MODERN OPERATING SYSTEMS

Third Edition
ANDREW S. TANENBAUM

Chapter 10
Case Study 1: LINUX

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

History of UNIX and Linux

« UNICS

« PDP-11 UNIX
 Portable UNIX
* Berkeley UNIX
« Standard UNIX
« MINIX
 Linux

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

UNIX/Linux Goals

Designed by programmers, for programmers
Designed to be:

Simple
Elegant
Consistent
Powerful
Flexible

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Interfaces to Linux

User
interface
l Users
Library
interface Standards utility programs T
l (shell, editors, compliers etc)
System User
call mode
interface Standard library
* (open, close, read, write, fork, etc) l
Linux operating system +
(process management, memory management, Kernel mode
the file system, 1/O, etc) *

Hardware
(CPU, memory, disks, terminals, etc)

Figure 10-1. The layers in a Linux system.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Linux Utility Programs (1)
Categories of utility programs:

* File and directory manipulation commands.
* Filters.

Program development tools, such as editors and
compilers.

Text processing.
e System administration.

. Miscellaneous.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Linux Utility Programs (2)

Program Typical use

cat Concatenate multiple files to standard output
chmod Change file protection mode

cp Copy one or more files

cut Cut columns of text from a file
grep Search a file for some pattern
head Extract the first lines of a file

Is List directory

make Compile files to build a binary
mkdir Make a directory

od Octal dump a file

paste Paste columns of text into a file
pr Format a file for printing

ps List running processes

rm Remove one or more files

rmdir Remove a directory

sort Sort a file of lines alphabetically
tail Extract the last lines of a file

tr Translate between character sets

Figure 10-2. A few of the common Linux
utility programs required by POSIX.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Kernel Structure

System calls
Memory mgt Process mgt
I/O component component component
/ : : \ Virtual Signal
Virtual file system memory handling
Terminals || Sockets o ;IIeems
— y : Paging Process/thread
:m = | Networlk Generic page creation &
:5 § protocols block layer replacement termination
| © /0 scheduler
Character | | Network Block Page CPU
device davics device cache scheduling
\drivers driyers drivers /
Interrupts Dispatcher

Figure 10-3. Structure of the Linux kernel

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Processes in Linux

pid = fork();

if (pid < 0) {
handle_error();

} else if (pid > 0) {

} else {

}

/* if the fork succeeds, pid > 0 in the parent */
/* fork failed (e.g., memory or some table is full) */
/* parent code goes here. /*/

/* child code goes here. /*/

Figure 10-4. Process creation in Linux.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Signals in Linux (1)

Signal Cause
SIGABRT | Sentto abort a process and force a core dump
SIGALRM | The alarm clock has gone off
SIGFPE A floating-point error has occurred (e.g., division by 0)
SIGHUP The phone line the process was using has been hung up
SIGILL The user has hit the DEL key to interrupt the process
SIGQUIT The user has hit the key requesting a core dump
SIGKILL Sent to kill a process (cannot be caught or ignored)
SIGPIPE The process has written to a pipe which has no readers
SIGSEGV | The process has referenced an invalid memory address
SIGTERM | Used to request that a process terminate gracefully
SIGUSR1 | Available for application-defined purposes
SIGUSR2 | Available for application-defined purposes

Figure 10-5. The signals required by POSIX.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Process Management
System Calls in Linux

System call

Description

pid = fork()

Create a child process identical to the parent

pid = waitpid(pid, &statloc, opts)

Wait for a child to terminate

s = execve(name, argv, envp)

Replace a process’ core image

exit(status)

Terminate process execution and return status

s = sigaction(sig, &act, &oldact)

Define action to take on signals

s = sigreturn(&context)

Return from a signal

s = sigprocmask(how, &set, &old)

Examine or change the signal mask

s = sigpending(set)

Get the set of blocked signals

s = sigsuspend(sigmask)

Replace the signal mask and suspend the process

s = kill(pid, sig)

Send a signal to a process

residual = alarm(seconds)

Set the alarm clock

s = pause()

Suspend the caller until the next signal

Figure 10-6. Some system calls relating to processes.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

A Simple Linux Shell

while (TRUE) { /* repeat forever /*/
type_prompt(); /* display prompt on the screen */
read_command(command, params); /* read input line from keyboard */
pid = fork(); /* fork off a child process */
if (pid < 0) {
printf("Unable to fork0); /* error condition */
continue; /* repeat the loop */
}
if (pid !=0) {
waitpid (-1, &status, 0); /* parent waits for child */
} else {
execve(command, params, 0); /* child does the work */
}
}

Figure 10-7. A highly simplified shell.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Implementation of Processes and Threads

Categories of information in the process descriptor.
« Scheduling parameters

Memory image

« Signals

* Machine registers
System call state

* File descriptor table
* Accounting
 Kernel stack

* Miscellaneous

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Implementation of Exec

PID = 501 PID = 748 PID = 748
New process —> Same process —>
1. Fork call 3. exec call
/2. new sh /4' S\/\l;litzvlzrlald
Fork code ErealEd Exec code
A A
I |
Allocate child's task structure Find the executable program
Fill child's task structure from parent Verify the execute permission
Allocate child's stack and user area Read and verify the header
Fill child's user area from parent Copy arguments, environ to kernel
Allocate PID for child Free the old address space
Set up child to share parent's text Allocate new address.space
Copy page tables for data and stack Copy arguments, environ to stack
Set up sharing of open files Reset signals
Copy parent's registers to child Initialize registers

Figure 10-8. The steps in executing the command

Is typed to the shell.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

The Clone System Call

Flag Meaning when set Meaning when cleared
CLONE_VM Create a new thread Create a new process
CLONE_FS Share umask, root, and working dirs Do not share them
CLONE_FILES Share the file descriptors Copy the file descriptors
CLONE_SIGHAND | Share the signal handler table Copy the table
CLONE_PID New thread gets old PID New thread gets own PID
CLONE_PARENT New thread has same parent as caller | New thread’s parent is caller

Figure 10-9. Bits in the sharing_flags bitmap.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Scheduling in Linux (1)

Three classes of threads for scheduling purposes:

o Real-time FIFO.
o Real-time round robin.
« Timesharing.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Scheduling in Linux (2)

Per CPU runqueue

Flags
CPU
Static_prio
<.>

Active

Expired

= Priority O

Y

(») (]
(P) Priority 139

Priority O

Array[0]

Y

Array[1]

() (]

4o b

Priority 139

Figure 10-10. lllustration of Linux runqueue and priority arrays.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Booting Linux

Process 0

Process 1

Process 2
daemon

Terminal O Terminal 1 Terminal 2

Login: Password: % cp f1 {2

Figure 10-11. The sequence of processes used to
boot some Linux systems.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Memory Management in Linux (1)

i , rrocess A Physical memory Frocess b |
StaCk pOInter * :“NN‘ ~ ,,—” * |—— Stack po|nter
v
AN,
AN,
AN,
A,
Unused
memory\
AN R
AN,
iz
O S P
- .-~ Yz .
20K ___BS_S____ ’,’:’:,” “~~\\\ N BSS
Data L2 e - S
8K < i ¥
Text P s S,
O ’ -\

Figure 10-12. (a) Process A’ s virtual address space. (b) Physical
memory. (c) Process B’ s virtual address space.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Memory Management in Linux (2)

Stack pointer —>-

Process A

Mapped file {
20K T BSS
8K Data
Text
oK

Unused
memory

W 717714475,

/ A
NN 7777777774, K

N\ 22227

Physical memory Process B

/,/*4— Stack pointer

oS

1\

} Mapped file

24K

Figure 10-13. Two processes can share a mapped file.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Memory Management
System Calls in Linux

System call Description

s = brk(addr) Change data segment size

a = mmap(addr, len, prot, flags, fd, offset) | Map a file in

s = unmap(addr, len) Unmap a file

Figure 10-14. Some system calls relating to memory
management.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Physical Memory Management (1)

Linux distinguishes between three memory zones:

- ZONE_DMA - pages that can be used for DMA
operations.

- ZONE_NORMAL - normal, regularly mapped pages.

- ZONE_HIGHMEM - pages with high-memory
addresses, which are not permanently mapped.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Physical Memory Management (2)

Mem_map: array
of page descriptor
Physical memory

2 200 wky .

150 ——> Mapping = address_space

200 - 1 free page

li 80
= 70 <
150 — mapped
> free_pages
pages_low
ages. high 80 — free page
ZONE_HIGHMEM free_areal0]
free_area[1]

ZONE_NORMAL

%;éeiareaﬁ 0]

70 — free page

ZONE_DMA active_list

- inactive_list
zone descriptor name

node_zones[3]
node_mem_map

noc-J-e-_id

node descriptor

Figure 10-15. Linux main memory representation.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Physical Memory Management (3)

Page global
directory

Y

Page upper
directory

N\

Page middle

directory

\ "

Page table

\

N
"\

=

Y

Page

Global directory

Upper directory

Middle directory

Page

Offset

Figure 10-16. Linux uses four-level page tables.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Virtual
address

Memory Allocation Mechanisms

64

32 32 32 392 30 30 - i
8 8 8 3
32 8 : .
° 2 8
16
16 z » : ; 8

Figure 10-17. Operation of the buddy algorithm.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

The Page Replacement Algorithm

Inactive Active
PG_active=0 | _Fje_fi! | PG_active=1
PG _referenced =0 PG _referenced =0

Refill
A A
| AN “ !
Used : Timeout >{ Timeout : Used
| Mo |
I % I
! | Used | !
PG_active=0 | _Iie_fiﬂ _ | PG_active=1
PG_referenced =1 PG_referenced = 1

Figure 10-18. Page states considered in the page
frame replacement algorithm.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Networking (1)

Sending process

/

O~

J\

— Socket

Connection

Receiving process

\
e

» User space

> Kernel space

Network

Figure 10-19. The uses of sockets for networking.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Networking (2)

Types of networking:

 Reliable connection-oriented byte stream.
 Reliable connection-oriented packet stream.
* Unreliable packet transmission.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Input/Output System Calls in Linux

Function call Description

s = cfsetospeed(&termios, speed) | Set the output speed

s = cfsetispeed(&termios, speed) Set the input speed

s = cfgetospeed(&termios, speed) | Get the output speed

s = cfgtetispeed(&termios, speed) | Get the input speed

s = tcsetattr(fd, opt, &termios) Set the attributes
s = tcgetattr(fd, &termios) Get the attributes

Figure 10-20. The main POSIX calls for managing the terminal.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

The Major Device Table

Device Open Close Read Write loctl Other
Null null null null null null

Memory null null mem_read | mem_write null

Keyboard | k_open | k_close k_read error k_ioctl

Tty tty_open | tty_close | tty_read tty_write | tty_ioctl

Printer lp_open | Ip_close error lp_write Ip_ioctl

Figure 10-21. Some of the file operations supported

for typical character devices.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Implementation of
Input/Output in Linux (2)

Virtual File System

Cache
File system 1 FS2
5 O A
| OO
: Regular Block Char Network | | : '
|| file special special socket || | !
| file file | et
[
] o o]
I/0O I/O (Optional
scheduler| |scheduler line Zr.otocol
o rivers
[[discipline)
Block Block Char Network
device device device device
driver driver driver driver

Figure 10-22. The Linux I/O system showing one file system
In detail.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

The Linux File System (1)

Directory Contents

bin Binary (executable) programs
dev Special files for I/O devices
etc Miscellaneous system files

lib Libraries

usr User directories

Figure 10-23. Some important directories
found in most Linux systems.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

The Linux File System (2)

bin
dev
etc
lib
tmp
usr

fred /

o

(@)

N e

<

bin
dev
etc
lib
tmp
usr

fred /

X O T 0N

y
o Z

(b)

N e

<

Figure 10-24. (a) Before linking. (b) After linking.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

The Linux File System (3)

Hard disk DVD
/ /

I dov
/\

T|NI

Hard disk

/\

/

TN

N

Job

Figure 10-25. (a) Separate file systems. (b) After mounting.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

The Linux File System (4)

Process A's
shared
lock

A

Z N
| of1]2 3 Vi i/ kieckreNanNoN 10 | 11 [12 | 13 | 14

>
vy

© | 0o | 1 23 aSsesEb ek /o8 N9y 104114 12 | 13 | 14

C's shared lock

Figure 10-26. (a) A file with one lock.
(b) Addition of a second lock. (c) A third lock.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

File System Calls in Linux (1)

System call

Description

fd = creat(name, mode)

One way to create a new file

fd = open(file, how, ...)

Open a file for reading, writing, or both

s = close(fd)

Close an open file

n = read(fd, buffer, nbytes)

Read data from a file into a buffer

n = write(fd, buffer, nbytes)

Write data from a buffer into a file

position = Iseek(fd, offset, whence)

Move the file pointer

s = stat(name, &buf)

Get a file’s status information

s = fstat(fd, &buf)

Get a file’s status information

s = pipe(&fd[0])

Create a pipe

s = fentl(fd, cmd, ...)

File locking and other operations

Figure 10-27. System calls relating to files.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

File System Calls in Linux (2)

Device the file is on
I-node number (which file on the device)
File mode (includes protection information)

Number of links to the file

Identity of the file’s owner

Group the file belongs to

File size (in bytes)

Creation time

Time of last access

Time of last modification

Figure 10-28. The fields returned by the stat system call.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

File System Calls in Linux (3)

System call

Description

s = mkdir(path, mode)

Create a new directory

s = rmdir(path)

Remove a directory

s = link(oldpath, newpath)

Create a link to an existing file

s = unlink(path)

Unlink a file

s = chdir(path)

Change the working directory

dir = opendir(path)

Open a directory for reading

s = closedir(dir)

Close a directory

dirent = readdir(dir)

Read one directory entry

rewinddir(dir)

Rewind a directory so it can be reread

Figure 10-29. System calls relating to directories.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

The Linux Virtual File System

Object Description Operation
Superblock | specific filesystem read_inode, sync_fs
Dentry directory entry, single component of a path | create, link
I-node specific file d_compare, d_delete
File open file associated with a process read, write

Figure 10-30. File system abstractions supported by the VFS.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

The Linux Ext2 File System (1)

Boot| Block group O | Block group 1 | Block group 2 | Block group 3 | Block group 4

uper—| Group Block |l-node —nod Data
block |descriptor | bitmap [bitmap| " C0°° blocks

Figure 10-31. Disk layout of the Linux ext2 file system.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

The Linux Ext2 File System (2)

[-node number
Entry size
Type
/ /- File name length
(a) 195 EF 58 Ecolossal 195 EFE1OE voluminous 885 ED ' 65 bigdir /U used
1t AVEREE 1IN

/‘/

RER i T W7
\

Figure 10-32. (a) A Linux directory with three files. (b) The same
directory after the file voluminous has been removed.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

The Linux Ext2 File System (3)

Field Bytes | Description

Mode 2 File type, protection bits, setuid, setgid bits

Nlinks 2 Number of directory entries pointing to this i-node

Uid 2 UID of the file owner

Gid 2 GID of the file owner

Size 4 File size in bytes

Addr 60 Address of first 12 disk blocks, then 3 indirect blocks

Gen 1 Generation number (incremented every time i-node is reused)
Atime 4 Time the file was last accessed

Mtime 4 Time the file was last modified

Ctime 4 Time the i-node was last changed (except the other times)

Figure 10-33. Some fields in the i-node structure in Linux

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

The Linux Ext2 File System (4)

Parent's
file
descriptor
table

Child's
file
descriptor
table

Unrelated r

process’
file
descriptor
table

Figure 10-34. The relation between the file descriptor table, the

{

Open file
description

7

File position
R/W
Pointer to i-node

e

File position
R/W
Pointer to i-node

b))

~
~

[S8

«

i-node

Mode

Link count

Uid

Gid

File size

Times

Addresses of
first 12
disk blocks

Pointers to
—% disk blocks

Single indirect

Double indirect

Triple indirect

=P
o &
Triple — 5
indirect / I~
block Double .
indirect /
Single
block .7
indirect
block

open file description table, and the i-node table.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Fin du cours !

* D’ici 'examen de Janvier
» Seéance questions/reponses
* Jjoel.goossens@ulb.ac.be (RDV)

