MODERN OPERATING SYSTEMS

Third Edition

ANDREW S. TANENBAUM

Chapter 2
Processes and Threads

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



The Process Model
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Figure 2-1. (a) Multiprogramming of four programs. (b) Conceptual
model of four independent, sequential processes. (c) Only
one program is active at once.
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Process Creation

Events which cause process creation:

«  System initialization.

«  Execution of a process creation system call by a
running process.

Auser request to create a new process.
Initiation of a batch job.
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Process Termination

Events which cause process termination:

*  Normal exit (voluntary).

«  Error exit (voluntary).

-  Fatal error (involuntary).

«  Killed by another process (involuntary).

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Process States

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

Figure 2-2. A process can be in running, blocked, or ready state.
Transitions between these states are as shown.
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Implementation of Processes (1)

Processes

Scheduler

Figure 2-3. The lowest layer of a process-structured operating
system handles interrupts and scheduling. Above that layer
are sequential processes.
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Implementation of Processes (2)

Process management Memory management File management
Registers Pointer to text segment info Root directory
Program counter Pointer to data segment info Working directory
Program status word Pointer to stack segment info | File descriptors
Stack pointer User ID

Process state Group ID

Priority

Scheduling parameters

Process ID

Parent process

Process group

Signals

Time when process started
CPU time used

Children’s CPU time

Time of next alarm

Figure 2-4. Some of the fields of a typical process table entry.
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Implementation of Processes (3)

1. Hardware stacks program counter, etc.

2. Hardware loads new program counter from interrupt vector.
3. Assembly language procedure saves registers.

4. Assembly language procedure sets up new stack.

5. C interrupt service runs (typically reads and buffers input).

6. Scheduler decides which process is to run next.

7. C procedure returns to the assembly code.

8. Assembly language procedure starts up new current process.

Figure 2-5. Skeleton of what the lowest level of the operating
system does when an interrupt occurs.
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Modeling Multiprogramming
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Figure 2-6. CPU utilization as a function of the number of
processes in memory.
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Thread Usage

Four score and seven
years ago, our fathers
brought forth upon this
continent a new nation:
conceived in liberty,
and dedicated to the
proposition that all
men are created equal.

Now we are engaged
in a great civil war
testing whether that

nation, or any nation
so conceived and so
dedicated, can long
endure. We are met on
a great battlefield of
that war.

We have come to
dedicate a portion of
that field as a final
resting place for those
who here gave their

lives that this nation
might live. 1t is
altogether fitting and
proper that we should
o this.

But, ina largerserse,
we cannot dedicate, we
cannot consecrate we
cannot  hallow  this
gound. The brave
men, living and dead,

who struggled here
have consecrated it, far
above our poor power
o add or detract. The
world will little note,
mor long remember,
what we say here, but|
it can never forget|
whatthey did here.

1t is for vs the living,
mther, to be dedicated

here to the unfinished
work which they who
fought here have thus
far 5o nobly advanced.
1t is mther for vs to be
here dedicated to the
great task remaining
before us, that from
these honored dead we
take increased devotion
to that cavse for which

they gave the last full
measure of devotion,
that we here highly
resolve that these dead
shall not have died in
vain that this nation,
under God, shall have
a new birth of freedom
and that government of
the people by the
people, for the people
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Figure 2-7. A word processor with three threads.
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Thread Usage (2)

Web server process

Dispatcher thread

- >2m , Worker thread

Web page cache

Kernel

Network
connection

User
space

Kernel
space

Figure 2-8. A multithreaded Web server.
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Thread Usage (3)

while (TRUE) { while (TRUE) {
get_next_request(&buf); wait_for_work(&buf)
handoff_work(&buf); look_for_page_in_cache(&buf, &page);
} if (page_not_in_cache(&page))

read_page_from_disk(&buf, &page);
return_page(&page);

(a) (b)

Figure 2-9. A rough outline of the code for Fig. 2-8. (a) Dispatcher
thread. (b) Worker thread.
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Thread Usage (4)

Model Characteristics

Threads Parallelism, blocking system calls
Single-threaded process | No parallelism, blocking system calls
Finite-state machine Parallelism, nonblocking system calls, interrupts

Figure 2-10. Three ways to construct a server.
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The Classical Thread Model (1)
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Process 1
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Figure 2-11. (a) Three processes each with one thread. (b) One

process with three threads.
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The Classical Thread Model (2)

Per process items Per thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms
Signals and signal handlers
Accounting information

Figure 2-12. The first column lists some items shared by all
threads in a process. The second one lists some items private
to each thread.
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The Classical Thread Model (3)
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Figure 2-13. Each thread has its own stack.
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POSIX Threads (1)

Thread call Description

Pthread_create Create a new thread

Pthread_exit Terminate the calling thread

Pthread_join Wait for a specific thread to exit

Pthread_yield Release the CPU to let another thread run
Pthread_attr_init Create and initialize a thread’s attribute structure
Pthread_attr_destroy | Remove a thread’s attribute structure

Figure 2-14. Some of the Pthreads function calls.
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POSIX Threads (2)

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

#define NUMBER_OF_THREADS 10

void *print_hello_world(void *tid)

{
/* This function prints the thread’s identifier and then exits. */
printf("Hello World. Greetings from thread %dO0, tid);
pthread_exit(NULL);

}

int main(int argc, char *argv(])
{

/* The main program creates 10 threads and then exits. */
pthread_t threads[INUMBER_OF_THREADS];
int status, i;

for(i=0; i < NUMBER _OF_THREADS; i++) {
printf("Main here. Creating thread %d0, i);
status = pthread_create(&threads]i], NULL, print_hello_world, (void *)i);

if (status !=0) {
printf("Oops. pthread_create returned error code %d0, status);
exit(-1);
}
}
* exit(NULL);
}

Figure 2-15. An example program using threads.
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Implementing Threads in User Space

Process Thread Process Thread
\ _/ \__/
r \ \
=0 (980 )(58838
space<
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Kernel { B I K |
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Run-time Thread Process Process Thread
system table table table table

Figure 2-16. (a) A user-level threads package. (b) A threads
package managed by the kernel.
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Hybrid Implementations

Multiple user threads
on a kernel thread

\ ’
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®
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Kernel <— Kernel thread space

Figure 2-17. Multiplexing user-level threads
onto kernel-level threads.
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Pop-Up Threads

Pop-up thread
Process created to handle

incoming message
Existing thread
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Network

Figure 2-18. Creation of a new thread when a message arrives.
(a) Before the message arrives.
(b) After the message arrives.
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Making Single-Threaded Code
Multithreaded (1)

Thread 1 Thread 2

%

Access (errno set)

%

-— Time
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Errno inspected

Figure 2-19. Conflicts between threads
over the use of a global variable.
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Making Single-Threaded Code
Multithreaded (2)

Thread 1's
code

Thread 2's
code

Thread 1's
stack ~

Thread 2's
/ stack

Thread 1's
globals

Thread 2's
globals

Figure 2-20. Threads can have private global variables.
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Race Conditions

Spooler

directory
4 abc out=4
6 prog.n
73 in=7

Process B

Figure 2-21. Two processes want to access
shared memory at the same time.
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Critical Regions (1)
Conditions required to avoid race condition:

No two processes may be simultaneously inside their
critical regions.

No assumptions may be made about speeds or the
number of CPUs.

*  No process running outside its critical region may
block other processes.

No process should have to wait forever to enter its
critical region.



Critical Regions (2)

A enters critical region

/ A leaves critical region

Process A | I
| I I I
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| | DBattemptsto | B enters | B leaves
| : enter critical \ critical region : critical region
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I |
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Figure 2-22. Mutual exclusion using critical regions.
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Mutual Exclusion with Busy Waiting

Proposals for achieving mutual exclusion:

«  Disabling interrupts
. Lock variables
. Strict alternation

. Peterson's solution
. The TSL instruction
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Strict Alternation

while (TRUE) { while (TRUE) {
while (turn != 0) /* loop */ ; while (turn !=1) /* loop */ ;
critical _region(); critical _region();
turn = 1; turn = 0;
noncritical _region( ); noncritical _region( );
} }
(a) (b)

Figure 2-23. A proposed solution to the critical region problem.
(a) Process 0. (b) Process 1. In both cases, be sure to note
the semicolons terminating the while statements.
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Peterson's Solution

#define FALSE 0
#define TRUE 1

#define N 2 /* number of processes */
int turn; /* whose turn is it? */
int interested[N]; /* all values initially 0 (FALSE) */
void enter_region(int process); /* process is 0 or 1 */
{
int other; /* number of the other process */
other = 1 — process; /* the opposite of process */
interested[process] = TRUE; /* show that you are interested */
turn = process; /* set flag */
while (turn == process && interested[other] == TRUE) /* null statement */ ;
}
void leave_region(int process) /* process: who is leaving */
{
interested[process] = FALSE; /* indicate departure from critical region */
}

Figure 2-24. Peterson’s solution for achieving mutual exclusion.
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The TSL Instruction (1)

enter_region:

TSL REGISTER,LOCK | copy lock to register and set lock to 1

CMP REGISTER,#0 | was lock zero?

JNE enter_region | if it was nonzero, lock was set, so loop

RET | return to caller; critical region entered
leave _region:

MOVE LOCK,#0 | store a 0 in lock

RET | return to caller

Figure 2-25. Entering and leaving a critical region
using the TSL instruction.
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The TSL Instruction (2)

enter_region:
MOVE REGISTER,#1
XCHG REGISTER,LOCK
CMP REGISTER,#0
JNE enter_region
RET

leave _region:
MOVE LOCK,#0
RET

| put a 1 in the register

| swap the contents of the register and lock variable
| was lock zero?

| if it was non zero, lock was set, so loop

| return to caller; critical region entered

| store a 0 in lock
| return to caller

Figure 2-26. Entering and leaving a critical region

using the XCHG instruction.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



The Producer-Consumer Problem

#define N 100
int count = 0;

void producer(void)

{
int item;
while (TRUE) {
item = produce_item();
if (count == N) sleep();
insert_item(item);
count = count + 1;
if (count == 1) wakeup(consumer);
}
}
void consumer(void)
{
int item;
while (TRUE) {
if (count == 0) sleep();
item = remove _item();
count = count — 1;
if (count == N — 1) wakeup(producer);
consume_item(item);
}
}

Figure 2-27. The producer-consumer problem

/* number of slots in the buffer */
/* number of items in the buffer */

/* repeat forever */

/* generate next item */

/* if buffer is full, go to sleep */

/* put item in buffer */

/* increment count of items in buffer */
/* was buffer empty? */

/* repeat forever */

/* if buffer is empty, got to sleep */

/* take item out of buffer */

/* decrement count of items in buffer */
/* was buffer full? */

/[* print item */

with a fatal race condition.
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Semaphores

#define N 100

typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

/* number of slots in the buffer */

/* semaphores are a special kind of int */
/* controls access to critical region */

/* counts empty buffer slots */

/* counts full buffer slots */

void producer(void)

{
int item;
while (TRUE) { /* TRUE is the constant 1 */
item = produce_item(); /* generate something to put in buffer */
down(&empty); /* decrement empty count */
down(&mutex); /* enter critical region */
insert_item(item); /* put new item in buffer */
up(&mutex); /* leave critical region */
up(&full); /* increment count of full slots */
}

void consumer(void)

{
int item;
while (TRUE) { /* infinite loop */
down(&full); /* decrement full count */
down(&mutex); /* enter critical region */
item = remove_item(); /* take item from buffer */
up(&mutex); /* leave critical region */
up(&empty); /* increment count of empty slots */
consume_item(item); /* do something with the item */
o o !

Figure 2-28. The producer-consumer problem using semaphores.
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Mutexes

mutex_lock:
TSL REGISTER,MUTEX | copy mutex to register and set mutex to 1
CMP REGISTER,#0 | was mutex zero?
JZE ok | if it was zero, mutex was unlocked, so return
CALL thread_yield | mutex is busy; schedule another thread
JMP mutex_lock | try again

ok: RET | return to caller; critical region entered

mutex_unlock:
MOVE MUTEX,#0 | store a 0 in mutex
RET | return to caller

Figure 2-29. Implementation of mutex lock and mutex unlock.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Mutexes in Pthreads (1)

Thread call Description

Pthread_mutex_init Create a mutex

Pthread_mutex_destroy | Destroy an existing mutex

Pthread _mutex_lock Acquire a lock or block

Pthread _mutex_trylock Acquire a lock or fail

Pthread_mutex_unlock Release a lock

Figure 2-30. Some of the Pthreads calls relating to mutexes.
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Mutexes in Pthreads (2)

Thread call Description

Pthread_cond_init Create a condition variable
Pthread_cond_destroy Destroy a condition variable
Pthread_cond_wait Block waiting for a signal
Pthread_cond_signal Signal another thread and wake it up
Pthread_cond_broadcast | Signal multiple threads and wake all of them

Figure 2-31. Some of the Pthreads calls relating
to condition variables.
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utexes in Pthreads

#include <stdio.h>

#include <pthread.h>

#define MAX 1000000000
pthread_mutex_t the_mutex;
pthread_cond_t condc, condp;
int buffer = 0;

void *producer(void *ptr)
{ int i;
for (i= 1; i <= MAX; i++) {
pthread_mutex_lock(&the _mutex);

/* how many numbers to produce */

/* buffer used between producer and consumer */

/* produce data */

/* get exclusive access to buffer */

while (buffer != 0) pthread_cond_wait(&condp, &the_mutex);

buffer = i;
pthread_cond_signal(&condc);

/* put item in buffer */
/* wake up consumer */

pthread_mutex_unlock(&the_mutex);/* release access to buffer */

}
pthread_exit(0);
}

void *consumer(void *ptr)
{ inti;
for (i=1; i <= MAX; i++) {
pthread_mutex_lock(&the _mutex);

/* consume data */

/* get exclusive access to buffer */

while (buffer ==0 ) pthread_cond_wait(&condc, &the_mutex);

buffer = 0;
pthread_cond_signal(&condp);

/* take item out of buffer */
/* wake up producer */

pthread_mutex_unlock(&the _mutex);/* release access to buffer */

}
pthread_exit(0);

}

int main(int argc, char **argv)

{
pthread_t pro, con;
pthread_mutex_init(&the_mutex, 0);
pthread_cond_init(&condc, 0);
pthread_cond_init(&condp, 0);
pthread_create(&con, 0, consumer, 0);
pthread_create(&pro, 0, producer, 0);
pthread_join(pro, 0);
pthread_join(con, 0);
pthread_cond_destroy(&condc);
pthread_cond_destroy(&condp);
pthread_mutex_destroy(&the _mutex);

Figure 2-32. Using threads to solve
the producer-consumer problem.
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Monitors (1)

monitor example
integer i;
condition c;

procedure producer( );

end;

procedure consumer( );

end;
end monitor;

Figure 2-33. A monitor.
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Monitors (2

monitor ProducerConsumer
condition full, empty;
integer count;

procedure insert(item: integer);
begin

if count = N then wait(full);

insert_item(item);

count := count + 1;

if count = 1 then signal(empty)
end;

function remove: integer;
begin
if count = 0 then wait(empty);
remove = remove _item;
count := count — 1,
if count = N — 1 then signal(full)
end;

count == 0;
end monitor;

procedure producer;

begin
while 77ue do
begin
item = produce_item;
ProducerConsumer.insert(item)
end
end;

procedure consumer;

begin
while true do
begin
item = ProducerConsumer.remove;
consume _item(item)
end
end;

Figure 2-34. An outline of the producer-consumer problem with
monitors.
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Message Passing (1)

public class ProducerConsumer {
static final int N = 100; // constant giving the buffer size
static producer p = new producer(); //instantiate a new producer thread
static consumer ¢ = new consumer( ); // instantiate a new consumer thread
static our_monitor mon = new our_monitor( ); // instantiate a new monitor

public static void main(String argsl[]) {
p.start(); // start the producer thread
c.start(); // start the consumer thread

}

static class producer extends Thread {
public void run() {// run method contains the thread code
int item;
while (true) {  // producer loop
item = produce _item();
mon.insert(item);
}
}

private int produce _item() { ... } /1 actually produce

}

Figure 2-35. A solution to the producer-consumer
problem in Java.
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Message Passing (2)

static class consumer extends Thread {
public void run() {run method contains the thread code
int item;
while (true) {  //consumer loop
item = mon.remove();
consume _item (item);
}
}

private void consume _item(int item) { ... }// actually consume

}

static class our_monitor { // this is a monitor
private int buffer[] = new int[N];
private int count =0, lo = 0, hi = 0; // counters and indices

public synchronized void insert(int val) {
if (count == N) go_to_sleep(); //if the buffer is full, go to sleep
buffer [hi] = val; // insert an item into the buffer
hi = (hi +1) % N; // slot to place next item in
count = count + 1; // one more item in the buffer now
if (count == 1) notify(); // if consumer was sleeping, wake it up

Figure 2-35. A solution to the producer-consumer
problem in Java.
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Message Passing (3)

public synchronized int remove() {
int val;
if (count == 0) go_to_sleep(); //if the buffer is empty, go to sleep
val = buffer [lo]; // fetch an item from the buffer

lo=(lo+1)% N; // slot to fetch next item from

count = count — 1; // one few items in the buffer

if (count == N — 1) notify(); // if producer was sleeping, wake it up
return val,

}

private void go_to_sleep() { try{wait();} catch(InterruptedException exc) {};

}

Figure 2-35. A solution to the producer-consumer
problem in Java.
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Producer-Consumer Problem
with Message Passing (1)

#define N 100 /* number of slots in the buffer */

void producer(void)

{
int item;
message m; /* message buffer */
while (TRUE) {
item = produce item(); /* generate something to put in buffer */
receive(consumer, &m); /* wait for an empty to arrive */
build _message(&m, item); /* construct a message to send */
send(consumer, &m); /* send item to consumer */
}
}

Figure 2-36. The producer-consumer problem with N messages.
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Producer-Consumer Problem
with Message Passing (2)

void consumer(void)

{
int item, i;
message m;
for (i =0; i < N; i++) send(producer, &m); /* send N empties */
while (TRUE) {
receive(producer, &m); /* get message containing item */
item = extract _item(&m); /* extract item from message */
send(producer, &m); /* send back empty reply */
consume _item(item); /* do something with the item */
}
}

Figure 2-36. The producer-consumer problem with N messages.
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Barriers
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Figure 2-37. Use of a barrier. (a) Processes approaching a barrier.
(b) All processes but one blocked at the barrier. (c) When the
last process arrives at the barrier, all of them are let through.
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Scheduling — Process Behavior
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Figure 2-38. Bursts of CPU usage alternate with periods of waiting
for 1/0O. (a) A CPU-bound process. (b) An I/O-bound process.
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Categories of Scheduling Algorithms

« Batch
 |nteractive
e Real time
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Scheduling Algorithm Goals

All systems
Fairness - giving each process a fair share of the CPU
Policy enforcement - seeing that stated policy is carried out
Balance - keeping all parts of the system busy

Batch systems
Throughput - maximize jobs per hour
Turnaround time - minimize time between submission and termination
CPU utilization - keep the CPU busy all the time

Interactive systems
Response time - respond to requests quickly
Proportionality - meet users’ expectations

Real-time systems
Meeting deadlines - avoid losing data
Predictability - avoid quality degradation in multimedia systems

Figure 2-39. Some goals of the scheduling algorithm under
different circumstances.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639



Scheduling in Batch Systems

*  First-come first-served
*  Shortest job first
» Shortest remaining Time next
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Shortest Job First

8 4 4 4
A B[ C | D
(a)
4 4 4 8
B | C | D A

Figure 2-40. An example of shortest job first scheduling.
(a) Running four jobs in the original order. (b) Running them
in shortest job first order.
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Scheduling in Interactive Systems

* Round-robin scheduling
*  Priority scheduling

«  Multiple queues

* Shortest process next

* Guaranteed scheduling
* Lottery scheduling

* Fair-share scheduling
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Round-Robin Scheduling

Current Next Current
process process process
B F D G A F D G A B

(@) (b)

Figure 2-41. Round-robin scheduling.
(a) The list of runnable processes. (b) The list of runnable
processes after B uses up its quantum.
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Priority Scheduling

Queue Runable processes
headers A

r

Priority 4 (Highest priority)

Priority 3

Priority 2

Priority 1 (Lowest priority)

Figure 2-42. A scheduling algorithm with four priority classes.
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Thread Scheduling (1)

Process A Process B Process A Process B
Order in which l

threads run \

2. Runtime 1 2 8

= | DG
picks a —

thread — =| =

4
L1. Kernel picks a process 1 Kernel picks a thread E
Possible: A1, A2, A3, A1, A2, A3 Possible: A1, A2, A3, A1, A2, A3
Not possible: A1, B1, A2, B2, A3, B3 Also possible: A1, B1, A2, B2, A3, B3

=\ L\

Figure 2-43. (a) Possible scheduling of user-level threads with a
50-msec process quantum and threads that run 5 msec per
CPU burst.
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Thread Scheduling (2)

Process A Process B
Order in which l

threads run \

2. Runtime 12 3
system
picks a —

thread

L1. Kernel picks a process

Possible: A1, A2, A3, A1, A2, A3
Not possible: A1, B1, A2, B2, A3, B3

=)\

Process A Process B

1 Kernel picks a thread E

Possible: A1, A2, A3, A1, A2, A3
Also possible: A1, B1, A2, B2, A3, B3

o\

Figure 2-43. (b) Possible scheduling of kernel-level threads with
the same characteristics as (a).
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Dining Philosophers Problem (1)

QS
NN
S é\\ 2
é‘é‘\\\’ \4 "‘\a
NS

0 k//\\

Figure 2-44. Lunch time in the Philosophy Department.
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Dining Philosophers Problem (2)

#define N 5 /* number of philosophers */

void philosopher(int i) /* i: philosopher number, from O to 4 */

{

while (TRUE) {

think(); /* philosopher is thinking */
take fork(i); /* take left fork */
take fork((i+1) % N); /* take right fork; % is modulo operator */
eat(); /* yum-yum, spaghetti */
put_fork(i); /* put left fork back on the table */
put_fork((i+1) % N); /* put right fork back on the table */

Figure 2-45. A nonsolution to the dining philosophers problem.
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Dining Philosophers Problem (3)

#define N 5

#define LEFT (i+N-1)%N
#defi #define N 5

#defi #define LEFT (i+N-1)%N
#defi #define RIGHT (i+1)%N

#defi #define THINKING O
typed #define HUNGRY 1
int st #define EATING 2
sem: typedef int semaphore;
sem: int state[N];

semaphore mutex = 1;

E’OId semaphore s[N];
void philosopher(int i)
{
while (TRUE) {
think();
take forks(i);
eat();
} put forks(i);
. }
}

/* number of philosophers */
/* number of i's left neiahbor */

/* number of philosophers */

/* number of i's left neighbor */

/* number of i's right neighbor */

/* philosopher is thinking */

/* philosopher is trying to get forks */

/* philosopher is eating */

/* semaphores are a special kind of int */
/* array to keep track of everyone’s state */
/* mutual exclusion for critical regions */

/* one semaphore per philosopher */

/* i philosopher number, from O to N-1 */

/* repeat forever */

/* philosopher is thinking */

/* acquire two forks or block */
/* yum-yum, spaghetti */

/* put both forks back on table */

Figure 2-46. A solution to the dining philosophers problem.
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Dining Philosophers Problem (4)

void take forks(int i) /* i philosopher number, from 0 to N-1 */
{
down(&mutex); /* enter critical region */
state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); /* try to acquire 2 forks */
up(&mutex); /* exit critical region */
down(&sli]); /* block if forks were not acquired */
}

Figure 2-46. A solution to the dining philosophers problem.
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Dining Philosophers Problem (5)

void put_forks(i) /* 1. philosopher number, from 0 to N-1 */

{
down(&mutex); /* enter critical region */
state[i] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see if left neighbor can now eat */
test(RIGHT); /* see if right neighbor can now eat */
up(&mutex); /* exit critical region */

}

void test(i) /* i: philosopher number, from 0 to N-1 */

{

if (state[i] == HUNGRY && state[LEFT] |= EATING && state[RIGHT] != EATING) {
state[i] = EATING;
up(&si]);

}
Figure 2-46. A solution to the dining philosophers problem.
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The Readers and Writers Problem (1)

typedef int semaphore; /* use your imagination */

semaphore mutex = 1; /* controls access to ’'rc’ */

semaphore db = 1; /* controls access to the database */

int rc = 0; /* # of processes reading or wanting to */

void reader(void)

{
while (TRUE) { /* repeat forever */
down(&mutex); /* get exclusive access to ’rc’ */
rc=rc+1; /* one reader more now */
if (rc == 1) down(&db); /* if this is the first reader ... */
up(&mutex); /* release exclusive access to ’rc’ */
read_data_base(); /* access the data */
down(&mutex); /* get exclusive access to ’rc’ */
rc=rc—1; /* one reader fewer now */
if (rc == 0) up(&db); /* if this is the last reader ... */
up(&mutex); /* release exclusive access to ’rc’ */
use_data_read(); /* noncritical region */
}
}

Figure 2-47. A solution to the readers and writers problem.
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The Readers and Writers Problem (2)

void writer(void)

{
while (TRUE) { /* repeat forever */
think_up_data(); /* noncritical region */
down(&db); /* get exclusive access */
write _data_base(); /* update the data */
up(&db); /* release exclusive access */
}
}

Figure 2-47. A solution to the readers and writers problem.
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