Introduction to Computer Networking

Guy Leduc

Chapter 5 Link Layer and LANs

Computer Networking: A Top Down Approach, 5th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-1

Chapter 5: The Data Link Layer

<u>Our goals:</u>

- understand principles behind data link layer services:
 - error detection
 - o sharing a broadcast channel: multiple access
 - link layer addressing
 - o reliable data transfer, flow control: done!
- instantiation and implementation of various link layer technologies

© From Computer Networking, by Kurose&Ross

Link Layer

- 5.1 Introduction and services
- 5.2 Error detection
- 5.3Multiple access protocols
- 5.4 Link-layer Addressing
- □ 5.5 Ethernet

- □ 5.6 Link-layer switches
- **5.7** PPP
- □ 5.8 Link virtualization
- 5.9 A day in the life of a web request

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-3

5-4

Link Layer: Introduction

Some terminology:

- hosts and routers are nodes
- communication channels that connect adjacent nodes along communication path are links
 - wired links
 - o wireless links
 - O LANS
- layer-2 packet is a frame, encapsulates datagram

data-link layer has responsibility of transferring datagram from one node to adjacent node over a link

© From Computer Networking, by Kurose&Ross

Link layer: context

- datagram transferred by different link protocols over different links:
 - e.g., Ethernet on first link, frame relay on intermediate links, 802.11 on last link
- each link protocol provides different services
 - e.g., may or may not provide rdt over link

© From Computer Networking, by Kurose&Ross

transportation analogy

- trip from Princeton to Lausanne
 - limo: Princeton to JFK
 - o plane: JFK to Geneva
 - 🔉 train: Geneva to Lausanne
- tourist = datagram
- transport segment = communication link
- transportation mode = link layer protocol
- travel agent = routing
 algorithm

5: DataLink Layer 5-5

Link Layer Services

□ framing, link access:

- o encapsulate datagram into frame, adding header, trailer
- o channel access if shared medium
- "MAC" addresses used in frame headers to identify source, dest
 - different from IP address!

reliable delivery between adjacent nodes

- we learned how to do this already (chapter 3)!
- seldom used on low bit-error link (fiber, some twisted pair)
- wireless links: high error rates
 - · Q: why both link-level and end-end reliability?

© From Computer Networking, by Kurose&Ross

Link Layer Services (more)

□ flow control:

pacing between adjacent sending and receiving nodes

- error detection:
 - errors caused by signal attenuation, noise.
 - receiver detects presence of errors:
 - drops frame
 - · if recovery needed: signals sender for retransmission

error correction:

 receiver identifies and corrects bit error(s) without resorting to retransmission

half-duplex and full-duplex

 with half duplex, nodes at both ends of link can transmit, but not at same time

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-7

Where is the link layer implemented?

in each and every host

- link layer implemented in "adaptor" (aka network interface card NIC)
 - Ethernet card, PCMCI card, 802.11 card
 - implements link, physical layer
- attaches into host's system buses
- combination of hardware, software, firmware

© From Computer Networking, by Kurose&Ross

Adaptors Communicating

- **sending side**:
 - encapsulates datagram in frame
 - o adds error checking bits, rdt, flow control, etc.

© From Computer Networking, by Kurose&Ross

receiving side

- looks for errors, rdt, flow control, etc
- extracts datagram, passes to upper layer at receiving side

5: DataLink Layer 5-9

Link Layer

- **5.1** Introduction and services
- 5.2 Error detection
- □ 5.3Multiple access protocols
- 5.4 Link-layer Addressing
- □ 5.5 Ethernet

- □ 5.6 Link-layer switches
- **5.7** PPP
- 5.8 Link Virtualization
- □ 5.9 A day in the life of a web request

© From Computer Networking, by Kurose&Ross

Error Detection

EDC= Error Detection (and sometimes Correction) bits (redundancy) D = Data protected by error checking, may include header fields

- Error detection not 100% reliable!

 - protocol may miss some errors, but rarely
 larger EDC field yields better detection (and correction)

© From Computer Networking, by Kurose&Ross

Parity Checking

Single Bit Parity: Detect single bit errors	Two Dimensional Bit Parity: Detect and correct single bit errors				
← d data bits → bit 0111000110101011 0	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$				
	$\begin{array}{cccc} 10101 \\ 111100 \\ 011101 \\ 001010 \\ no \ errors \\ error \\ error \\ error \\ correctable \\ single \ bit \ error \\ \end{array}$				

5: DataLink Layer 5-12

© From Computer Networking, by Kurose&Ross

Internet checksum (review)

<u>Goal:</u> detect "errors" (e.g., flipped bits) in transmitted packet (note: used at transport layer only)

Sender:

- treat segment contents as sequence of 16-bit integers
- checksum: addition (1's complement sum) of segment contents
- sender puts checksum value into UDP checksum field

© From Computer Networking, by Kurose&Ross

Receiver:

- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - NO error detected
 - YES no error detected. But maybe errors nonetheless?

5: DataLink Layer 5-13

Checksumming: Cyclic Redundancy Check

- □ view data bits, D, as a binary number
- □ choose r+1 bit pattern (generator), G
- □ goal: choose r CRC bits, R, such that
 - <D,R> exactly divisible by G (in base-2 arithmetic)
 - receiver knows G, divides <D,R> by G. If non-zero remainder: error detected!
 - o can detect all burst errors less than or equal to r bits (see later)
- widely used in practice (Ethernet, 802.11 WiFi, PPP, ATM)

© From Computer Networking, by Kurose&Ross

CRC Example Quotient Want: r=3 $D^{2^r} XOR R = nG$ 101011 1001) 101110000 equivalently: G 1001 $D \cdot 2^r = nG XOR R$ 101 equivalently: Dividend ōŏō Divisor if we divide D.2^r by G 1010 1001 (in base-2 arithmetic), 110 want remainder R 000 In base-2 arithmetic: 1100 -no carries 1001 -no borrows 1010 1001 $D \cdot 2'$ R = remainder011 G R

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-15

CRC Example: the polynomial view

$$D(x) = x^{5} + x^{3} + x^{2} + x$$

r=3
$$G(x) = x^{3} + 1$$

$$R(x) = remainder \left[\frac{D(x) \cdot x^{r}}{G(x)} \right]$$

Transmitted frame:

T(x) = D(x) \cdot x^r - R(x) Is divisible by: G(x)

© From Computer Networking, by Kurose&Ross

Why does it work?

- □ We have $T(x) = D(x) \cdot x^r R(x)$
 - \circ Therefore, the remainder of T(x) / G(x) is zero!
 - \odot This is easy to check at the receiver, provided that the sender and the receiver agree on a certain $G(\mathbf{x})$
- Suppose some errors occur during transmission.
 - The received frame is T(x) + E(x)
 - The receiver will then calculate the remainder of (T(x) + E(x)) / G(x)
 - This remainder is equal to the remainder of E(x) / G(x)
 - If there is an error such that E(x) is not divisible by G(x), it is detected!
- \Box The choice of G(x) is thus very important!

From Computer Networks, by Tanenbaum © Prentice Hall

5: DataLink Layer 5-17

Example of CRC

- Generator = $G(x) = x^{16} + x^{12} + x^5 + 1$
- \Box G(x) detects every E(x) consisting of an odd number of error bits
 - Because G(x) is a factor of x + 1 (in base-2 arithmetic, G(1) = 0), and a polynomial E(x) with an odd number of terms is not divisible by x+1 (in base-2 arithmetic, E(1) = 1 for such E(x))
- More generally, a G(x) composed of an even number of terms detects every error consisting of an odd number of error bits
 - At least as good as a parity bit!
 - Could a parity bit be seen as a trivial CRC? Any G(x) to suggest?
- \Box G(x) detects every 2-bit error (in any place in the frame)
- □ G(x) detects every error burst of length \leq 16 bits
 - An error burst of length n (≥ 2) is 1 erroneous bit, followed by n-2 bits (correct or not), followed by an erroneous bit
- So an error burst of length ≤ 16 bits is an E(x) = E'(x) · x^k, with neither E'(x), nor x^k being divisible by G(x), because E'(x) is of degree ≤ 15, while G(x) is of degree 16.
- More generally, a G(x) of degree r detects every r-bit error bursts
- □ G(x) detects 99,997% of the 17-bit error bursts (if errors are random)
- □ G(x) detects 99,998% of the 18-bit error bursts (if errors are random)

From Computer Networks, by Tanenbaum © Prentice Hall

Link Layer

- **5.1** Introduction and services
- □ 5.2 Error detection
- **5**.3Multiple access protocols
- 5.4 Link-layer Addressing
- □ 5.5 Ethernet

- □ 5.6 Link-layer switches
- □ 5.7 PPP
- 5.8 Link Virtualization
- □ 5.9 A day in the life of a web request

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-19

Multiple Access Links and Protocols

Two types of "links":

- point-to-point
 - PPP for dial-up access
 - point-to-point link between Ethernet switch and host
- broadcast (shared wire or medium)
 - o old-fashioned Ethernet
 - upstream HFC
 - 802.11 wireless LAN

shared wire (e.g.,

cabled Ethernet)

© From Computer Networking, by Kurose&Ross

shared RF

(satellite)

Multiple Access protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
- collision if node receives two or more signals at the same time <u>multiple access protocol</u>
- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-21

Ideal Multiple Access Protocol

Broadcast channel of rate R bps

- 1. when one node wants to transmit, it can send at rate R
- 2. when M nodes want to transmit, each can send at average rate R/M (fairness)
- 3. fully decentralized:
 - no special node to coordinate transmissions
 - $\,\circ\,$ no synchronization of clocks, slots
- 4. simple

© From Computer Networking, by Kurose&Ross

MAC Protocols: a taxonomy

Three broad classes:

Channel Partitioning

- divide channel into smaller "pieces" (time slots, frequency, code)
- o allocate piece to node for exclusive use
- Random Access
 - o channel not divided, allow collisions
 - "recover" from collisions

"Taking turns"

 nodes take turns, but nodes with more to send can take longer turns

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-23

Channel Partitioning MAC protocols: TDMA

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = pkt transmission time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle

© From Computer Networking, by Kurose&Ross

Channel Partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

© From Computer Networking, by Kurose&Ross

Random Access Protocols

- When node has packet to send
 - transmit at full channel data rate R
 - o no a priori coordination among nodes
- \Box two or more transmitting nodes \rightarrow "collision",
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols:
 - slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA

© From Computer Networking, by Kurose&Ross

Slotted ALOHA

Assumptions:

- all frames have same size
- time is divided into equal size slots (time to transmit 1 frame)
- nodes start to transmit only at slot beginning
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

© From Computer Networking, by Kurose&Ross

Operation:

- when node obtains fresh frame, transmits in next slot
 - if no collision: node can send new frame in next slot
 - if collision: node retransmits frame in each subsequent slot with prob. p until success

5: DataLink Layer 5-27

<u>Slotted ALOHA</u>

<u>Pros</u>

- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- □ simple

© From Computer Networking, by Kurose&Ross

<u>Cons</u>

- collisions, wasting slots
- idle slots
- nodes may be able to detect collision in less than time to transmit packet
- clock synchronization

Slotted Aloha efficiency

Efficiency is the long-run fraction of successful slots when there are many nodes, each with many frames to send

 Suppose N nodes with many frames to send, each transmits in slot with probability p

Note: not exactly slotted ALOHA!

- prob that node 1 has success in a slot = p(1-p)^{N-1}
- prob that any node has a success = Np(1-p)^{N-1}

- For max efficiency with N nodes, find p* that maximizes Np(1-p)^{N-1}
 p* = 1/N
- For many nodes, take limit of Np*(1-p*)^{N-1} = (1-1/N)^{N-1} as N goes to infinity, it gives 1/e = 0.37

$$\lim_{N \to \infty} \left(1 - \frac{G}{N} \right)^N = e^{-G}$$

At best: channel used for useful transmissions 37% of time!

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-29

Pure (unslotted) ALOHA

- unslotted Aloha: simpler, no synchronization
- when frame first arrives
 - o transmit immediately
- collision probability increases:
 - \circ frame sent at t₀ collides with other frames sent in [t₀-1,t₀+1]

Pure Aloha efficiency

$$\begin{split} \text{P(success by given node)} &= \text{P(node transmits)} \\ &\quad \text{P(no other node transmits in } [t_0-1,t_0] \\ &\quad \text{P(no other node transmits in } [t_0,t_0+1] \\ &\quad = p \cdot (1\text{-}p)^{N-1} \cdot (1\text{-}p)^{N-1} \\ &\quad = p \cdot (1\text{-}p)^{2(N-1)} \end{split}$$

P (success by any node) = Np \cdot (1-p)^{2(N-1)}

 \dots choosing optimum \boldsymbol{p} and then letting \boldsymbol{n} go to infinity \dots

= 1/(2e) = 0.18

Even worse than slotted Aloha!

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-31

<u>Efficiency wrt average traffic</u> <u>load</u>

- Let G = pN be the average aggregated traffic load (or demand) per frame time
 - = nr. of transmission attempts per frame time
 - N stations sending one frame with probability p in every frame time
- Efficiency
 - Slotted ALOHA: $Np(1-p)^{N-1} = G \cdot (1-G/N)^{N-1}$
 - ALOHA: Np(1-p)^{2(N-1)} = $G \cdot (1-G/N)^{2(N-1)}$
- Efficiency (for a given G) when N >>
 - Slotted ALOHA: $G \cdot e^{-G}$
 - ALOHA: G · e^{-2G}
 - If $G \iff 1$: efficiency $\approx G$, perfect

$$\lim_{N\to\infty} \left(1 - \frac{G}{N}\right)^N = e^{-G}$$

ALOHA versus Slotted ALOHA

From Computer Networks, by Tanenbaum © Prentice Hall

5: DataLink Layer 5-33

CSMA (Carrier Sense Multiple Access)

<u>CSMA:</u> listen before transmit:
 If channel sensed idle: transmit entire frame
 If channel sensed busy, defer transmission
 LBT: Listen Before Talking (and deference)

human analogy: don't interrupt others!

© From Computer Networking, by Kurose&Ross

CSMA collisions

collisions can still occur:

propagation delay means two nodes may not hear each other's transmission

collision:

entire packet transmission time wasted

note:

role of distance & propagation delay in determining collision probability

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-35

p-persistent CSMA

persistent CSMA

(if channel is busy, listen until it is freed)

non persistent CSMA

(if channel is busy, program a new attempt later)

p-persistent CSMA:

While true do if channel is free then { with probability p: immediate transmission; or with probability 1-p: stay idle during at least propagation time (τ) } else listen until the channel is freed.

Trade-off between efficiency and delay

- This introduces a useless delay at low loads
- But the efficiency of the channel is better at high loads

<u>Efficiency versus load for various random</u> <u>access protocols</u>

From Computer Networks, by Tanenbaum © Prentice Hall

5: DataLink Layer 5-37

Engineering a CSMA network

B = Channel Data Rate (so-called Bandwidt)	n)(bps)
F = (Maximum) Frame size	(bits)
L = Length of the channel	(m)
c = Propagation speed	(m/s)
τ = Propagation delay = L / c	(s)
T = Transmission delay = F / B	(s)

$a = \tau / T = BL / cF$

Let a = 1% \rightarrow F = 100 BL / c = ± 5 10⁻⁷ BL (with c = ± 200,000 km/s) Let B = 10 Mbps, L = 2.5 km \rightarrow F = 12,500 bits (= 1,562.5 bytes) This is roughly the Ethernet frame size

CSMA/CD (Collision Detection)

CSMA/CD: carrier sensing, deferral as in CSMA

- o collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: received signal strength overwhelmed by local transmission strength

human analogy: the polite conversationalist

© From Computer Networking, by Kurose&Ross

```
5: DataLink Layer 5-39
```


Minimal frame size with CSMA/CD

To detect collision, the sender must still be transmitting when the collision propagates back to it. So the condition is:

T > 2τ , which means F/B > 2L/c,

- which leads to a minimal $\rm F_{min}$ = 2BL/c = ± BL 10^{-8} bits
- □ Let B = 10 Mbps, L = 2.5 km → F_{min} = ± 250 bits (= ± 32 bytes)
 Ethernet has chosen 64 bytes = 512 bits (extra margin due to other delays)

From Computer Networks, by Tanenbaum © Prentice Hall

5: DataLink Layer 5-41

"Taking Turns" MAC protocols

channel partitioning MAC protocols:

- share channel efficiently and fairly at high load
- inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!

Random access MAC protocols

- efficient at low load: single node can fully utilize channel
- o high load: collision overhead

"taking turns" protocols

look for best of both worlds!

© From Computer Networking, by Kurose&Ross

"Taking Turns" MAC protocols

Polling:

- master node
 "invites" slave nodes
 to transmit in turn
- typically used with "dumb" slave devices
- **concerns**:
 - polling overhead
 - o latency
 - single point of failure (master)

slaves

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-43

"Taking Turns" MAC protocols

Token passing:

- control token passed from one node to next sequentially
- 🗖 token message

concerns:

- o token overhead
- latency
- single point of failure (token)

© From Computer Networking, by Kurose&Ross

Summary of MAC protocols

- channel partitioning, by time, frequency or code
 Time Division, Frequency Division
- random access (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11

taking turns

- polling from central site, token passing
- Bluetooth, FDDI, IBM Token Ring

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-45

Link Layer

- 5.1 Introduction and services
- □ 5.2 Error detection
- 5.3Multiple access protocols
- 5.4 Link-Layer Addressing
- 5.5 Ethernet

- 5.6 Link-layer switches
- **5.7** PPP
- 5.8 Link Virtualization
- 5.9 A day in the life of a web request

© From Computer Networking, by Kurose&Ross

MAC Addresses and ARP

□ 32-bit IP address:

- o network-layer address
- o used to get datagram to destination IP subnet
- MAC (or LAN or physical or Ethernet) address:
 - function: get frame from one interface to another physically-connected interface (same network)
 - 48-bit MAC address (for most LANs)
 - burned in NIC ROM, also sometimes software settable

© From Computer Networking, by Kurose&Ross

LAN Address (more)

- MAC address allocation administered by IEEE
- manufacturer buys portion of MAC address space (to assure uniqueness)
- analogy:
 - (a) MAC address: like Social Security Number
 - (b) IP address: like postal address
- MAC flat address → portability
 - o can move LAN card from one LAN to another
- IP hierarchical address NOT portable
 - o address depends on IP subnet to which node is attached

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-49

ARP: Address Resolution Protocol

© From Computer Networking, by Kurose&Ross

- router) on LAN has
- address mappings for some LAN nodes
 - < IP address; MAC address; TTL>
 - TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)

ARP protocol: Same LAN (network)

- A wants to send datagram to B, and B's MAC address not in A's ARP table
- A broadcasts ARP query packet, containing B's IP address
 - dest MAC address = FF-FF-FF-FF-FF-FF
 - all machines on LAN receive ARP query
- B receives ARP packet, replies to A with its (B's) MAC address
 - frame sent to A's MAC address (unicast)

© From Computer Networking, by Kurose&Ross

- A caches (saves) B's IP-to-MAC address pair in its ARP table until information becomes old (times out)
 - soft state: information that times out (goes away) unless refreshed
- All other stations had also cached A's IP-to-MAC pair!
- ARP is "plug-and-play":
 - nodes create their ARP tables without intervention from net administrator

5: DataLink Layer 5-51

Addressing: routing to another LAN

walkthrough: send datagram from A to B via R assume A knows B's IP address

two ARP tables in router R, one for each IP network (LAN)

© From Computer Networking, by Kurose&Ross

- A creates IP datagram with source A, destination B
- In routing table at source Host, find R's IP = 111.111.111.110
- □ A uses ARP to get R's MAC address for 111.111.111.110
- A creates link-layer frame with R's MAC address as dest, frame contains A-to-B IP datagram
 This is a neally imposed to the second se
- A's NIC sends frame
 R's NIC receives frame

This is a **really** important example - make sure you understand!

- R removes IP datagram from Ethernet frame, sees it's destined for B
- R uses ARP to get B's MAC address
- R creates frame containing A-to-B IP datagram, sends to B

Link Layer

- 5.1 Introduction and services
- 5.2 Error detection
- 5.3Multiple access protocols
- 5.4 Link-Layer Addressing
- **5.5** Ethernet

- □ 5.6 Link-layer switches
- **5.7** PPP
- **5.8** Link Virtualization
- 5.9 A day in the life of a web request

© From Computer Networking, by Kurose&Ross

Ethernet

"dominant" wired LAN technology:

- □ cheap \$20 for NIC
- □ first widely used LAN technology
- simpler, cheaper than token LANs and ATM
- □ kept up with speed race: 10 Mbps 10 Gbps

Metcalfe's Ethernet sketch

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-55

Star topology

- □ bus topology popular through mid 90s
 - $\,\circ\,$ all nodes in same collision domain (can collide with each other)
- today: star topology prevails
 - o active *switch* in center
 - each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)

28

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble	Dest. Address	Source Address		Data	CRC	
↑ _{Type}						

Preamble:

- 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
- used to synchronize receiver, sender clock rates

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-57

Ethernet Frame Structure (more)

□ Addresses: 6 bytes

- if adapter receives frame with matching destination address, or with broadcast address (e.g., ARP packet), it passes data in frame to network layer protocol
- o otherwise, adapter discards frame
- Type: indicates higher layer protocol (mostly IP but others possible, e.g., Novell IPX, AppleTalk)
- CRC: checked at receiver, if error is detected, frame is dropped

	Preamble	Dest. Address	Source Address	+	Data	CRC	
© From Computer	Networking by Kur	ose&Ross		Τ'	ype J.	DataLIIIK Layer	5-58

Ethernet: Unreliable, connectionless

- connectionless: No handshaking between sending and receiving NICs
- unreliable: receiving NIC doesn't send acks nor nacks to sending NIC
 - stream of datagrams passed to network layer can have gaps (missing datagrams)
 - gaps will be filled if app is using TCP
 - o otherwise, app will see gaps
- Ethernet's MAC protocol: unslotted CSMA/CD

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-59

Ethernet CSMA/CD algorithm

- 1. NIC receives datagram from network layer, creates frame
- 2. If NIC senses channel idle, starts frame transmission If NIC senses channel busy, waits until channel idle, then transmits
- 3. If NIC transmits entire frame without detecting another transmission, NIC is done with frame!
- If NIC detects another transmission while transmitting (collision), aborts and sends jam signal
- 5. After aborting, NIC enters exponential backoff: after mth collision, NIC chooses K at random from {0,1,2,...,2^m-1}. NIC waits K·512 bit times, returns to Step 2

5: DataLink Layer 5-60

© From Computer Networking, by Kurose&Ross

Ethernet's CSMA/CD (more)

- Jam Signal: make sure all other transmitters are aware of collision; 48 bits
- Bit time: 0.1 μ sec for 10 Mbps Ethernet; for K=1023, wait time is about 50 msec

See/interact with Java applet on AWL Web site: highly recommended!

© From Computer Networking, by Kurose&Ross

0.1

0

1

2

4

8

Exponential Backoff:

- Goal: adapt retransmission attempts to estimated current load
 - o heavy load: random wait will be longer
- first collision: choose K from {0,1}; delay is K · 512 bit transmission times
- after second collision: choose K from {0,1,2,3}...
- after ten collisions, choose K from {0,1,2,3,4,...,1023}
- with this backoff algorithm, Ethernet is sort of p-persistent CSMA with an adaptive p!

5: DataLink Layer 5-61

16 From Computer Networks, by Tanenbaum ${\ensuremath{ { o } } }$ Prentice Hall Number of active stations = N

32

64

128 256

802.3 Ethernet Standards: Link & Physical Layers

many different Ethernet standards

- common MAC protocol and frame format
- different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1 Gbps, 10 Gbps
- different physical layer media: fiber, cable

Manchester encoding

- used in 10BaseT
- each bit has a transition
- allows clocks in sending and receiving nodes to synchronize to each other
 - \odot no need for a centralized, global clock among nodes!
- Hey, this is physical-layer stuff!

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-65

Link Layer

а

b

- **5.1** Introduction and services
- **5.2** Error detection
- **5.3** Multiple access protocols
- 5.4 Link-layer Addressing
- □ 5.5 Ethernet

- **5.6** Link-layer switches
- **5.7** PPP
- **5.8** Link Virtualization
- □ 5.9 A day in the life of a web request

© From Computer Networking, by Kurose&Ross

<u>Hubs</u>

... physical-layer ("dumb") repeaters:

- bits coming in one link go out all other links at same rate
- all nodes connected to hub can collide with one another
- o no frame buffering
- o no CSMA/CD at hub: host NICs detect collisions

© From Computer Networking, by Kurose&Ross

<u>Switch</u>

Ink-layer device: smarter than hubs, take active role

- o store, forward Ethernet frames
- examine incoming frame's MAC address, selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment

T transparent

• hosts are unaware of presence of switches

plug-and-play, self-learning

o switches do not need to be configured

© From Computer Networking, by Kurose&Ross

<u>Switch: allows multiple simultaneous</u> <u>transmissions</u>

- hosts have dedicated, direct connection to switch
- switches buffer packets
- Ethernet protocol used on each incoming link, but no collisions; full duplex
 - each link is its own collision domain
- switching: A-to-A' and Bto-B' simultaneously, without collisions
 - not possible with dumb hub

switch with six interfaces (1,2,3,4,5,6)

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-69

Switch Table

- Q: how does switch know that
 A' reachable via interface 4,
 B' reachable via interface 5?
- A: each switch has a switch table, each entry:
 - (MAC address of host, interface to reach host, time stamp)
- Is a MAC forwarding table!
 Looks like an IP forwarding table
- Q: how are entries created, maintained, in switch table?
 something like a routing protocol?

© From Computer Networking, by Kurose&Ross

switch with six interfaces (1,2,3,4,5,6)

Switch: frame filtering/forwarding

When frame received:

- 1. record link associated with sending host
- 2. index switch table using MAC dest address
- 3. if entry found for destination then {
 - if dest on segment from which frame arrived then drop the frame

else forward the frame on interface indicated

else flood

}

forward on all but the interface on which the frame arrived

© From Computer Networking, by Kurose&Ross

Interconnecting switches

switches can be connected together

- Q: sending from A to F how does S₁ know how to forward frame destined for F via S₄ and S₂?
- \square <u>A:</u> self learning! (works exactly the same as in

single-switch case!)

Self-learning multi-switch example

Suppose C sends frame to I, I responds to C

Q: show switch tables and packet forwarding in S₁,
 S₂, S₃, S₄

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-75

Institutional network

© From Computer Networking, by Kurose&Ross

More than one switch in a subnet

All principles seen so far are applicable to a subnet with several switches, if there is no cycle in the topology

No cycle = no redundancy in case of failure
Part of subnet can be disconnected

From Computer Networks, by Tanenbaum © Prentice Hall

5: DataLink Layer 5-77

Problem with cycles

- Problem: Frame F (whose destination address is unknown to both switches) will loop.
- Solution: build a logical spanning tree topology over the real topology

From Computer Networks, by Tanenbaum © Prentice Hall

Root switch A sends <A,A,0> on LAN1 and LAN2

 Build a logical tree reaching all LANs

1. Determine the root switch (smallest switch id)

- Switches regularly flood control messages (BPDUs) on all their output ports:
- BPDU = <Source switch id, root as assumed, distance to root>
- All switches will soon discover the root id

From Computer Networks, by Tanenbaum © Prentice Hall

5: DataLink Layer 5-79

Spanning tree (2)

2. Build the tree

 By continuously receiving these BPDUs (possibly on several ports), a switch knows its distance to the root and which port leads to the root by that shortest distance (root port, r)

From Computer Networks, by Tanenbaum © Prentice Hall

Spanning tree (3)

3. Decide if non-root ports are (data) forwarding or (data) blocking

A port is "forwarding (f)" on a given LAN if the BPDUs this switch sends on this LAN are "smaller" than those other switches (would) send.

Smaller = shorter distance, or equal distance and smaller switch id Example:

on LAN6, E sends <E,A,2>, G would send <G,A,2>, and J would send <J,A,3>

So E is elected to be the only one to forward frames on LAN6: J is too far away from the root, and G > E

Blocking port

5: DataLink Layer 5-81

From Computer Networks, by Tanenbaum © Prentice Hall

The resulting spanning tree

Routing on a spanning tree is not optimal!

Same spanning tree for all source-destination pair!

Compare to layer-3 routing

□ Some switches (e.g., G and J) are not part of the tree

- Another case could be that some ports of some switches are blocking
 They could become part of the tree if enother switch on part would
- They could become part of the tree if another switch or port would fail (leading to no refresh of BPDUs)
- So, switches have to listen to BPDUs on blocking ports to detect failures

From Computer Networks, by Tanenbaum © Prentice Hall

Switches vs. Routers

- both store-and-forward devices
 - routers: network layer devices (examine network layer headers)
 - switches are link layer devices
- routers maintain IP routing and IP forwarding tables, implement routing algorithms
- switches maintain MAC forwarding tables, implement filtering, learning and spanning tree algorithms

Summary comparison

	<u>hubs</u>	<u>routers</u>	<u>switches</u>
traffic isolation	no	yes	yes
plug & play	yes	no	yes
optimal routing	no	yes	no
cut through	yes	no	yes Some do

© From Computer Networking, by Kurose&Ross

Link Layer

- 5.1 Introduction and services
- 5.2 Error detection
- 5.3Multiple access protocols
- 5.4 Link-Layer Addressing
- □ 5.5 Ethernet

- □ 5.6 Hubs and switches
- **5.7** PPP
- **5.8** Link Virtualization
- 5.9 A day in the life of a web request

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-85

Point to Point Data Link Control

- one sender, one receiver, one link: easier than broadcast link:
 - no Media Access Control
 - o no need for explicit MAC addressing
 - e.g., dialup link, ISDN line, ADSL line
- popular point-to-point DLC protocols:
 - PPP (point-to-point protocol)
 - HDLC: High level data link control
 - Data link used to be considered "high layer" in protocol stack!

© From Computer Networking, by Kurose&Ross

PPP Design Requirements [RFC 1557]

- packet framing: encapsulation of network-layer datagram in data link frame
 - carry network layer data of any network layer protocol (not just IP) at same time
 - ability to demultiplex upwards
- bit transparency: must carry any bit pattern in the data field
- error detection (no correction)
- connection liveness: detect, signal link failure to network layer
- network layer address negotiation: endpoint can learn/configure each other's network address

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-87

PPP non-requirements

- no error correction/recovery
- no flow control
- □ out of order delivery OK
- no need to support multipoint links (e.g., polling)

Error recovery, flow control, data re-ordering all relegated to higher layers!

© From Computer Networking, by Kurose&Ross

PPP Data Frame

- □ Flag: delimiter (framing)
- Address: does nothing (only one option)
- Control: does nothing; in the future possible multiple control fields
- Protocol: upper layer protocol to which frame delivered (e.g., PPP-LCP, IP, IPCP, etc)

1	1	1	1 or 2	variable length	2 or 4	1
01111110	111111111	00000011	protocol	info	check	01111110
flag	address	control				flag

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-89

PPP Data Frame

□ info: upper layer data being carried

check: cyclic redundancy check for error detection

1	1	1	1 or 2	variable length	2 or 4	1
01111110	11111111	00000011	protocol	info	check	01111110
flag	address	control				flag

© From Computer Networking, by Kurose&Ross

Byte Stuffing - Principle

- "data transparency" requirement: data field must be allowed to include flag pattern <01111110>
 - <u>Q:</u> is received <01111110> data or flag?
- Sender: adds ("stuffs") extra <0111110> byte after each <01111110> data byte
- □ Receiver:
 - two 01111110 bytes in a row: discard first byte, continue data reception
 single 01111110; flag byte
 - single 01111110: flag byte

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-91

© From Computer Networking, by Kurose&Ross

Bit stuffing

Used in other data link protocols Use same flag as delimiter = 01111110

From Computer Networks, by Tanenbaum © Prentice Hall

5: DataLink Layer 5-93

Link Layer

- 5.1 Introduction and services
- □ 5.2 Error detection
- 5.3Multiple access protocols
- 5.4 Link-Layer
 Addressing
- □ 5.5 Ethernet

- 5.6 Hubs and switches5.7 PPP
- 5.8 Link Virtualization: a Network as a Link Layer
- 5.9 A day in the life of a web request

© From Computer Networking, by Kurose&Ross

The Internet: virtualizing networks

<u>IP over anything (not just links</u> or isolated LANs)

Examples:

-Network 1 can be a subnet composed of one or several Ethernet switches -Network 2 can be a large ATM or MPLS backbone network

Link Layer

- 5.1 Introduction and services
- **5.2** Error detection
- 5.3Multiple access protocols
- 5.4 Link-Layer Addressing
- □ 5.5 Ethernet

- □ 5.6 Hubs and switches
- **5.7** PPP
- 5.8 Link Virtualization: a Network as a Link Layer
- 5.9 A day in the life of a web request

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-97

Synthesis: a day in the life of a web request

- journey down protocol stack complete!
 o application, transport, network, link
- putting-it-all-together: synthesis!
 - goal: identify, review, understand protocols (at all layers) involved in seemingly simple scenario: requesting www page
 - scenario: student attaches laptop to campus network, requests/receives www.google.com

© From Computer Networking, by Kurose&Ross

A day in the life ... connecting to the Internet

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-99

DHCP UDP IP DHCS Eth Phy DHCS UDP DHCS UDP DHCS IP DHCS UDP DHCS IP DHCS IP DHCS IP Eth Phy router (runs DHCP)

© From Computer Networking, by Kurose&Ross

- connecting laptop needs to get its own IP address, addr of first-hop router, addr of DNS server: use DHCP
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.1 Ethernet
- Ethernet frame broadcast (dest: FFFFFFFFFF) on LAN, received at router running DHCP server
- Ethernet demux'ed to IP demux'ed, UDP demux'ed to DHCP

A day in the life... connecting to the Internet

Client now has IP address, knows name & addr of DNS server, IP address of its first-hop router

© From Computer Networking, by Kurose&Ross

5: DataLink Layer 5-101

A day in the life... ARP (before DNS, before HTTP)

- before sending *HTTP* request, need IP address of www.google.com: DNS
- DNS query created, encapsulated in UDP, encapsulated in IP, encasulated in Eth. In order to send frame to router, need MAC address of router interface: ARP
- ARP query broadcast, received by router, which replies with ARP reply giving MAC address of router interface
- client now knows MAC address of first hop router, so can now send frame containing DNS query

5: DataLink Layer 5-102

© From Computer Networking, by Kurose&Ross

© From Computer Networking, by Kurose&Ross

www.google.com 5: DataLink Layer 5-103

A day in the life... TCP connection carrying HTTP

© From Computer Networking, by Kurose&Ross

© From Computer Networking, by Kurose&Ross

HTTP reply routed back to client 5: DataLink Layer 5-105

Chapter 5: Summary

- principles behind data link layer services:
 - error detection
 - sharing a broadcast channel: multiple access
 - link layer addressing
- instantiation and implementation of various link layer technologies
 - Ethernet
 - o switched LANs
 - learning, building spanning tree
 - **O PPP**
 - Link virtualization: networks as a link layer

© From Computer Networking, by Kurose&Ross

Chapter 5: let's take a breath

- □ journey down protocol stack *complete* (except PHY)
- □ solid understanding of networking principles, practice
- □ could stop here but *lots* of interesting topics!
 - Multicasting
 - Wireless networks
 - Mobility
 - Multimedia networking
 - \odot Secure networking
 - Network management

© From Computer Networking, by Kurose&Ross