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I/O DeViceS Device Data rate

- Keyboard - 10 bytes/sec

:-Mouse ‘ 100 bytes/sec
56K modem | 7 KBlsec
i.Scanner 400 KB/sec

:-Digital camcorder | 3.5 MB/sec

_:802.1 1g Wireless 6.75 MB/sec

| 52x CD-ROM 7.8 MB/sec

Fast Ethernet 125 MB/sec
i.Compact flash card | 40 MB/sec
_ , FireWire (IEEE 1394) | 50 MB/sec
Figure 5_—1. Some typical "USB 2.0 60 MB/soc
device, network, and ' SONET OC-12 network | 78 MB/sec
bus data rates. SCsl Ultra 2 disk ' 80 MB/sec
Gigabit Ethernet | 125 MB/sec
 SATA disk drive ' 300 MB/sec
-Ultrium tape | 320 MB/sec
 PCl bus | 528 MB/sec
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Memory-Mapped I/O (1)

Two address One address space Two address spaces

OxFFFF... Memory

I/O ports

/

Figure 5-2. (a) Separate 1/0 and memory space.
(b) Memory-mapped I/O. (c) Hybrid.
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Memory-Mapped |/O (2)

CPU

Memory

[ ]

I/O

CPU reads and writes of memory

go over this high-bandwidth bus

\

All addresses (memory
and I/O) go here

(a)

Bus

(b)

CPU Memory I/O
| s | .
AN

This memory port is
to allow 1/O devices
access to memory

Figure 5-3. (a) A single-bus architecture.
(b) A dual-bus memory architecture.
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Direct Memory Access (DMA)

@ & Drive

1.CPU
programs DMA Disk Main
CPU the DMA controller controller memory
controller P Buffer
L
v SN
4. Ack A
’/——\\
4 I | 4
Interrupt when 2. DMA requests
done transfer to memory L 3. Data transferred )
-—Bus

Figure 5-4. Operation of a DMA transfer.
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Interrupts Revisited

Interrupt 1. Device is finished
CPU 3. CPU acks controller /
interrupt 4—@
,/_\k I <€
l_l > o | 2
2. Controller 1 1. — Print
X issues ; et
\ |
Bus

Figure 5-5. How an interrupt happens. The connections between
the devices and the interrupt controller actually use interrupt
lines on the bus rather than dedicated wires.
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Precise and Imprecise Interrupts (1)

Properties of a precise interrupt

1.

Tane

PC (Program Counter) is saved in a known
place.

All instructions before the one pointed to by
the PC have fully executed.

No instruction beyond the one pointed to by
the PC has been executed.

Execution state of the instruction pointed to
by the PC is known.
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Precise and Imprecise Interrupts (2)

332
Not executed 332 Not executed 358
Not executed 328 10% executed
324 324
Not executed |/ > | 40% executed | .
Not executed 35% executed
PC—— 316 PC - 005, od 316
312 s execute 312

308

304

300
(a) (b)

308

304
300

Figure 5-6. (a) A precise interrupt. (b) An imprecise interrupt.
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User
space

Kernel
space

N r

Programmed |/O (1)

String to
be printed
l Printed
page
ABCD l
EFGH
(@)

Printed
page
Next— A
Y
ABCD
EFGH
(b)

Next -1

ABCD
EFGH

AB

Figure 5-7. Steps in printing a string.
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Programmed |/O (2)

copy_from _user(buffer, p, count); /* p is the kernel buffer */
for (i = 0; I < count; i++) { /* loop on every character */
while (*printer _status_reg != READY) ;  /* loop until ready */
*printer _data_register = p[i]; /* output one character */
}

return_to_user();

Figure 5-8. Writing a string to the printer using programmed 1/O.
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Interrupt-Driven I/O

copy_ from_user(buffer, p, count); if (count == 0) {
enable_interrupts(); unblock user();
while (*printer_status reg != READY) ; } else {
*printer _data_register = p[0]; *printer _data_register = p[il;
scheduler(); count = count — 1;
i=i+1;
}

acknowledge interrupt();
return_from _interrupt();

(a) (b)

Figure 5-9. Writing a string to the printer using interrupt-driven 1/O.
(a) Code executed at the time the print system call is made.
(b) Interrupt service procedure for the printer.
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/0O Using DMA

copy_ from__user(buffer, p, count);
set_up_DMA _controller();

scheduler();

(a) acknowledge _interrupt();
unblock user();

return _from __interrupt();
(b)

Figure 5-10. Printing a string using DMA.. (a) Code executed when
the print system call is made. (b) Interrupt service procedure.
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I/O Software Layers

User-level /O software

Device-independent operating system software

Device drivers

Interrupt handlers

Hardware

Figure 5-11. Layers of the 1/O software system.
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Interrupt Handlers (1)

Save registers not already been saved by
iInterrupt hardware.

Set up a context for the interrupt service
procedure.

Set up a stack for the interrupt service
procedure.

Acknowledge the interrupt controller. If there is
no centralized interrupt controller, reenable
interrupts.

Copy the regqisters from where they were
saved to the process table.
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~

10.

Interrupt Handlers (2)

Run the interrupt service procedure.
Choose which process to run next.

Set up the MMU context for the process to run
next.

Load the new process’ registers, including its
PSW.

Start running the new process.
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Figure 5-12. Logical Kernel

oy . ce
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device drivers. In Printer Cemcorder CD-ROM
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Device-Independent |/O Software

| Uniform interfacing for device drivers

j Buffering

| Error reporting |
_‘ Allocating and releasing dedicated devices |
Providing a device-independent block size

Figure 5-13. Functions of the device-independent I/O software.
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Uniform Interfacing for Device Drivers

Operating system

Operating system

iy

pwng:

SATA disk driver IDE disk driver SCSI disk driver

Figure 5-14. (a) Without a standard driver interface.

i
—Hﬂj Uﬂr

]

(@)

(b)

(b) With a standard driver interface.
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Buffering (1)

User process

_ /
User 4
=] [@] [@] [@
Kernel ) 2 2
space EA:' X I—T—I
1

Figure 5-15. (a) Unbuffered input. (b) Buffering in user space.
(c) Buffering in the kernel followed by copying to user space.
(d) Double buffering in the kernel.
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Buffering (2)

/User process

User
space
Kernel
space

_« Network
controller

= @\

=)
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| ]

Network ”

Figure 5-16. Networking may involve many copies of a packet.
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User-Space /O Software

I/O
Layer / reply I/O functions
I/O User processes ¥ Make |/O call; format I/O; spooling
request _*i A
Device-independent : : : : :
| coftware \ Naming, protection, blocking, buffering, allocation
|
Device drivers \ Set up device registers; check status
Interrupt handlers I Wake up driver when I/O completed
! Hardware Perform |/O operation

Figure 5-17. Layers of the 1/O system and the
main functions of each layer.
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Magnetic Disks (1)

Parameter | IBM 360-KB floppy disk | WD 18300 hard disk'

:Number of cylinders | 40 | 10601 |
»_Tracks per cylinder | 2 | 12

Sectors per track | 9 | 281 (avg)
Sectors per disk 720 | 35742000

Bytes per sector 512 512
Disk capacity | 360 KB | 18.3 GB
- Seek time (adjacent cylinders) | 6 msec | 0.8 msec
:Seek time (average case) | 77 msec | 6.9 msec
- Rotation time | 200 msec | 8.33 msec |
:Motor stop/start time 250 msec 20 sec |
~ Time to transfer 1 sector | 22 msec | 17 usec

Figure 5-18. Disk parameters for the original IBM PC 360-KB
floppy disk and a Western Digital WD 18300 hard disk.
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Magnetic Disks (2)

0 31 0 03

€L 2\

Figure 5-19. (a) Physical geometry of a disk with two zones.
(b) A possible virtual geometry for this disk.
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Figure 5-20. RAID levels 0 through 5.

Backup and parity drives are shown shaded.
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RAID (2)

Figure 5-20.
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CD-ROMs (1)

Spiral groove

2K block of
user data

Figure 5-21. Recording structure of a compact disc or CD-ROM.
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CD-ROMs (2)

Do o -+ o3 Each symbol holds 8 data bits and 6 error-correction bits

]42 Symbols make 1 frame of 14 x 42 = 588 bits

Each frame contains 192
i O Y e e e s Y e 0O O 0O O O O O 3 data bits (24 bytes) and

396 error-correction bits

Preamble l 98 Frames make 1 sector
i ' Mode 1
Data ECC sector
(2352 bytes)
Bytes 16 2048 288

Figure 5-22. Logical data layout on a CD-ROM.
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CD-Recordables (1)

A Protective lacquer Dark spot in the
Reflective gold layer __dye layer burned
Dye [4 layer -1 by laser when
Y
Polycarbonate Substrate
Y
Direction
of motion Lens
A
Photodetector —»I] — ~—— Prism
A
Infrared
D<— laser
diode

Figure 5-23. Cross section of a CD-R disk and laser. A silver
CD-ROM has similar structure, except without dye layer and
with pitted aluminum layer instead of gold layer.
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DVD (1)

DVD Improvements on CDs

1. Smaller pits
(0.4 microns versus 0.8 microns for CDs).

2. A tighter spiral

(0.74 microns between tracks versus 1.6
microns for CDs).

3. Ared laser
(at 0.65 microns versus 0.78 microns for CDs).



DVD (2)

DVD Formats

s wh =

Tane

Single-sided, single-layer (4.7 GB).
Single-sided, dual-layer (8.5 GB).

Double-sided, single-layer (9.4 GB).
Double-sided, dual-layer (17 GB).
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DVD (3)

Polycarbonate substrate 1 Semireflective
0.6 mm A I A D S S S A | _ layer
Single-sided < -
disk Aluminum

L LI L L] LI L] LI LILILIT - eflector

ALV Adhesive ar AN

LM M 1 mnnre i oL | o Aluminum
0.6 mm reflector

JSmm |
ek | MMM L Semirefiective

Polycarbonate substrate 2 layer

Figure 5-24. A double-sided, dual-layer DVD disk.
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Disk Formatting (1)

Preamble

Data

ECC
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Figure 5-25. A disk sector.




(2)

Figure 5-26. An
illustration of
cylinder skew.




Disk Formatting (3)

Figure 5-27. (a) No interleaving. (b) Single interleaving.
(c) Double interleaving.
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Disk Arm Scheduling Algorithms (1)

Read/write time factors

1. Seek time (the time to move the arm to the
proper cylinder).

2. Rotational delay (the time for the proper sector
to rotate under the head).

3. Actual data transfer time.
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Disk Arm Scheduling Algorithms (2)

Initial Pending
position  requests

\/\1
X X| IX|X X X| IX

0 5 10 15 20 25 30 35 Cylinder

i Sequence of seeks

< Time

Figure 5-28. Shortest Seek First (SSF) disk scheduling algorithm.
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Disk Arm Scheduling Algorithms (3)

Initial
position

1
X Xl [X[X X Xl X

0 5 10 15 20 25 30 35 Cylinder

~ Sequence of seeks

/

<« Time

—x

Figure 5-29. The elevator algorithm for scheduling disk requests.
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Error Handling

Spare
sectors Bad

Figure 5-30. (a) A disk track with a bad sector.
(b) Substituting a spare for the bad sector.
(c) Shifting all the sectors to bypass the bad one.
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Stable Storage (1)

Operations for stable storage using
identical disks:

1. Stable writes

2. Stable reads
3. Crash recovery
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Stable Storage (2)

ECC
Disk e Disk Disk Disk Disk
1 2 N1 2 1 2 12 1 2
/, 7
Old Old é Old New Old New % New| |New
// é

Figure 5-31. Analysis of the influence of crashes on stable writes.
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Clock Hardware

Crystal oscillator

—0l

Counter is decremented at each pulse

Holding register is used to load the counter

Figure 5-32. A programmable clock.
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Clock Software (1)

Typical duties of a clock driver

1.
2.

Maintaining the time of day.

Preventing processes from running longer than
they are allowed to.

Accounting for CPU usage.

Handling alarm system call made by user
processes.

Providing watchdog timers for parts of the
system itself.

Doing profiling, monitoring, statistics gathering.



Clock Software (2)

- 64 bits - ~— 32 bits —>
Time of day in ticks P P
/ /
Time of day Number of ticks
in seconds in current second
(a) (b)

—~— 32 bits —>

Counter in ticks

X

7
System boot time
in seconds

(c)

Figure 5-33. Three ways to maintain the time of day.
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Clock Software (3)

Current time Next signal

Clock 4200 3
header

Figure 5-34. Simulating multiple timers with a single clock.
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Soft Timers

Soft timers succeed according to rate at which
kernel entries are made because of:

System calls.

TLB misses.

Page faults.

/O interrupts.

The CPU going idle.

ok b=
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Keyboard Software

:Character POSIX name Comment

'CTRL-H  ERASE - Backspace one character
CTRL-U  KILL " Erase entire line being typed
'—CTRL-V | LNEXT | Interpret next character literally |
'fCTRL-S | STOP | Stop output

CTRL-Q | START " Start output

DEL " INTR " Interrupt process (SIGINT)
_CTRL-\ | QUIT | Force core dump (SIGQUIT)
CTRL-D | EOF " End of file

 CTRL-M | CR ~ Carriage return (unchangeable) |
CTRLJ | NL | Linefeed (unchangeable)

Figure 5-35. Characters that are handled
specially in canonical mode.
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The X Window System (1)

.—Escape sequence | Meaning
: ESC [nA | Move up n lines
- ESC[nB | Move down n lines
: ESC [nC | Move right n spaces
- ESC[nD | Move left n spaces
: ESC[m;nH Move cursor to (m,n)
B ESC [sJ | Clear screen from cursor (0 to end, 1 1from start, 2 all)
- ESC [sK | Clear line from cursor (0 to end, 1 from start, 2 all)
: ESC [nL | Insert n lines at cursor
- ESC [nM | Delete n lines at cursor
: ESC [nP Delete n chars at cursor
ESC[n@ | Insert n chars at cursor
: ESC[nm Enable rendition n (O=normal, 4=bold, 5=blinking, 7=reverse) |
| ESCM | Scroll the screen backward if the cursor is on the top line |

Figure 5-36. The ANSI escape sequences accepted by the
terminal driver on output. ESC denotes the ASCII escape
character (0x1B), and n, m, and s are optional

numeric parameters.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-



The X Window System (2)

Remote host

g Window Application
manager program
Motif
Hser { Intrinsics
space
Xlib
X client X server
Kernel UNIX UNIX
space <
Hardware Hardware
K X protocol J
Network

Figure 5-37. Clients and servers in the M.I.T. X Window System.
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The X Window System (3)

Types of messages between client and server:

1.

Drawing commands from the program to the
workstation.

Replies by the workstation to program queries.

Keyboard, mouse, and other event
announcements.

Error messages.
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Graphical User Interfaces (1)

#include <X11/Xlib.h>
#include <X11/Xutil.h>

main(int argc, char *argv[])

{
Display disp; /* server identifier */
Window win; /* window identifier */
GC gc; /* graphic context identifier */
XEvent event; /* storage for one event */

int running = 1;

disp = XOpenDisplay("display _name"); /* connect to the X server */

win = XCreateSimpleWindow(disp, ...); /* allocate memory for new window */
XSetStandardProperties(disp, ...); /* announces window to window mgr */

gc = XCreateGC(disp, win, 0, 0); /* create graphic context */

XSelectinput(disp, win, ButtonPressMask | KeyPressMask | ExposureMask);
XMapRaised(disp, win); /* display window; send Expose event */

Figure 5-38. A skeleton of an X Window application program.
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Graphical User Interfaces (2)

while (running) {

XNextEvent(disp, &event); /* get next event */
switch (event.type) {
case Expose: ... break; /* repaint window */
case ButtonPress: ...; break; /* process mouse click */
case Keypress: ... break; /* process keyboard input */
}
}
XFreeGC(disp, gc); /* release graphic context */
XDestroyWindow(disp, win); /* deallocate window’s memory space */
XCloseDisplay(disp); /* tear down network connection */

Figure 5-38. A skeleton of an X Window application program.
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Graphical User Interfaces (3)

(0, 0) (1023, 0)

N

200, 100) -
( ) =g me bar
Menu bar sp- Ele ) _Edit ) _View~ T) Options™) _Help ™)

Tool bar = m @ C)@E

j<— Thumb

Figure 5-39. A sample
window |ocated at
(200, 100) on an ~— Scrol bar
XGA display. Window —>-

Client area

O - " [
7 X

(0, 767) (1023, 767)
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Graphical User Interfaces (4)

#include <windows.h>

int WINAPI WinMain(HINSTANCE h, HINSTANCE, hprev, char *szCmd, int iCmdShow)

{

WNDCLASS wndclass; /* class object for this window */
MSG msg; /* incoming messages are stored here */
HWND hwnd; /* handle (pointer) to the window object */

/* Initialize wndclass */

wndclass.lpfnWndProc = WndProc; /* tells which procedure to call */
wndclass.lpszClassName = "Program name"; /* Text for title bar */
wndclass.hlcon = Loadlcon(NULL, IDI_APPLICATION); /* load program icon */
wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);  /* load mouse cursor */

RegisterClass(&wndclass); /* tell Windows about wndclass */
hwnd = CreateWindow ( ... ) /* allocate storage for the window */
ShowWindow(hwnd, iCmdShow); /* display the window on the screen */
UpdateWindow(hwnd); /* tell the window to paint itself */

Figure 5-40. A skeleton of a Windows main program.
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}

Graphical User Interfaces (5)

while (GetMessage(&msg, NULL, 0O, 0)) {

TranslateMessage(&msg);
DispatchMessage(&msg);
}

return(msg.wParam);

/* get message from queue */

/* translate the message */
/* send msg to the appropriate procedure */

long CALLBACK WndProc(HWND hwnd, UINT message, UINT wParam, long IParam)

{

/* Declarations go here. */

switch (message) {

case WM _CREATE: e ]
case WM _PAINT: ... return ...
case WM_DESTROY: ...:; return ...

}

return(DefWindowProc(hwnd, message, wParam, |IParam));

return ... ;

/* create window */
;  /* repaint contents of window */
;. /* destroy window */

/* default */

Figure 5-40. A skeleton of a Windows main program.
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Bitmaps (1)

0O 1 2 3 4 5 6 7 8

N oo O AW NN = O

Figure 5-41. An example rectangle drawn using Rectangle.
Each box represents one pixel.
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Figure 5-42. Copying bitmaps using BitBlt. (a) Before. (b) After.
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Figure 5-43. Some examples of character outlines
at different point sizes.
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Thin Clients

Command  Description

| Raw - Display raw pixel data at a given location
_Copy | Copy frame buffer area to specified coordinates
:Sfill Fill an area with a given pixel color value

Prill Fill an area with a given pixel pattern
I:Bitmap I Fill a region using a bitmap image

Figure 5-44. The THINC protocol display commands.
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Power Management
Hardware Issues

Device Li et al. (1994) Lorch and Smith (1998)

'Display | 68% | 39%
' CPU O 12% | 18%
'Hard disk =~ 20% | 12%
Modem | 6%
‘Sound | | 2%
:_Memory 0.5% 1%
Other | i 22%

Figure 5-45. Power consumption of various parts
of a notebook computer.
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Power Management
The Display

| | | | |
| | | I |
| . | |
| ———————] Window 1 A= ———————
Window 1 : : :
T —— e - ——— —————_——_—_—_ ] —_—_—_—— = = — —
I I
____,:______:___ Window 2 || ____L_____:___ Window 2
| | I I
| | T | | T
H_J
Zone

Figure 5-46. The use of zones for backlighting the display.
(a) When window 2 is selected it is not moved.
(b) When window 1 is selected, it moves to reduce the
number of zones illuminated.
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Power Management
The CPU
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(@) (b)

Figure 5-47. (a) Running at full clock speed. (b) Cutting voltage by
two cuts clock speed by two and power consumption by four.
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