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Figure 2-1. (a) Multiprogramming of four programs. (b) Conceptual 
model of four independent, sequential processes. (c) Only 

one program is active at once. 

The Process Model 
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Events which cause process creation: 

•  System initialization. 
•  Execution of a process creation system call by a 

running process. 
•  A user request to create a new process. 
•  Initiation of a batch job. 

Process Creation 
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Events which cause process termination: 

•  Normal exit (voluntary). 
•  Error exit (voluntary). 
•  Fatal error (involuntary). 
•  Killed by another process (involuntary). 

Process Termination 
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Figure 2-2. A process can be in running, blocked, or ready state. 
Transitions between these states are as shown. 

Process States 
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Figure 2-3. The lowest layer of a process-structured operating 
system handles interrupts and scheduling. Above that layer 

are sequential processes. 

Implementation of Processes (1) 
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Figure 2-4. Some of the fields of a typical process table entry. 

Implementation of Processes (2) 
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Figure 2-5. Skeleton of what the lowest level of the operating 
system does when an interrupt occurs. 

Implementation of Processes (3) 
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Figure 2-6. CPU utilization as a function of the number of 
processes in memory. 

Modeling Multiprogramming 
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Figure 2-7. A word processor with three threads. 

Thread Usage (1) 
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Figure 2-8. A multithreaded Web server. 

Thread Usage (2) 
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Figure 2-9. A rough outline of the code for Fig. 2-8. (a) Dispatcher 
thread. (b) Worker thread. 

Thread Usage (3) 
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Figure 2-10. Three ways to construct a server. 

Thread Usage (4) 
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Figure 2-11. (a) Three processes each with one thread. (b) One 
process with three threads. 

The Classical Thread Model (1) 
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Figure 2-12. The first column lists some items shared by all 
threads in a process. The second one lists some items private 

to each thread. 

The Classical Thread Model (2) 
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Figure 2-13. Each thread has its own stack. 

The Classical Thread Model (3) 
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Figure 2-14. Some of the Pthreads function calls. 

POSIX Threads (1) 
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Figure 2-15. An example program using threads. 

POSIX Threads (2) 
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Figure 2-16. (a) A user-level threads package. (b) A threads 
package managed by the kernel. 

Implementing Threads in User Space 
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Figure 2-17. Multiplexing user-level threads  
onto kernel-level threads. 

Hybrid Implementations 
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Figure 2-18. Creation of a new thread when a message arrives. 
(a) Before the message arrives.  
(b) After the message arrives. 

Pop-Up Threads 
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Figure 2-19. Conflicts between threads  
over the use of a global variable. 

Making Single-Threaded Code 
Multithreaded (1) 
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Figure 2-20. Threads can have private global variables. 

Making Single-Threaded Code 
Multithreaded (2) 
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Figure 2-21. Two processes want to access  
shared memory at the same time. 

Race Conditions 
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Conditions required to avoid race condition: 

•  No two processes may be simultaneously inside their 
critical regions. 

•  No assumptions may be made about speeds or the 
number of CPUs. 

•  No process running outside its critical region may 
block other processes. 

•  No process should have to wait forever to enter its 
critical region. 

Critical Regions (1) 
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Figure 2-22. Mutual exclusion using critical regions. 

Critical Regions (2) 
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Proposals for achieving mutual exclusion: 

•  Disabling interrupts 
•  Lock variables 
•  Strict alternation 
•  Peterson's solution 
•  The TSL instruction 

Mutual Exclusion with Busy Waiting 
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Figure 2-23. A proposed solution to the critical region problem.  
(a) Process 0. (b) Process 1. In both cases, be sure to note 

the semicolons terminating the while statements. 

Strict Alternation 
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Figure 2-24. Peterson’s solution for achieving mutual exclusion. 

Peterson's Solution 
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Figure 2-25. Entering and leaving a critical region  
using the TSL instruction. 

The TSL Instruction (1) 
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Figure 2-26. Entering and leaving a critical region  
using the XCHG instruction. 

The TSL Instruction (2) 
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Figure 2-27. The producer-consumer problem  
with a fatal race condition. 

The Producer-Consumer Problem 
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Figure 2-28. The producer-consumer problem using semaphores. 

Semaphores 
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Figure 2-29. Implementation of mutex lock and mutex unlock. 

Mutexes 

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639 



Figure 2-30. Some of the Pthreads calls relating to mutexes. 

Mutexes in Pthreads (1) 
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Figure 2-31. Some of the Pthreads calls relating  
to condition variables. 

Mutexes in Pthreads (2) 
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Figure 2-32. Using threads to solve  
the producer-consumer problem. 

Mutexes in Pthreads (3) 
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Figure 2-33. A monitor. 

Monitors (1) 
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Figure 2-34. An outline of the producer-consumer problem with 
monitors.  

Monitors (2) 
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Figure 2-35. A solution to the producer-consumer  
problem in Java. 

Message Passing (1) 
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Figure 2-35. A solution to the producer-consumer  
problem in Java. 

Message Passing (2) 
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Figure 2-35. A solution to the producer-consumer  
problem in Java. 

Message Passing (3) 
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Figure 2-36. The producer-consumer problem with N messages. 

Producer-Consumer Problem  
with Message Passing (1) 
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Figure 2-36. The producer-consumer problem with N messages. 

Producer-Consumer Problem  
with Message Passing (2) 
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Figure 2-37. Use of a barrier. (a) Processes approaching a barrier. 
(b) All processes but one blocked at the barrier. (c) When the 
last process arrives at the barrier, all of them are let through. 

Barriers 
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Figure 2-38. Bursts of CPU usage alternate with periods of waiting 
for I/O. (a) A CPU-bound process. (b) An I/O-bound process. 

Scheduling – Process Behavior 
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•  Batch 
•  Interactive 
•  Real time 

Categories of Scheduling Algorithms 

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639 



Figure 2-39. Some goals of the scheduling algorithm under 
different circumstances. 

Scheduling Algorithm Goals 
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•  First-come first-served 
•  Shortest job first 
•  Shortest remaining Time next 

Scheduling in Batch Systems 
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Figure 2-40. An example of shortest job first scheduling.  
(a) Running four jobs in the original order. (b) Running them 

in shortest job first order. 

Shortest Job First 
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•  Round-robin scheduling 
•  Priority scheduling 
•  Multiple queues 
•  Shortest process next 
•  Guaranteed scheduling 
•  Lottery scheduling 
•  Fair-share scheduling 

Scheduling in Interactive Systems 
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Figure 2-41. Round-robin scheduling.  
(a) The list of runnable processes. (b) The list of runnable 

processes after B uses up its quantum. 

Round-Robin Scheduling 
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Figure 2-42. A scheduling algorithm with four priority classes. 

Priority Scheduling 
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Figure 2-43. (a) Possible scheduling of user-level threads with a 
50-msec process quantum and threads that run 5 msec per 

CPU burst.  

Thread Scheduling (1) 
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Figure 2-43. (b) Possible scheduling of kernel-level threads with 
the same characteristics as (a). 

Thread Scheduling (2) 
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Figure 2-44. Lunch time in the Philosophy Department. 

Dining Philosophers Problem (1) 
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Figure 2-45. A nonsolution to the dining philosophers problem. 

Dining Philosophers Problem (2) 
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Figure 2-46. A solution to the dining philosophers problem. 

Dining Philosophers Problem (3) 
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Figure 2-46. A solution to the dining philosophers problem. 

Dining Philosophers Problem (4) 
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Figure 2-46. A solution to the dining philosophers problem. 

Dining Philosophers Problem (5) 
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Figure 2-47. A solution to the readers and writers problem. 

The Readers and Writers Problem (1) 
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Figure 2-47. A solution to the readers and writers problem. 

The Readers and Writers Problem (2) 
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