MODERN OPERATING SYSTEMS

Third Edition
ANDREW S. TANENBAUM

Chapter 1
Introduction

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

What Is An Operating System (1)

A modern computer consists of:

One or more processors
Main memory

« Disks

Printers

« Various input/output devices

Managing all these components requires a layer of
software — the operating system

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

What Is An Operating System (2)

E-mail Music
Web reader player

‘oo

User interface program

User mode <

-
Kernel mode { Operating system

]\

} Software

> Hardware

Figure 1-1. Where the operating system fits in.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Operating System as an Extended
Machine

Application programs

- Beautiful interface

-— Ugly interface

Hardware

Figure 1-2. Operating systems turn ugly hardware into beautiful
abstractions.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Operating System as a Resource
Manager

« Allow multiple programs to run at the same time

Manage and protect memory, I/O devices, and
other resources

Includes multiplexing (sharing) resources in two
different ways:

* |n time
* |n space

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

History of Operating Systems

Generations:

* (1945-55) Vacuum Tubes

* (1955-65) Transistors and Batch Systems
* (1965-1980) ICs and Multiprogramming

* (1980—Present) Personal Computers

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Transistors and Batch Systems (1)

Tape
drive
Card

reader g

(T
1401

1401

7094

(a) (b) (©) (d) () (f)

Figure 1-3. An early batch system.
(a) Programmers bring cards to 1401.
(b)1401 reads batch of jobs onto tape.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Transistors and Batch Systems (2)

Tape
drive
Card

reader g
= O

1401

(T
1401

(a) (b) (©) (d) () (f)

Figure 1-3. (c) Operator carries input tape to 7094.
(d) 7094 does computing. (e) Operator carries output tape to
1401. (f) 1401 prints output.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Transistors and Batch Systems (4)

P /$END

_~———Data for program
/

P Fortran program //

/ $FORTRAN

AJOB, 10,6610802, MARVIN TANENBAUM /

Figure 1-4. Structure of a typical FMS job.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

|ICs and Multiprogramming

Job 3

Job 2

Job 1

Operating
system

Memory
partitions

Figure 1-5. A multiprogramming system
with three jobs in memory.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Computer Hardware Review

Monitor
Hard
Keyboard USB printer disk drive

oooon
CPU Memory vidsi ey b il ok
AR controller controller controller controller
Bus

Figure 1-6. Some of the components
of a simple personal computer.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

CPU Pipelining

Execute
unit
Fetch Decode
unit i unit
Execute
Fetch - Decode i Execute unit
unit unit unit T 5 p
etc ecode
unit = unit
Execute
unit
(a) (b)

Figure 1-7. (a) A three-stage pipeline. (b) A superscalar CPU.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Multithreaded and Multicore Chips

L1
Core1| | Core2 cache || core 1| | Core 2
L2 L2
Core 3 Core 4
L2 L2
(a) (b)

Figure 1-8. (a) A quad-core chip with a shared L2 cache.
(b) A quad-core chip with separate L2 caches.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Typical access time

Memory (1)

Typical capacity

1 nsec Registers <1 KB

2 nsec Cache 4 MB
10 nsec Main memory 512-2048 MB
10 msec Magnetic disk 200-1000 GB
100 sec Magnetic tape 400-800 GB

Figure 1-9. A typical memory hierarchy.
The numbers are very rough approximations.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Memory (2)

Questions when dealing with cache:

When to put a new item into the cache.
* Which cache line to put the new item In.

 Which item to remove from the cache when a slot
IS heeded.

Where to put a newly evicted item in the larger
memory.

Surface 7

Surface 6
Surface 5

Surface 4
Surface 3

Surface 2
Surface 1

Surface 0

T

(

Disks

Read/write head (1 per surface)

(

-

(

T

(

- L

VIVEVIV.

_>
-

Direction of arm motion

Figure 1-10. Structure of a disk drive.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

/O Devices

Disk drive

@ 4 Current instruction

I Next instruction w
CPU Interrupt Disk
controller controller 3. Return
1. Interrupt

YL
1
! \ /
2. Dispatch f
tohandler\f

Interrupt handler P

Y /)

Mw

Figure 1-11. (a) The steps in starting an |/O device and
getting an interrupt.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Buses

Cache bus Local bus Memory bus
Level 2 PCI l Main
cache CPU bridge < memory
ZAN PCl bus
<]] =
4L USB
sCS| USB Graphics
bus ISA IDE adaptor Available
; { bridge [T disk PCI slot
<£> < = Mon-
T Koy IDE bus Ii'tm
Mouse)
SCSI bus board ISA biis
¢ HENEN >
I I oo
Sound : :
Modem Printer Available
card ISA slot

Figure 1-12. The structure of a large Pentium system

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Operating System Zoo

Mainframe operating systems

Server operating systems
Multiprocessor operating systems
Personal computer operating systems
Handheld operating systems
Embedded operating systems

Sensor node operating systems
Real-time operating systems

Smart card operating systems

Operating System Concepts

Processes

Address spaces

Files

Input/Output

Protection

The shell

Ontogeny recapitulates phylogeny

* Large memories

* Protection hardware
* Disks

* Virtual memory

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Processes

Figure 1-13. A process tree. Process A created two child
processes, B and C. Process B created three child
processes, D, E, and F.

Tanenbaum, Modern Operating Systems 3 e, (¢) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Files (1)

Root directory

7 ~
Students Faculty
Vi -
/ ~
Robbert Matty { Leo Prof.Brown Prof.Green Prof. White
Y
Il 2 //
] 7/
/ il #
ry TN Y
Courses Papers Grants Committees
Vi J J \
] / \
\ i [1.
\ / \ / \
/
Y Y
@) ®)
CS101 CS105 . v / SOSP COST-11
Files

Figure 1-14. A file system for a university department.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

(@) (b)

Figure 1-15. (a) Before mounting, the files on the CD-ROM are not
accessible. (b) After mounting, they are part of the file
hierarchy.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Files (3)

Process Process
Pipe
A B

Figure 1-16. Two processes connected by a pipe.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls

Address
OxFFFFFFFF _
Return to caller 1 FBFSE
Trap to the kernel procegilure
5| Put code for read in register read
10
4
User space < Increment SP 11
~ Call read
3| Push fd User program
2| Push &buffer calling read
1| Push nbytes
6 9
—
6 7
A
Kernel space : e 8 | Sys call
(Operating system) < Slaling - “| handler

or

Figure 1-17. The 11 steps in making the system call
read(fd, buffer, nbytes).

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls for Process Management

Process management

Call Description
pid = fork() Create a child process identical to the parent
pid = waitpid(pid, &statloc, options) Wait for a child to terminate
s = execve(name, argv, environp) Replace a process’ core image
exit(status) Terminate process execution and return status

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls for File Management (1)

File management

Call Description
fd = open(file, how, ...) Open a file for reading, writing, or both
s = close(fd) Close an open file
n = read(fd, buffer, nbytes) Read data from a file into a buffer
n = write(fd, buffer, nbytes) Write data from a buffer into a file
position = Iseek(fd, offset, whence) Move the file pointer
s = stat(name, &buf) Get a file’s status information

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

System Calls for File Management (2)

Call Description
s = mkdir(name, mode) Create a new directory
s = rmdir(name) Remove an empty directory
s = link(name1, name2) Create a new entry, name2, pointing to name1
s = unlink(name) Remove a directory entry
s = mount(special, name, flag) Mount a file system
s = umount(special) Unmount a file system

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Miscellaneous System Calls

Call

Description

s = chdir(dirname)

Change the working directory

s = chmod(name, mode)

Change a file’s protection bits

s = kill(pid, signal)

Send a signal to a process

seconds = time(&seconds)

Get the elapsed time since Jan. 1, 1970

Figure 1-18. Some of the major POSIX system calls.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

A Simple Shell

#define TRUE 1

while (TRUE) { /* repeat forever */
type_prompt(); /* display prompt on the screen */
read_command(command, parameters); /* read input from terminal */
if (fork() !'=0) { /* fork off child process */
/* Parent code. */
waitpid(—1, &status, 0); /* wait for child to exit */
} else {
/* Child code. */
execve(command, parameters, 0); /* execute command */
}
}

Figure 1-19. A stripped-down shell.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Memory Layout

Address (hex)
FFFF

Stack

Data I
Text

0000

Figure 1-20. Processes have three segments:
text, data, and stack.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Linking

/usr/ast /usr/jim /usr/ast /usr/jim
16 | mail 31| bin 16 | mail 31| bin
81 | games 70 | memo 81 | games 70 | memo
40 | test 59 | 1.c. 40 | test 59 | f.c.

38 | prog1 70| note 38 | prog1
(@) (b)

Figure 1-21. (a) Two directories before linking /usr/jim/memo to
ast’s directory. (b) The same directories after linking.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Mounting

bin dev lib mnt usr b%

usr
(a) (b)

Figure 1-22. (a) File system before the mount.
(b) File system after the mount.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Windows Win32 AP

UNIX Win32 Description
fork CreateProcess Create a new process
waitpid | WaitForSingleObject| Can wait for a process to exit
execve | (none) CreateProcess = fork + execve
exit ExitProcess Terminate execution
open CreateFile Create a file or open an existing file
close CloseHandle Close a file

read ReadFile Read data from a file
write WriteFile Write data to a file

Iseek SetFilePointer Move the file pointer
stat GetFileAttributesEx | Get various file attributes
mkdir CreateDirectory Create a new directory

rmdir RemoveDirectory Remove an empty directory
link (none) Win32 does not support links
unlink DeleteFile Destroy an existing file
mount | (none) Win32 does not support mount
umount | (none) Win32 does not support mount
chdir SetCurrentDirectory | Change the current working directory
chmod | (none) Win32 does not support security (although NT does)
kill (none) Win32 does not support signals
time GetLocalTime Get the current time

Figure 1-23. The Win32 API calls that roughly correspond
to the UNIX calls of Fig. 1-18.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Operating Systems Structure

Monolithic systems — basic structure:

* A main program that invokes the requested
service procedure.

* A set of service procedures that carry out the
system calls.

« A set of utility procedures that help the service
procedures.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Monolithic Systems

#define FALSE 0
#define TRUE 1

#define N 2 /* number of processes */

int turn; /* whose turn is it? */

int interested[N]; /* all values initially O (FALSE) */

void enter_region(int process); /* process is 0 or 1 */

{
int other; /* number of the other process */
other = 1 — process; /* the opposite of process */
interested[process] = TRUE; /* show that you are interested */
turn = process; /* set flag */

while (turn == process && interested[other] == TRUE) /* null statement */ ;

}

void leave_region(int process) /* process: who is leaving */

{
}

interested[process] = FALSE; /* indicate departure from critical region */

Figure 1-24. A simple structuring model for a monolithic system.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Layered Systems

Layer Function
5 The operator
4 User programs
3 Input/output management
2 Operator-process communication
1 Memory and drum management
0 Processor allocation and multiprogramming

Figure 1-25. Structure of the THE operating system.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Microkernels

ﬂ Process

(

@ User progs.
User
\ orivers

Microkernel handles interrupts, @
processes, scheduling, IPC .

Figure 1-26. Structure of the MINIX 3 system.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Client-Server Model

Machine 1 Machine 2 Machine 3 Machine 4
Client ? L File server Process server Terminal server
LRI Kernel Kernel Kernel Kernel .
\ Network

Message from
client to server

Figure 1-27. The client-server model over a network.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Virtual Machines (1)

Virtual 370s

System calls here

I/O instructions here

Trap here — > VM/370

Trap here

370 Bare hardware

Figure 1-28. The structure of VM/370 with CMS.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Virtual Machines (2)

Guest OS process

Excel Word Mplayer Apollon Host OS
é é O O process

Guest OS
Type 2 hypervisor O
Type 1 hypervisor Host operating system

(a) (b)

Windows

Figure 1-29. (a) Atype 1 hypervisor. (b) A type 2 hypervisor.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The World According to C

 The C language

* Header files

« Large programming projects
 The model of run time

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

The Model of Run Time

@ mac.h @ help.c @

C
preprocesor

Y

Cc
compiler

main.o @ other.o

linker
Executable
@ binary program

Figure 1-30. The process of compiling C and header files to
make an executable.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

