
Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Theme 1
Software Processes

Focus on Extreme Programming

1

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Learning Goals

• How did agile methods come about?

• What are the principles of agility?

• How are agile processes carried out?

• Can agile processes be combined with non-
agile ones?

• In conclusion => understanding of the main
ideas of agile development methods and XP in
particular.

2

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Table of content

• Definition Software Process

• Waterfall

• Iterative and incremental development

• Agile development

• principles

• cycle

• integration with non-agile processes

3

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Software Process

• Software project composed of activities or steps

• Requirements, design, implementation, testing, deployment,
maintenance.

• Activities organized into phases

• A software process:

• prescribes the order and frequency of phases

• specifies criteria for moving from one phase to the next

• defines the deliverables of the project

• Consider your last project or programming exercise. How were
the activities/steps defined, executed and controlled?

4

Rehe
ars

al

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Think/pair/share

Enumerate the software processes you
know, define them using one sentence and
indicate the ones you have used in the past.

Énumérez les processus de logiciel que vous
connaissez, définissez les processus en une
phrase et indiquez les processus que vous avez
déjà utilisé.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Waterfall Development

6

System System
Engineering Engineering

Design Design

Code

Construction

Testing

Maintenance Maintenance

Analysis Requirements
 Analy sis

Code Installation

The classical software lifecycle
models the software development
as a step-by-step “waterfall”
between the various development
activities.

Rehe
ars

al

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Iterative and Incremental

7

• Iterative

• repeated execution of the waterfall phases, in whole or in part,
resulting in a refinement of the requirements, design and
implementation

• Incremental

• operational code produced at the end of an iteration

• supports a subset of the final product functionality and features

• Artifacts evolve during each phase

• Artifacts considered complete only when software
is released

Rehe
ars

al

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014
8

Agile Development
Manifesto for Agile Software Development

We are uncovering better ways of developing software
 by doing and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value
the items on the left more.

The Manifesto for Agile Software Development

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Agile Principles

9

• Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

• Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive
advantage.

• Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

• Business people and developers must work together daily
throughout the project.

• Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job
done.

• The most efficient and effective method of conveying information
to and within a development team is face-to-face conversation.

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Agile Principles

• Working software is the primary measure of progress.

• Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace
indefinitely.

• Continuous attention to technical excellence and good design
enhances agility.

• Simplicity--the art of maximizing the amount of work not done--is
essential.

• The best architectures, requirements, and designs emerge from
self-organizing teams.

• At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

10

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Agile Cycle

11

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Integrating Agile with Non-
Agile Processes

• Regardless of development process used:

• need to make trade-offs in deciding how extensively to pursue a
phase before moving to another phase.

• E.g. how much effort to spend on planning a software
enterprise.

12

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Integrating Agile with Non-Agile
Methods: Non-Agile-driven

13

time

Requirements
documentation

Design
documentation

Coding & test

System Testing 1

 *

 *

1

2

3

4

5

6

* High level

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Integrating Agile with Non-Agile
Methods: Agile-driven

14

Requirements
documentation

Design
documentation

Coding & test
(including agility?)

Initial agile
development

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Table of content

• Definition eXtreme Programming

• Basic values

• Principles

• Practices

• pair programming

• stories

• test-first programming

• continuous integration

15

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014 16

Extreme Programming (XP)

• Point of XP: coping with change and uncertainty

• software product = f(c,t,s,q)

• parameters:

• cost ≈number of staff on the project

• time ≈ time to delivery deadline

• scope ≈ amount of functionality

• quality ≈ reliability

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Extreme Programming

• Software Product = f(c, t, s, q)

• Question:
Which parameters are fixed by the management?

• Question:
Which parameter is left for developers to tweak in order to adjust
the workload?

17

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Extreme Programming

• Software Product = f(c, t, s, q)

• Question:
Which parameters are fixed by the management?

Cost, Time, Scope

• Question:
Which parameter is left for developers to tweak in order to adjust
the workload?

Quality

18

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Extreme Programming
• The Agile/XP answer:

Projects fix [price, time, quality]

Open parameter [scope]

Meaning:

• Scope control important
• On site customer / user feedback

• Rapid release cycles

• Quality control important

• Testing & user feedback

• Test-driven development

19

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Describing XP

20

Values Practices

Principles

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Basic XP Values

• Communication
• communicate problems&solutions, teamwork

• Simplicity
• eliminate wasted complexity

• Feedback
• change creates the need for feedback

• Courage
• effective action in the face of fear

• Respect
• care about you, the team, and the project

21

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Principles

22

Humanity, Economics, Mutual Benefit, Self-Similarity,
Improvement, Diversity, Reflection, Flow, Opportunity,
Redundancy, Failure, Quality, Baby Steps, Accepted
Responsibility

Will not detail them -- they govern what the practices
tend to accomplish

So, on to the practices!

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Primary Practices

23

Sit Together

Whole Team

Energized Work

Pair Programming

Stories

Automated Testing

Small Releases

Weekly Cycle

Quarterly Cycle

Ten Minute Build

Continuous
Integration

Incremental Design

Collective Code
Ownership

Coding Standards

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Pair Programming

• Write all production programs with two people
sitting at one machine

• make enough room, move keyboard and mouse

• Pair programmers:

• keep each other on task

• brainstorm refinements to the system

• clarify ideas

• take initiative when partner is stuck (less frustration)

• hold each other accountable to practices

24

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Pair programming and
privacy

• Sometimes you might need some privacy

• then go work alone

• come back with the idea (NOT the code)

• quickly reimplemented with two

• benefits the whole team, not you alone

• Rotate pairs frequently

• every couple of hours, at natural breaks in development

• with a timer, every 60 minutes (or 30 minutes for difficult
problems)

25

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Stories

26

Save with compression

Currently the compression
options are in a dialog
subsequent to the save
dialog. Make them part of
the save dialog itself

8 hrs
name

short description

estimate

index card

plan using units of customer-visible functionality

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

7 more User Stories

• Students can purchase monthly parking passes
online.

• Parking passes can be paid via credit cards.

• Parking passes can be paid via PayPal ™.

• Professors can input student marks.

• Students can obtain their current seminar schedule.

• Students can only enroll in seminars for which they
have prerequisites.

• Transcripts will be available online via a standard
browser.

27

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Another example

28

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

User Stories vs. Use Case

• Not the same artifact!

29

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Continuous Integration

• Team Programming = Divide, Conquer, Integrate

• Integrate and test changes after no more than a
couple of hours

• integration typically takes long

• when done at the end, risks the whole project when integration
problems are discovered

• the longer you wait, the more it costs and the more
unpredictable it becomes

30

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Using Continuous Integration

• Synchronous

• After a task is finished, you integrate and run the tests

• Immediate feedback for you and your partner

• Asynchronous

• After submitting changes, the build system notices something
new, builds and tests the system, and gives feedback by mail,
notification, etc.

• Feedback typically comes when a new task is started

• Pair programmers might have been switched already

31

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Test-first Programming

• Write a failing automated test before changing code

• Addresses many problems:

• Scope creep: focus coding by what the code should do, not
on the “just in case” code

• Coupling and cohesion: If it’s hard to write a test, there is a
design problem (not a testing problem)

• Trust: clean working code + automated tests

• Rhythm: gives focus on what to do next

• efficient rhythm: test, code, refactor, test, ...

• See next theme!!!

32

Ragnhild Van Der Straeten - ULB - Software Engineering and Project Management - 2013/2014

Conclusion XP

• It is a process that is

• incremental: growing software instead of
designing

• iterative: learning while doing.

33

