicability to a problem

• Use of DP should be

• the result of having a problem for which an
existing pattern is known or found to be
applicable

• not the result of starting with a pattern for
which a problem was searched or invented!!!

