
Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Theme 2
Program Design

A Pattern Catalog

1

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Learning Objectives

• to present principles for flexible design and
see how these principles map to the
compositional process

• to present additional definitions of design
patterns in order to convey an even deeper
understanding of the concept

• to show how patterns are key concepts for
understanding and keeping overview of
complex, compositional, designs by presenting
a set of patterns

2

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Table of Contents

• Principles for flexible design

• Sorts of Design Patterns

• A catalogue of design patterns

• Façade, Decorator, Adapter, Builder, Command,
Proxy, Composite,

• MVC

3

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Design Pattern Book

• Original Design Pattern book
is organised as a catalogue of
23 patterns AND

• introduction on various
aspects of writing reusable
and flexible software.

4

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Principles for Flexible Design

1. Program to an interface, not an implementation

2. Favour object composition over class
inheritance

3. Consider what should be variable in your
design.

Let’s go over these principles:

5

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

First Principle

6

Assume only the contract, i.e.,
the responsibilities

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Second Principle

7

Two ways to reuse code in OO

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Analysis

8

• Inheritance breaks encapsulation

• only add responsibilities, do not remove them

• compile-time binding

• recurring modifications

• separate testing

• increased possibility of reuse

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Third Principle

• Consider what should be variable in your
design

• closely linked to:

• Change by addition, not by modification

• Identify

• design/code that should remain stable

• design/code that may vary

• use techniques that ensure that the stable
part remains stable!!

9

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Summary

10

•We identified some
behaviour that was likely
to change…

• We stated a well defined
responsibility that covers
this behaviour and
expressed it in an interface

• Instead of performing
behaviour ourselves we
delegated to an object
implementing the interface

•Consider what should
be variable in your
design

• Program to an
interface, not an
implementation

• Favor object
composition over class
inheritance

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Design Patterns: another
definition

11

REMEMBER

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Design Pattern - Role View

12

• The essence of design patterns is at a higher
level of abstraction than what you may see in
e.g. UML class diagrams.

• Design Pattern (Role view)
A design pattern is defined by a set of roles, each
role having a specific set of responsibilities, and by a
well defined protocol between these roles.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Sorts of Design Patterns

13

purpose!

Creational Patterns:
are concerned with the process
of object creation

Structural Patterns:
are concerned with how
classes and objects are
composed to form larger
structures.

Behavioural Patterns:
are concerned with
algorithms and the
assignment of responsi-
bilities between objects

scope!
Class Patterns deal with
static relationships between
classes and subclasses

Object Patterns deal with
object relationships which can
be changed at run time

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Creational Patterns

14

• Abstracts the instantiation process:

• Encapsulates knowledge about which concrete classes to
use

• Hides how the instances of these classes are created and
put together

• Gives a lot of flexibility in what gets created, who
creates it, how it gets created, and when it it gets
created

• A class creational pattern uses inheritance to vary the
class that is instantiated

• An object creational pattern delegates instantiation to
another object

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Structural Design Patterns

• Structural design patterns are concerned with how
classes and objects are composed to form larger
structures

• A class structural pattern uses inheritance to
compose interfaces or implementation;
compositions are fixed at design time

• An object structural pattern describes ways to
compose objects to realise new functionality; the
added flexibility of object composition comes from
the ability to change the composition at run-time

15

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Behavioural Design Patterns

• Behavioural design patterns are concerned with
algorithms and the assignment of responsibilities
between objects

• Behavioural class patterns use inheritance to
distribute behaviour between classes

• Behavioural object patterns use object composition
rather than inheritance;

• some describe how a group of peer objects cooperate
to perform a tasks no single object can carry out by
itself;

• others are concerned with encapsulating behaviour in
an object and delegating request to it.

16

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Overview

17

Creational Patterns
✓Singleton

✓Abstract factory

✓Factory Method

✓Prototype

✓Builder

Structural Patterns
✓Composite

✓Façade

✓Proxy

✓Flyweight

✓Adapter

✓Bridge

✓Decorator

Behavioral Patterns
✓Chain of Respons.

✓Command

✓Interpreter

✓Iterator

✓Mediator

✓Memento

✓Observer

✓State

✓Strategy

✓Template Method

✓Visitor

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Façade

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 19

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 20

Design Considerations

• Behaviour that may vary

• the same hardware must operate varying pay
station implementations: AlphaTown, BetaTown,
EpsilonTown...

• Variable behaviour behind interface

• PayStation interface...

• Compose behaviour by delegation

• Gui/Hardware does not itself calculate rates, issue
receipts, etc., but lets an instance of PayStation do
the dirty job...

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Result

• The side effect of this decisions is that
interface decouples both ways!!!

• Hardware may operate different kinds of
PayStation implementations

• Alpha, Beta, Gamma, …

• Different kinds of user interfaces may operate
the same PayStation implementation

21

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 22

PayStation is an example of the Facade pattern

Intent: Provide a unified higher level interface to a set of
interfaces in a subsystem to make the subsystem easier to use.

The Facade knows which subsystem classes are responsible
for a request and delegates clients requests to appropriate
subsystem objects. The subsystems classes implement the
subsystem functionality and handle work assigned by the Facade
object but they have no knowledge of the Facade object.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 23

Consequences
• Benefits

• shields clients from subsystem objects

• weak coupling

• many to many relation between client and façade

• Liabilities

• bloated interface with lots of methods

• because façade must have the sum of responsibilities of the
subsystem

• how to avoid access to the inner objects?

• read-only interfaces; no access (require dumb data objects to
be passed and parsed over the façade).

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Another example

24

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Decorator

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

New Requirement (again)

26

• Alphatown wants to log all coin entries:

• [time] [value]

• Example:

• 14:05:12	
 5 cent

• 14:05:14	
 25 cent

• 14:55:10	
 25 cent

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

The Compositional Approach

• Identify the responsibility whose concrete
behaviour may vary.

• Express responsibility as an interface.

• Let someone else do the job.

• How does this apply?

27

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

The Compositional Approach

• Identify the responsibility whose concrete
behaviour may vary

• It is the “Accept payment” responsibility

• Express responsibility as an interface
A.PaymentAccepter role?

B. PayStation role? Already in place!

• Let someone else do the job

• Maybe let someone handle the coins before the
parking machine receives them?

28

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

The Dynamics

29

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

The Structure

30

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 31

Intent: Attach additional responsibilities tot an object dynamically
instead of relying on subclassing to extend functionality.
Also known as: Wrapper

Component defines the interface for objects that can have
responsibilities added to them dynamically. A ConcreteComponent
defines an objects to which additional responsibilities can be attached.
The Decorator maintains a reference to a component object and
defines an interface that conforms to the Component's interface. A
ConcreteDecorator adds responsibilities to the component.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 32

Consequences

• Benefits

• adding and removing behaviour at run-time

• incrementally add responsibilities

• complex behaviour by chaining decorators

• Liabilities

• Analysability suffers as you end up with lots of
little objects

• Behaviour is constructed at run-time instead of being written
in the static code

• Delegation code tedious to write

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Adapter

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

New Requirement

• New Town wants to use an existing rate
calculation algorithm

• You must use the implementation bought from a
consultancy company (closed source!)

• Challenge:

• The interface does not match ours

34

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Solution
• Compose behaviour even further then we

already did!

• Put an intermediate object between the two
interfaces, one that does the translation from one
interface to the other!

35

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Structure of the Solution

36

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Adapter Pattern

37

Intent: Convert the interface of a class into another interface
clients expect. Adapter lets classes work together that couldn’t
otherwise because of incompatible interfaces.

Targets encapsulate behaviour used by the client. The
Adapter implements the Target role and delegate actual
processing to the Adaptee performing parameter and protocol
translations in the process.

Client

Adaptee

<<interface>>
Target

request()

specificRequest()

request()

Adapter

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Consequences

38

• Benefits

• Makes a client work with an otherwise
incompatible object

• One adapter can adapt many type of adaptee’s
namely all subclasses

• Liabilities

• Adaptation spectrum: from simple method name
conversions to radically different interfaces

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Builder

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Problem

• Consider your favourite text editor, word
processor, spreadsheet, drawing tool, ...

• allow editing a complex data structure representing
a document, spreadsheet, etc.

• but also need to save it to a persistent
store, typically a hard disk.

• Converting internal data structure to external
format

• Ex: Binary encoding, XML, HTML, RTF, PDF, …

40

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Example

41

A document in XML

The section header can be
output in a number of
different storage formats,
like:

HTML

or ASCII

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Compositional Process

42

• All output consists of the same set of
“parts” (section, subsection, paragraphs, etc.) but
how the parts are built, varies.

• That is, concrete construction of the individual node is
variable

• Encapsulate the “construction of the parts” in a
builder interface.

• A builder interface must have methods to build each
unique part.

• write the data structure iterator algorithm once,
the director, and let it request a delegate builder
to make the concrete parts.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Dynamics

43

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Builder

44

Intent: Separate the construction of a complex object
from its representation so that the same construction
process can create different representations.
(You have a single defined construction process but the output
format varies.)

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Builder

45

Builder:specifies an abstract interface for creating parts of a
Product. A ConcreteBuilder constructs and assembles parts of
the Product by implementing the Builder interface, defines and
keeps track of the representation it creates, and provides an interface
for retrieving the product. The Director constructs an object using
the Builder interface. The Product represents the complex object
under construction and includes classes that define the constituent
parts including the interfaces for assembling the parts into the final
result.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Consequences

46

• Benefits are

• Fine grained control over the building process
• Compare to Abstract Factory

• Construction process and part construction
decoupled
• Change by addition to support new formats

• Many-to-many relation between directors and builders

• Reuse the builders in other directors…

• Liabilities

• Client must know the product of the builder as
well as the concrete builder types.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Implementation
• Assembly and construction interfaces:

• The Builder interface must be general enough to allow
the construction of products for all kinds of
ConcreteBuilders

• The model for construction and assembly is a key design
issue

• Why no abstract class for products?:

• In the common case, the products can differ so greatly
in their representation that little is to gain from giving
different products a common parent class.

• Because the client configures the Director with the
appropriate ConcreteBuilder, the client knows the
resulting products.

47

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Command

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Problem
• In my word processor system I would like the

user to configure what the F1 button does
freely

• Like ‘save’ or ‘open new file’ or ?

• Or perhaps record a macro of key strokes in F1

• F1 => insert text ‘hallo’ at the cursor position

• But how to code this?

49

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Compositional Process
• Encapsulate what varies:

need to handle behaviour as objects that can be assigned
to keys or to buttons, etc.

• the obvious responsibility of such a request object is to be
executable. The next logical step is to require that it can “un-
execute” itself in order to support undo.

• Program to an interface.
The request objects must have a common interface to
allow them to be exchanged across the user interface
elements that must enact them.

• Object composition.
Instead of buttons, menu items, key strokes hard coding
behaviour, they delegate to their assigned command
objects.

50

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Command

51

Intent: Encapsulate a request as an object so that
Clients can be parameterised with different requests
Requests can be queued and logged.
Undo and redo operations become possible.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Command

52

Command declares an interface for executing an operation.
The ConcreteCommand defines a binding between a
Receiver object and an action, it implements Execute by invoking
the corresponding operation(s) on Receiver. The Client
creates a ConcreteCommand object and sets its receiver.
Invoker asks the command to carry out the request. The
Receiver knows how to perform the operations associated
with carrying out a request.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Dynamics

53

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Consequences

54

• Benefits

• Decouples clients from set of commands

• Command set can be extended at run-time

• Easy to support multiple ways to execute command
(menu, pop up, shortcut key, tool bar, …)

• Commands are first-class objects

• Log them, store them

• Assembling macros is easy (composite of commands)

• Undo can be supported
• Add an ‘unexecute()’ method, and stack the set of executed commands.

• Liability: Cumbersome code for calling a method

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Implementation
• How intelligent should a command be?

• Merely define a binding between a receiver and the actions that
carry out the request

• Implement everything by itself without delegating to a receiver

• Find the receiver dynamically

• Supporting undo and redo

• Command must provide a way to revert the execution
(Unexecute of Undo operation)

• ConcreteCommand class may need to store additional state to
be able to do so

• The Receiver object
• The arguments to the operation(s) performed on the receiver
• Any original state of the receiver that changes as a result of handling the

request

55

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Implementation

• Supporting multiple level undo and redo
• The application needs to store a history list of commands

• Commands must be copied before they are put on the history list when
different invocations of the same command must be distinguished from
each other

56

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Proxy

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Suppose that...

• A web page contains a lot of images, many of
which will never be displayed as they are ‘at
the end of the scroll’ where the average user
does not look at all. Can we avoid
downloading them?

• Download on demand – i.e., only when they
become visible.

58

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Compositional Approach

• Encapsulate what varies:

• Seen from the client, the image objects should have variable
behaviour. The ones that become visible will fetch image data,
whereas those that have not yet been visible simply do not
spend time loading the image data.

• Program to an interface:

• Provide the client with an intermediate object that will defer
loading until the “show()” method is called but in all other
aspects act like a real image object.

• Object composition:

• compose the real image behaviour by putting an “object in
front”. (that will only fetch the real image data once it needs to
be shown)

59

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Dynamics

60

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 61

Intent: Provide a surrogate or placeholder
for another object to control access to it

The Proxy maintains a reference that lets the proxy access the real
subject, it provides an interface identical to the Subject’s so that a proxy
can be substituted for the real subject and it controls access to the real
subject and may be responsible for creating and deleting it.
The Subject defines a common interface for Realsubject and Proxy so
that a Proxy can be used anywhere a Realsubject is expected.
Realsubject defines the real object that the proxy represents.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 62

Different kinds of Proxy
• a remote proxy provides a local representative

for an object in a different address space

• a virtual proxy creates expensive objects on
demand

• a protection proxy controls access to the
original object and are useful when objects have
different access rights

• a smart reference is a replacement for a bare
pointer that performs additional actions when an
object is accessed: e.g., counting references, loading
a persistent object when it is first referenced,
locking the real object, ...

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Consequences
• + The Proxy pattern introduces a level of indirection

when accessing an object.
This indirection has many uses:

• A remote proxy can hide the fact that the object resides in
a different address space

• A virtual proxy can perform optimisations

• Both protection proxies and smart pointers allow
additional housekeeping

• + The proxy patterns can be used to implement “copy-
on-write”
to avoid unnecessary copying of large objects the real subject
is referenced counted; each copy request increments this
counter but only when a client requests an operation that
modifies the subject the proxy actually copies it.

63

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Composite

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Part-whole Structures

65

Hierarchical data structures pervade IT systems
Folders (whole) and files (part) is a classic example

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

How to design?

66

• Using the model perspective (who/what) we
focus on concepts in the domain:

• who: Folder and File

• what: different things
• Folder: addFile, addFolder, removeFile, etc.

• File: open, close, getType, getSize, setReadOnly

• Using a responsibility perspective (what/
who) we instead focus on behaviour:

• what: calculate size, move in structure, delete, set
to read only

• who: actually both folders and files…

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Design 1
• Make disjoint classes as they are disjoint concepts

• class Folder {…} and class File {…}

• But – will require a lot of casting…

67

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Design 2

68

Program to an interface

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Design 2 (c’td)

69

 Notice that this is a recursive depth-first descent into
the tree…

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 70

Intent: Compose objects into tree-like structures to
represent part-whole hierarchies and let clients treat
individual objects and compositions of objects
uniformly

Component defines a
common interface.
Composite defines a
component by means
of aggregating other
components.

Leaf defines a
primitive, atomic,
component, i.e., one
that has no
substructure.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 71

Consequences
• + Makes the Client simple:

clients can treat composite structures and individual objects
uniformly,
clients normally don’t know and should not care whether
they are dealing with a leaf or a composite

• + Makes it easier to add new types of
components:
client code works automatically with newly defined
Composite or Leaf subclasses

• - Can make a design overly general:
the disadvantage of making it easy to add new components is
that it is difficult to restrict the components of a composite,
sometimes you want a composite to have only certain types of
children, with the Composite Patterns you cannot rely on the
type system to enforce this for you, you have to implement
and use run-time checks

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Implementation1
• Explicit parent references:

simplify traversal and management of composite structures; are
best defined in the Component class;
it is essential to maintain the invariant that all children of a
composite have as their parent the composite that in turn has
them as children

• Sharing components:
can be useful for example to reduce storage requirements but can
lead to ambiguities when requests propagate up the structure

• Maximising the Component interface:
to achieve that clients are unaware of the specific Leaf or
Composite class they are using, the Component class should
define as many common operations on Leaf and Composite
classes as possible;
this conflicts with class hierarchy design that says that a class
should only implement operations that make sense on all of its
subclasses; some creativity is needed to find good default
implementations for operations (ex. children (leaf) = {})

72

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Implementation 2
• The child access and management operations:

defining the child management interface at the Component
level gives transparency but costs safety, clients can do
meaningless things like add to or delete from a leaf; this must
be captured in a default implementation: do nothing or throw
error ???

• The instance variable(s) holding the children:
commonly this instance variable belongs where the access
and management operations are but when put with the
Component class a space penalty is involved since Leafs
never have children.

• Deleting Components:
in languages without garbage collection it is best to make
Composite responsible for deleting its children; an exception
is when Leaf objects are immutable and thus can be shared.

73

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Implementation 3
• The datastructure for storing children:

a variety of datastructures is available: lists, trees, arrays,
hash tables; the choice depends on efficiency; alternatively
each child can be kept in a separate instance variable; all
access and management operations must then be
implemented on each Composite subclass

• Child ordering:
when child order is an issue the child access and
management interface must be designed carefully to
manage this sequence.

• Caching:
when compositions need to be traversed or searched
frequently the Composite class can cache traversal or
search information on its children; changes to a
component will require invalidating the caches of its
parent.

74

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Visitor

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Example

76

Consider a compiler representing programs as abstract
syntax trees. Operations like type checking, generating
code, flow analysis, etc. need to be performed.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Solution

77

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 78

Structure

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 79

Intent: represent an operation to be performed on the
elements of an object structure.
Visitor lets you define a new operation without changing
the classes of the elements on which it operates

Context:
declares a Visit operation for each class of ConcreteElement in the object structure.
The operations name and signature identified the class that sends the Visit request.

ConcreteVisitor:
implements each operation declared by Visitor. Each operation implements a fragment of
the algorithm for the corresponding class of object in the object structure. It provides the
context for the algorithm and stores its state (often accumulating results during traversal).

Element:
defines an accept operation that takes a visitor as an argument.

ConcreteElement:
implements an accept operation that takes a visitor as an argument

ObjectStructure:
can enumerate its elements
may provide a high-level interface to allow the visitor to visit its elements
may either be a Composite or a collection such as a list or a set

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 80

Dynamics

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Consequences 1

81

• + Makes adding new operations easy:
a new operation is defined by adding a new visitor (in contrast,
when you spread functionality over many classes each class must
be changed to define the new operation)

• + Gathers related operations and
separates unrelated ones:
related behaviour is localised in the visitor and not spread over the
classes defining the object structure

• - Adding new ConcreteElement classes is
hard:
each new ConcreteElement gives rise to a new abstract operation
in Visitor and a corresponding implementation in each
ConcreteVisitor

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Consequences 2
• + Allows visiting across class hierarchies:

an iterator can also visit the elements of an object structure as it
traverses them and calls operations on them but all elements of
the object structure then need to have a common parent. Visitor
does not have this restriction.

• + Accumulating state:
visitor can accumulate state as it proceeds with the traversal.
Without a visitor this state must be passed as an extra parameter
of handled in global variables

• - Breaking encapsulation:
Visitor’s approach assumes that the ConcreteElement interface is
powerful enough to allow the visitors to do their job. As a result
the pattern ofthen forces to provide public operations that access
an element’s internal state which may compromise its
encapsulation

82

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Implementation
• Who is responsible for traversing the

object structure?
responsibility for traversal can be with:

• The object structure

• The visitor:
is advisable when a particular complex traversal is needed (for
example one that depends on the outcome of the operation),
otherwise it I not advisable because a lot of traversal code will be
duplicated in each ConcreteVisitor for each aggregate
ConcreteElement

• A separate iterator object

• Double Dispatch.
The key to visitor is a double dispatch: the meaning of the accept
operation depends on the visitor and on the element. Languages
that support double dispatch (CLOS) can do without this pattern.

83

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Example double dispatch

84

; UI that draws on a window using the Canvas.rkt library
(define (make-canvas-ui)
 (let ((window-w 800)
 (window-h 600)
 (black (make-color 0 0 0))
 (green (make-color 0 15 0)))

 ;clears the window by painting it black
 (define (clear)
 (fill-rectangle! 0 0 window-w window-h black))

 ;draws the given ball in green
 (define (draw-ball ball)
 (let ((position (send-message ball 'position))
 (radius (send-message ball 'radius)))
 (fill-ellipse! (coordinates-x position)
 (coordinates-y position)
 radius
 radius
 green)))

 (define (dispatch message)
 (case message
 ((clear) clear)
 ((draw-ball) draw-ball)
 (else (error 'canvas-ui "unknown message ~a" message))))

 dispatch))

; Instantiates a ball with the given radius and x-coordinate
(define (make-ball radius x)
 (let ((dy 10) ;change in vertical position
 (position (make-coordinates x 100))) ;initial position

 (define (get-position) position)
 (define (get-radius) radius)

 ;Adjusts the ball's position upwards
 (define (up!)
 (coordinates-y! position
 (+ (coordinates-y position) dy)))

 ;Adjusts the ball's position downwards
 (define (down!)
 (coordinates-y! position
 (- (coordinates-y position) dy)))

 ;Draws the ball on the given game UI
 (define (draw ui)
 ;does not draw directly, but asks the UI to draw the ball instead
 ;this way, the game can be configured with a different UI
 (send-message ui 'draw-ball dispatch))

 (define (dispatch message)
 (case message
 ((position) get-position)
 ((radius) get-radius)
 ((draw) draw)
 ((up!) up!)
 ((down!) down!)
 (else (error 'ball "unknown message ~a" message))))
 dispatch))

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Observer

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Challenges
• Objects dependent on some underlying core information:

if this information changes then the objects must react accordingly.

• Examples:

• spreadsheet
the data in the sheet may be simultaneously displayed as bar charts and
pie charts in their own windows. => want these windows to be
synchronized

• calendar application
shows current time both as text in a status field and as a highlight of
entries in the day view.
As time passes both need to be updated.

• UML diagram editor
the object representing an association line between two classes must
monitor any movement of either of the connected classes in order to
reposition and redraw.

86

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Compositional Approach

• Take as an example, the spreadsheet:

• consider what should be variable in your design:
Data is shared but visualisation is variable!
variable behaviour is the processing that must take place
each time the cell changes value.

• program to an interface:
define an interface that encapsulates the processing
responsibility.

• favour object composition

87

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Observer

88

Intent: Define a one-to-many dependency between objects so
that when one object changes state, all its dependents are notified
and updated automatically.

Observer specifies the responsibility and interface for being able to be notified.
Subject is responsible for holding state information, for maintaining a list of all
observers, and for invoking the update method on all observers in its list.
ConcreteObserver defines concrete behaviour for how to react when the
subject experiences a state change.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Protocol

89

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Consequences

90

• + Abstract and minimal coupling
between Subject and Observer:
the subject does not know the concrete class of any
observer, concrete subject and concrete observer classes
can be reused independently, subject and observer can
even belong to different abstraction layers in the system

• + Support for broadcast communication:
the notification a subject sends does not need to specify a
receiver, it will broadcast to all interested (subscribed)
parties

• - Unexpected updates:
observers don’t have knowledge about each others
presence, a small operation might cause a cascade of
spurious updates

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Implementation 1
• Mapping subjects to their observer:

the Subject keeps explicit references to the Observers it should notify or
some associative lookup (e.g. a hash table) is installed; memory/time trade
off must be made

• Observing more than one Subject:
can make sense in some situations; the update interface must be extended
to keep track of the Subject that is sending the update allowing the
Observer to know which Subject to examine

• Who triggers the updates (i.e. who calls
notify):

• have all state changing operations on Subject call notify after the subject’s
state is changed; consecutive operations cause several consecutive
updates which may not be necessary and is inefficient

• make clients responsible for calling notify at the right time; clients get the
added responsibility to call notify which makes errors likely

91

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Implementation 2

• Dangling references to deleted Subjects:
deleting a Subject should not produce dangling references in its
Observers; simply deleting the Observers is often not the best
idea (they can be referenced by others or they can be observing
another Subject); when deleting a Subject the Observers should be
notified so that they can reset their Subject reference

• Make sure that Subject is self consistent
before calling notify:
Observers query the subject's state to do their update ; this rule is
easy to violate unintentionally when Subject subclass operations
call inherited operations

• Specifying modification of interest
explicitly: update efficiency can be improved when the
observers register for specific events of interest only

92

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013

Implementation 3

• Avoiding observer-specific update
protocols, the pull and the push model:

• In the push model the Subject sends its Observers detailed
information on what is changed; the Subject class makes
assumptions about the Observers’ needs

• In the pull model the Subject sends nothing but the most
minimal notification and the Observers ask for details explicitly;
emphasizes the Subject’s ignorance of its Observers; can be
inefficient because Observers must assess what is changed
without help

• Encapsulate complex update semantics:
install an explicit change manager that manages the Subject-
Observer relationships and defines a particular update strategy

93

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2012/2013 94

