
1

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-1

Introduction to
Computer Networking

Guy Leduc

Chapter 2
Application Layer Computer Networking:

A Top Down Approach,
6th edition.
Jim Kurose, Keith Ross
Addison-Wesley, March
2012

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-2

Chapter 2: outline

❒ 2.1 Principles of network applications
❒ 2.2 Web and HTTP
❒ 2.3 DNS
❒ 2.4 Socket programming with UDP and TCP

2

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-3

Chapter 2: Application Layer
Our goals:
❒ conceptual,

implementation
aspects of network
application protocols
 transport-layer

service models
 client-server

paradigm
 peer-to-peer

paradigm

❒ learn about protocols
by examining popular
application-level
protocols
 HTTP
 DNS

❒ creating network
applications
 socket API

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-4

Some network apps

❒ e-mail
❒ web
❒ instant messaging
❒ remote login
❒ P2P file sharing
❒ multi-user network

games
❒ streaming stored video

(YouTube, Hulu,
Netflix)

❒ voice over IP (e.g.,
Skype)

❒ real-time video
conferencing

❒ social networking
❒ search
❒ …
❒ …

3

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-5

Creating a network app
write programs that:
❒ run on (different) end systems
❒ communicate over network
❒ e.g., web server software

communicates with browser
software

no need to write software for
network-core devices

❒ network-core devices do not
run user applications

❒ applications on end systems
allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-6

Application architectures

Possible structure of applications:
 Client-server
 Peer-to-peer (P2P)

4

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-7

Client-server architecture

server:
❒ always-on host
❒ permanent IP address
❒ data centers for scaling

clients:
❒ communicate with server
❒ may be intermittently

connected
❒ may have dynamic IP

addresses
❒ do not communicate directly

with each other

client/server

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-8

P2P architecture
❒ no always-on server
❒ arbitrary end systems

directly communicate
❒ peers request service from

other peers, provide service
in return to other peers
 self scalability – new

peers bring new service
capacity, as well as new
service demands

❒ peers are intermittently
connected and change IP
addresses
 complex management

peer-peer

5

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-9

Hybrid of client-server and P2P
Skype

 voice-over-IP P2P application
 centralized server: finding address of remote

party
 client-client connection: direct (not through

server)
Instant messaging

 chatting between two users is P2P
 centralized service: client presence

detection/location
BitTorrent

 exchanging file chunks between users is P2P
 tracker: maintains list of peers participating in

torrent

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-10

Processes communicating

process: program
running within a host

❒ within same host, two
processes communicate
using inter-process
communication (defined
by OS)

❒ processes in different
hosts communicate by
exchanging messages

client process: process
that initiates
communication

server process: process
that waits to be contacted

 aside: applications with
P2P architectures have
client processes & server
processes

clients, servers

6

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-11

Sockets
❒ process sends/receives messages to/from its socket
❒ socket analogous to door

 sending process shoves message out door
 sending process relies on transport infrastructure

on other side of door to deliver message to socket
at receiving process

Internet

controlled
by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-12

Addressing processes

❒ to receive messages,
process must have
identifier

❒ host device has unique
32-bit IP address

❒ Q: does IP address of
host on which process
runs suffice for
identifying the process?

❒ identifier includes both
IP address and port
numbers associated with
process on host

❒ example port numbers:
 HTTP server: 80
 mail server: 25

❒ to send HTTP message
to gaia.cs.umass.edu web
server:
 IP address: 128.119.245.12
 port number: 80

❒ more shortly…

 A: no, many
processes can be
running on same host

7

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-13

App-layer protocol defines

❒ Types of messages
exchanged:
 e.g., request, response

❒ Message syntax:
 what fields in messages &

how fields are delineated
❒ Message semantics:

 meaning of information in
fields

❒ Rules for when and how
processes send &
respond to messages

Open protocols:
❒ defined in RFCs
❒ allows for

interoperability
❒ e.g., HTTP, SMTP

Proprietary protocols:
❒ e.g., Skype

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-14

What transport service does an app need?
Data loss
❒ some apps (e.g., file

transfer, web
transactions) require 100%
reliable data transfer

❒ other apps (e.g., audio) can
tolerate some loss

Timing
❒ some apps (e.g.,

Internet telephony,
interactive games)
require low delay to be
“effective”

Bandwidth
❒ some apps (e.g.,

multimedia) require
minimum amount of
throughput to be
“effective”

❒ other apps (“elastic
apps”) make use of
whatever throughput
they get

Security
❒ encryption, data

integrity, …

8

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-15

Transport service requirements of common apps

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games
instant messaging

Data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Bandwidth

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-16

Internet transport protocols services

TCP service:
❒ reliable transport between

sending and receiving process
❒ flow control: sender won’t

overwhelm receiver
❒ congestion control: throttle

sender when network
overloaded

❒ does not provide: timing,
minimum throughput
guarantees, security

❒ connection-oriented: setup
required between client and
server processes

UDP service:
❒ unreliable data transfer

between sending and
receiving process

❒ does not provide:
reliability, flow control,
congestion control, timing,
trhoughput guarantee,
security, connection setup

Q: why bother? Why is
there a UDP?

9

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-17

Internet apps: application, transport protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g. Youtube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

typically UDP

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-18

Securing TCP

TCP & UDP
❒ no encryption
❒ cleartext passwords

sent into socket
traverse Internet in
cleartext

SSL
❒ provides encrypted

TCP connection
❒ data integrity
❒ end-point

authentication

SSL is at app layer
❒ Apps use SSL

libraries, which “talk”
to TCP

SSL socket API
 cleartext passwords

sent into socket
traverse Internet
encrypted

 See Chapter 7 of book

10

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-19

Chapter 2: outline

❒ 2.1 Principles of network applications
❒ 2.2 Web and HTTP
❒ 2.3 DNS
❒ 2.4 Socket programming with UDP and TCP

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-20

Web and HTTP

First, a review…
❒ Web page consists of objects
❒ Object can be HTML file, JPEG image, Java

applet, audio file,…
❒ Web page consists of base HTML-file which

includes several referenced objects
❒ Each object is addressable by a URL
❒ Example URL:

http://www.someschool.edu:8080/someDept/pic.gif

host name path nameport (if non
standard)

protocol
name

11

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-21

HTTP overview

HTTP: hypertext
transfer protocol

❒ Web’s application layer
protocol

❒ client/server model
 client: browser that

requests, receives,
(using HTTP
protocol) and
“displays” Web
objects

 server: Web server
sends (using HTTP
protocol) objects in
response to
requests

PC running
Firefox browser

server
running

Apache Web
server

iphone running
Safari browser

HTTP requestHTTP responseHTTP request

HTTP response

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-22

HTTP overview (continued)

Uses TCP:
❒ client initiates TCP

connection (creates socket)
to server, port 80

❒ server accepts TCP
connection from client

❒ HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web
server (HTTP server)

❒ TCP connection closed

HTTP is “stateless”
❒ server maintains no

information about
past client requests

Protocols that maintain
“state” are complex!

❒ past history (state) must
be maintained

❒ if server/client crashes,
their views of “state” may
be inconsistent, must be
reconciled

aside

12

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-23

HTTP connections

non-persistent HTTP
❒ at most one object

sent over TCP
connection
connection then

closed
❒ downloading

multiple objects
required multiple
connections

persistent HTTP
❒ multiple objects

can be sent over
single TCP
connection between
client, server

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-24

Non-persistent HTTP
Suppose user enters URL

www.someSchool.edu/someDepartment/home.index

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port 80

2. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates
that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message
into its socket

time

(contains text,
references to 10

jpeg images)

13

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-25

Non-persistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects

6. Steps 1-5 repeated for each
of 10 jpeg objects

4. HTTP server closes TCP
connection.

time

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-26

Non-persistent HTTP: response time
RTT (definition): time to send a

small packet to travel from
client to server and back

HTTP response time:
❒ one RTT to initiate TCP

connection
❒ one RTT for HTTP request

and first few bytes of HTTP
response to return

❒ file transmission time
❒ non-persistent HTTP

response time =

2RTT + file transmission time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

14

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-27

Persistent HTTP

Non-persistent HTTP
issues:

❒ requires 2 RTTs per
object

❒ OS overhead for each
TCP connection

❒ browsers often open
parallel TCP
connections to fetch
referenced objects

Persistent HTTP:
❒ server leaves connection

open after sending
response

❒ subsequent HTTP messages
between same
client/server sent over
open connection

❒ client sends requests as
soon as it encounters a
referenced object

❒ as little as one RTT for all
the referenced objects

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-28

HTTP request message

❒ two types of HTTP messages: request, response
❒ HTTP request message:

 ASCII (human-readable format)

request line
(GET, POST,
HEAD commands)

header
 lines

carriage return,
line feed at start
of line indicates
end of header lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

15

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-29

HTTP request message: general format

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-30

Uploading form input

Post method:
❒ Web page often includes form input
❒ Input is uploaded to server in entity body

URL method:
❒ Uses GET method
❒ Input is uploaded in URL field of request line:
http://www.somesite.com/animalsearch?monkeys&banana

16

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-31

Method types

HTTP/1.0
❒ GET
❒ POST
❒ HEAD

 asks server to leave
requested object out of
response

HTTP/1.1
❒ GET, POST, HEAD
❒ PUT

 uploads file in entity
body to path specified
in URL field

❒ DELETE
 deletes file specified in

the URL field

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-32

HTTP response message

status line
(protocol
status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-1\r\n
\r\n
data data data data data ...

17

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-33

HTTP response status codes

200 OK
 request succeeded, requested object later in this msg

301 Moved Permanently
 requested object moved, new location specified later in

this msg (Location:)
400 Bad Request

 request msg not understood by server
404 Not Found

 requested document not found on this server
505 HTTP Version Not Supported

 status code appears in 1st line in server-to-
client response message.

 some sample codes:

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-34

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:
Opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
Anything typed in sent
to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. Type in a GET HTTP request:
GET /~ross/ HTTP/1.1
Host: cis.poly.edu

By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. Look at response message sent by HTTP server!

18

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-35

User-server state: cookies

Many major Web sites
use cookies

Four components:
1) cookie header line of

HTTP response message
2) cookie header line in

HTTP request message
3) cookie file kept on

user’s host, managed by
user’s browser

4) back-end database at
Web site

Example:
❒ Susan always access

Internet from PC
❒ visits specific e-

commerce site for first
time

❒ when initial HTTP
request arrives at site,
site creates:
 unique ID
 entry in backend

database for ID

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-36

Cookies: keeping “state” (cont.)
client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual http request msg Amazon server
creates ID

1678 for user create
 entry

usual http response
set-cookie: 1678ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

19

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-37

Cookies (continued)
What cookies can be

used for:
❒ authorization
❒ shopping carts
❒ recommendations
❒ user session state

(Web e-mail)

Cookies and privacy:
❒ cookies permit sites to

learn a lot about you
❒ you may supply name

and e-mail to sites

aside

How to keep “state”:
❒ protocol endpoints: maintain state at

sender/receiver over multiple transactions
❒ cookies: http messages carry state

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-38

Web caches (proxy server)

❒ user sets browser:
Web accesses via cache

❒ browser sends all HTTP
requests to cache
 object in cache:

cache returns object
 else cache requests

object from origin
server, then returns
object to client

goal: satisfy client request without involving origin
server

client

proxy
server

client

HTTP request

HTTP response

HTTP request HTTP request

origin
server

origin
server

HTTP response HTTP response

20

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-39

More about Web caching

❒ cache acts as both
client and server
 server for original

requesting client
 client to origin server

❒ typically cache is
installed by ISP
(university, company,
residential ISP)

Why Web caching?
❒ reduce response time

for client request
❒ reduce traffic on an

institution’s access
link

❒ Internet dense with
caches: enables “poor”
content providers to
effectively deliver
content (but so too
does P2P file sharing)

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-40

Caching example:

origin
servers

public
 Internet

institutional
network

1 Gbps LAN

1.54 Mbps
access link

assumptions:
 avg object size: 100 Kbits
 avg request rate from browsers

to origin servers: 15/sec
 avg data rate to browsers:

1.5 Mbps
 RTT from institutional router to

any origin server: 2 sec
 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 0.15%
 access link utilization = 99%
 total delay = Internet delay +

access delay + LAN delay
 = 2 sec + minutes + µsecs

problem!

21

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-41

assumptions:
 avg object size: 100 Kbits
 avg request rate from browsers

to origin servers: 15/sec
 avg data rate to browsers:

1.5 Mbps
 RTT from institutional router to

any origin server: 2 sec
 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 0.15%
 access link utilization = 99%
 total delay = Internet delay +

access delay + LAN delay
 = 2 sec + minutes + usecs

Caching example: fatter access link

origin
servers

1.54 Mbps
access link

15.4 Mbps

15.4 Mbps

msecs
Cost: increased access link speed (not cheap!)

9.9%

public
 Internet

institutional
network

1 Gbps LAN

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-42

assumptions:
 avg object size: 100 Kbits
 avg request rate from browsers

to origin servers: 15/sec
 avg data rate to browsers:

1.5 Mbps
 RTT from institutional router to

any origin server: 2 sec
 access link rate: 1.54 Mbps

consequences:
 LAN utilization:
 access link utilization =

institutional
network

1 Gbps LAN

Application Layer 2-42

Caching example: install local cache

origin
servers

1.54 Mbps
access link

local web
cache

?
?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

public
 Internet

22

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-43

Caching example: install local cache
Calculating access link

utilization, delay with cache:
suppose cache hit rate is 0.4

40% requests satisfied at cache,
60% requests satisfied at origin

origin
servers

1.54 Mbps
access link

 access link utilization:
60% of requests use access link

 data rate to browsers over access link
= 0.6*1.5 Mbps = 0.9 Mbps

 utilization = 0.9/1.54 = 58%

 total delay
 = 0.6 * (delay from origin servers)

+ 0.4 * (delay when satisfied at cache)
 = 0.6 (2.01) + 0.4 (~msecs)
 = ~ 1.2 secs
 less than with 15.4 Mbps link (and cheaper too!)

public
 Internet

institutional
network

1 Gbps LAN

local web
cache

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-44

Conditional GET

❒ Goal: don’t send object if
cache has up-to-date
cached version
 no object transmission

delay
 lower link utilization

❒ cache: specify date of
cached copy in HTTP
request
If-modified-since:

<date>

❒ server: response contains
no object if cached copy is
up-to-date:
HTTP/1.0 304 Not

Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

client server

23

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-45

Chapter 2: outline

❒ 2.1 Principles of network applications
❒ 2.2 Web and HTTP
❒ 2.3 DNS
❒ 2.4 Socket programming with UDP and TCP

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-46

DNS: Domain Name System

People: many identifiers:
 SSN, name, passport #

Internet hosts, routers:
 IP address (32 bit) -

used for addressing
datagrams

 “name”, e.g.,
www.yahoo.com - used
by humans

Q: how to map between
IP address and name,
and vice versa?

Domain Name System:
❒ distributed database

implemented in hierarchy of
many name servers

❒ application-layer protocol
host, name servers
communicate to resolve names
(address/name translation)
 note: core Internet

function, implemented as
application-layer protocol

 complexity at network’s
“edge”

24

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-47

DNS: services, structure

why not centralize DNS?
❒ single point of failure
❒ traffic volume
❒ distant centralized

database
❒ maintenance

DNS services
❒ hostname to IP

address translation
❒ host aliasing

 canonical, alias names
❒ mail server aliasing
❒ load distribution

 replicated Web
servers: many IP
addresses
correspond to one
name

A: doesn’t scale!

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-48

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

DNS: a distributed, hierarchical
database

Client wants IP for www.amazon.com; 1st approx:
❒ client queries root server to find com DNS server
❒ client queries com DNS server to get amazon.com

DNS server
❒ client queries amazon.com DNS server to get IP

address for www.amazon.com

25

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-49

DNS: root name servers
❒ contacted by local name server that can not resolve name
❒ root name server:

 contacts authoritative name server if name mapping not
known

 gets mapping
 returns mapping to local name server

 13 root name
“servers”
worldwide

a. Verisign, Los Angeles CA
 (5 other sites)
b. USC-ISI Marina del Rey, CA
l. ICANN Los Angeles, CA
 (41 other sites)

e. NASA Mt View, CA
f. Internet Software C.
Palo Alto, CA (and 48 other
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo
(5 other sites)

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD
h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,
OH (5 other sites)

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-50

DNS: Root name servers
❒ contacted by local name server that cannot resolve name
❒ root name server:

 contacts authoritative name server if name mapping not known
 gets mapping
 returns mapping to local name server

 13 root name
servers worldwide

b USC-ISI Marina del Rey, CA
l ICANN Los Angeles, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA (and 36 other locations)

i Autonomica, Stockholm (plus
28 other locations)

k RIPE London (also 16 other locations)

m WIDE Tokyo (also Seoul,
Paris, SF)

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also LA)
d U Maryland College Park, MD
g US DoD Vienna, VA
h ARL Aberdeen, MD
j Verisign, (21 locations)

26

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-51

TLD, authoritative servers

❒ Top-level domain (TLD) servers:
 responsible for com, org, net, edu,aero, jobs,

museums, and all top-level country domains, e.g.:uk,
fr, ca, jp, be

 Network Solutions maintains servers for com TLD
 Educause for edu TLD

❒ Authoritative DNS servers:
 organization’s own DNS server(s), providing

authoritative hostname to IP mappings for
organization’s named hosts

 can be maintained by organization or service
provider

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-52

Local DNS name server

❒ does not strictly belong to hierarchy
❒ each ISP (residential ISP, company,

university) has one.
 also called “default name server”

❒ when host makes DNS query, query is sent
to its local DNS server
 has local cache of recent name-to-address

translation pairs (but may be out of date!)
 acts as proxy, forwards query into hierarchy

27

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-53

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server

DNS name
resolution example

❒ host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
 contacted server

replies with name of
server to contact

 “I don’t know this
name, but ask this
server”

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-54

45

6

3

recursive query:
 puts burden of

name resolution on
contacted name
server

 heavy load at
upper levels of
hierarchy?

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server
dns.cs.umass.edu

8

TLD DNS
server

DNS name
resolution example

28

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-55

DNS: caching, updating records

❒ once (any) name server learns mapping, it caches
mapping
 cache entries timeout (disappear) after some time (TTL)
 TLD servers typically cached in local name servers

• Thus root name servers not often visited
❒ cached entries may be out-of-date (best effort

name-to-address translation!)
 if name host changes IP address, may not be known

Internet-wide until all TTLs expire
❒ update/notify mechanisms under design by IETF

 RFC 2136

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-56

DNS records
DNS: distributed db storing resource records (RR)

❒ Type=NS
 name is domain

(e.g. foo.com)
 value is hostname of

authoritative name server
for this domain

RR format: (name, value, type, ttl)

❒ Type=A
 name is hostname
 value is IP address

❒ Type=CNAME
 name is alias name for some

“canonical” (the real) name
 www.ibm.com is really
 servereast.backup2.ibm.com

 value is canonical name

❒ Type=MX
 value is name of mailserver

associated with name

29

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-57

DNS protocol, messages

❒ query and reply messages, both with same message
format

msg header
 identification: 16 bit # for

query, reply to query uses
same #

 flags:
 query or reply
 recursion desired
 recursion available
 reply is authoritative

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-58

name, type fields
 for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

DNS protocol, messages

30

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-59

Inserting records into DNS

❒ example: new startup “Network Utopia”
❒ register name networkuptopia.com at DNS registrar

(e.g., Network Solutions)
 provide names, IP addresses of authoritative name server

(primary and secondary)
 registrar inserts two RRs into com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

❒ create authoritative server Type A record for
www.networkuptopia.com; Type MX record for
networkutopia.com

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-60

Chapter 2: outline

❒ 2.1 Principles of network applications
❒ 2.2 Web and HTTP
❒ 2.3 DNS
❒ 2.4 Socket programming with UDP and TCP

31

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-61

Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-end-
transport protocol
Socket API introduced in BSD4.1 UNIX, 1981

Internet

controlled
by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-62

Socket programming

Two socket types for two transport services:
 UDP: unreliable datagram
 TCP: reliable, byte stream-oriented

Application Example:
1. Client reads a line of characters (data) from its

keyboard and sends the data to the server.
2. The server receives the data and converts characters

to uppercase.
3. The server sends the modified data to the client.
4. The client receives the modified data and displays the

line on its screen.

32

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-63

Socket programming with UDP

UDP: no “connection” between client &
server

❒ no handshaking before sending data
❒ sender explicitly attaches IP destination

address and port # to each packet
❒ rcvr extracts sender IP address and port#

from received packet
UDP: transmitted data may be lost or

received out-of-order
Application viewpoint:
❒ UDP provides unreliable transfer of groups of

bytes (“datagrams”) between client and server

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-64

Client/server socket interaction: UDP

close
clientSocket

Server (running on hostid)

read datagram from
clientSocket

create socket,
clientSocket =
DatagramSocket()

Client

Create datagram with server IP and
port=x; send datagram request
via clientSocket

create socket,
port=x, for
incoming request:
serverSocket =
DatagramSocket(x)

read request from
serverSocket

write reply to
serverSocket
specifying client
host address,
port number

33

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-65

UDP observations & questions
❒ Both client and server use DatagramSocket
❒ Dest IP and port are explicitly attached to

segment by client and server
❒ Can the client send a segment to server without

knowing the server’s IP address and/or port
number?

❒ Can multiple clients use the server?

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-66

Socket programming with TCP
Client must contact server
❒ server process must first

be running
❒ server must have created

socket (door) that
welcomes client’s contact
(welcoming socket)

Client contacts server by:
❒ creating TCP socket

specifying IP address, port
number of server process

❒ When client creates
socket: client TCP
establishes connection to
server TCP

❒ When contacted by client,
server TCP creates new socket
for server process to
communicate with that
particular client
 allows server to talk with

multiple clients
 source IP and source port

numbers used to distinguish
clients (more in Chap 3)

TCP provides reliable, in-order
 transfer of bytes (“pipe”)
between client and server

application viewpoint

34

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-67

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

create socket, port=x,
for incoming request:
welcomeSocket =

ServerSocket(x)

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

create socket,
connect to hostid, port=x

clientSocket = Socket(hostid,x)

parameters
of server

connection socket
≠

welcome socket,

but same port x

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-68

TCP observations & questions

❒ Two types of sockets:
 ServerSocket and Socket

❒ When client knocks on serverSocket’s “door,”
server creates connectionSocket and completes
TCP connection

❒ Dest IP and port are not explicitly attached to
segment by client and server

❒ Can multiple clients use the server?

35

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-69

Chapter 2: Summary

❒ application
architectures
 client-server
 P2P

❒ application service
requirements:
 reliability, bandwidth,

delay
❒ Internet transport

service model
 connection-oriented,

reliable: TCP
 unreliable, datagrams:

UDP

our study of network apps now complete!
❒ specific protocols:

 HTTP
 DNS

❒ socket programming:
 TCP, UDP sockets

© From Computer Networking, by Kurose&Ross 2: Application Layer 2-70

Chapter 2: Summary

❒ typical request/reply
message exchange:
 client requests info or

service
 server responds with

data, status code
❒ message formats:

 headers: fields giving
info about data

 data: info being
communicated

Most importantly: learned about protocols

Important themes:
❒ control vs. data msgs
❒ centralized vs.

decentralized
❒ stateless vs. stateful
❒ reliable vs. unreliable

msg transfer
❒ “complexity at network

edge”

