
MODERN OPERATING SYSTEMS

Third Edition

ANDREW S. TANENBAUM

Chapter 2
Processes and Threads

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-1. (a) Multiprogramming of four programs. (b) Conceptual
model of four independent, sequential processes. (c) Only

one program is active at once.

The Process Model

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Events which cause process creation:

•  System initialization.
•  Execution of a process creation system call by a

running process.
•  A user request to create a new process.
•  Initiation of a batch job.

Process Creation

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Events which cause process termination:

•  Normal exit (voluntary).
•  Error exit (voluntary).
•  Fatal error (involuntary).
•  Killed by another process (involuntary).

Process Termination

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-2. A process can be in running, blocked, or ready state.
Transitions between these states are as shown.

Process States

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-3. The lowest layer of a process-structured operating
system handles interrupts and scheduling. Above that layer

are sequential processes.

Implementation of Processes (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-4. Some of the fields of a typical process table entry.

Implementation of Processes (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-5. Skeleton of what the lowest level of the operating
system does when an interrupt occurs.

Implementation of Processes (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-6. CPU utilization as a function of the number of
processes in memory.

Modeling Multiprogramming

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-7. A word processor with three threads.

Thread Usage (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-8. A multithreaded Web server.

Thread Usage (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-9. A rough outline of the code for Fig. 2-8. (a) Dispatcher
thread. (b) Worker thread.

Thread Usage (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-10. Three ways to construct a server.

Thread Usage (4)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-11. (a) Three processes each with one thread. (b) One
process with three threads.

The Classical Thread Model (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-12. The first column lists some items shared by all
threads in a process. The second one lists some items private

to each thread.

The Classical Thread Model (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-13. Each thread has its own stack.

The Classical Thread Model (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-14. Some of the Pthreads function calls.

POSIX Threads (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-15. An example program using threads.

POSIX Threads (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Figure 2-16. (a) A user-level threads package. (b) A threads
package managed by the kernel.

Implementing Threads in User Space

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-17. Multiplexing user-level threads
onto kernel-level threads.

Hybrid Implementations

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-18. Creation of a new thread when a message arrives.
(a) Before the message arrives.
(b) After the message arrives.

Pop-Up Threads

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-19. Conflicts between threads
over the use of a global variable.

Making Single-Threaded Code
Multithreaded (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-20. Threads can have private global variables.

Making Single-Threaded Code
Multithreaded (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-21. Two processes want to access
shared memory at the same time.

Race Conditions

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Conditions required to avoid race condition:

•  No two processes may be simultaneously inside their
critical regions.

•  No assumptions may be made about speeds or the
number of CPUs.

•  No process running outside its critical region may
block other processes.

•  No process should have to wait forever to enter its
critical region.

Critical Regions (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-22. Mutual exclusion using critical regions.

Critical Regions (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Proposals for achieving mutual exclusion:

•  Disabling interrupts
•  Lock variables
•  Strict alternation
•  Peterson's solution
•  The TSL instruction

Mutual Exclusion with Busy Waiting

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-23. A proposed solution to the critical region problem.
(a) Process 0. (b) Process 1. In both cases, be sure to note

the semicolons terminating the while statements.

Strict Alternation

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-24. Peterson’s solution for achieving mutual exclusion.

Peterson's Solution

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-25. Entering and leaving a critical region
using the TSL instruction.

The TSL Instruction (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-26. Entering and leaving a critical region
using the XCHG instruction.

The TSL Instruction (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-27. The producer-consumer problem
with a fatal race condition.

The Producer-Consumer Problem

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Figure 2-28. The producer-consumer problem using semaphores.

Semaphores

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Figure 2-29. Implementation of mutex lock and mutex unlock.

Mutexes

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-30. Some of the Pthreads calls relating to mutexes.

Mutexes in Pthreads (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-31. Some of the Pthreads calls relating
to condition variables.

Mutexes in Pthreads (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-32. Using threads to solve
the producer-consumer problem.

Mutexes in Pthreads (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Figure 2-33. A monitor.

Monitors (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-34. An outline of the producer-consumer problem with
monitors.

Monitors (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-35. A solution to the producer-consumer
problem in Java.

Message Passing (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Figure 2-35. A solution to the producer-consumer
problem in Java.

Message Passing (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

. . .

Figure 2-35. A solution to the producer-consumer
problem in Java.

Message Passing (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Figure 2-36. The producer-consumer problem with N messages.

Producer-Consumer Problem
with Message Passing (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Figure 2-36. The producer-consumer problem with N messages.

Producer-Consumer Problem
with Message Passing (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Figure 2-37. Use of a barrier. (a) Processes approaching a barrier.
(b) All processes but one blocked at the barrier. (c) When the
last process arrives at the barrier, all of them are let through.

Barriers

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-38. Bursts of CPU usage alternate with periods of waiting
for I/O. (a) A CPU-bound process. (b) An I/O-bound process.

Scheduling – Process Behavior

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

•  Batch
•  Interactive
•  Real time

Categories of Scheduling Algorithms

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-39. Some goals of the scheduling algorithm under
different circumstances.

Scheduling Algorithm Goals

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

•  First-come first-served
•  Shortest job first
•  Shortest remaining Time next

Scheduling in Batch Systems

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-40. An example of shortest job first scheduling.
(a) Running four jobs in the original order. (b) Running them

in shortest job first order.

Shortest Job First

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

•  Round-robin scheduling
•  Priority scheduling
•  Multiple queues
•  Shortest process next
•  Guaranteed scheduling
•  Lottery scheduling
•  Fair-share scheduling

Scheduling in Interactive Systems

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-41. Round-robin scheduling.
(a) The list of runnable processes. (b) The list of runnable

processes after B uses up its quantum.

Round-Robin Scheduling

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-42. A scheduling algorithm with four priority classes.

Priority Scheduling

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-43. (a) Possible scheduling of user-level threads with a
50-msec process quantum and threads that run 5 msec per

CPU burst.

Thread Scheduling (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-43. (b) Possible scheduling of kernel-level threads with
the same characteristics as (a).

Thread Scheduling (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-44. Lunch time in the Philosophy Department.

Dining Philosophers Problem (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-45. A nonsolution to the dining philosophers problem.

Dining Philosophers Problem (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 2-46. A solution to the dining philosophers problem.

Dining Philosophers Problem (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Figure 2-46. A solution to the dining philosophers problem.

Dining Philosophers Problem (4)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

. . .

Figure 2-46. A solution to the dining philosophers problem.

Dining Philosophers Problem (5)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Figure 2-47. A solution to the readers and writers problem.

The Readers and Writers Problem (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

Figure 2-47. A solution to the readers and writers problem.

The Readers and Writers Problem (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

. . .

