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a b s t r a c t

Two of the major concerns in 3D stacked technology are heat removal and power density distribution.

In our work, we propose a novel 3D thermal-aware floorplanner. Our contributions include:

1. A novel multi-objective formulation to consider the thermal and performance constraints in the

optimization approach.

2. Two efficient Multi-Objective Evolutionary Algorithm (MOEA) for the representation of the floor-

planning model and for the optimization of thermal parameters and wire length.

3. A smooth integration of the MOEA model with an accurate thermal modeling of the architecture.
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The experimental work is conducted for two realistic many-core single-chip architectures: an homo-

geneous system resembling INTEL’s SCC, and an improved heterogeneous setup. The results show

promising improvements of the mean and peak temperature, as well as the thermal gradient, with a

reduced overhead in the wire length of the system.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Computer architectures are experiencing a performance barrier
given by Patterson’s [1] problem, formulated as follows: The power
wallþthe memory wallþthe ILP wall¼a brick wall for serial perfor-
mance. This can be understood like the limit in materials and
architectures to provide increasing throughput. Therefore, computer
architects have been forced to turn to parallel architectures to
continue to make progress. Parallelism can be exploited by using
the additional transistors (forecasted by Moore’s law) to add more
independent CPUs, data-parallel execution units, additional registers
sets for hardware threads, bigger caches, and more independent
memory controllers to increase memory bandwidth.

Nowadays heterogeneous many-core systems are being imple-
mented and they present a unique opportunity to improve
(sometimes in some orders of magnitude) the performance of
the architecture. This is achieved by increasing the high perfor-
mance algorithms to specifically tailored architectures. Special
HPC applications like N-Body Simulations, Molecular Dynamics,
and Terrain Rendering [2] can experience order of magnitude
or greater speedups when compared with architectures that are
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specifically tailored to their needs. Similar examples from the HPC
community include the Los Alamos National Labs Roadrunner
system [3].

This trend on executing the target applications in many parallel
cores is not only one of the characteristics of the current data-
centers but also multi-processor systems-on-chip (MPSoCs). These
systems have reached the category of many-core systems. Intel Labs
has created an experimental Single-chip Cloud Computer, (SCC)
a research microprocessor containing the most Intel Architecture
cores ever integrated on a silicon CPU chip, with 48 cores. [4] It
incorporates technologies intended to scale multi-core processors to
100 cores and beyond, such as an on-chip network, advanced power
management technologies and support for message-passing.

However, the exponentially increasing power densities that
are being reached in current technologies, and taking into account
the values of leakage currents, the cooling cost of the systems and
the reliability constraints in microprocessor-based systems, are a
major problem in terms of temperature. The operating tempera-
ture has a significant impact on microprocessor design. At higher
temperatures, transistors work slower due to the degradation of
the carrier mobility. The resistivity of the metal interconnects
also increases, causing longer delays and, therefore, performance
degradation [5].

Also, leakage power consumption is comparable to dynamic
power consumption in sub-micron technologies. Leakage power is
highly dependent on temperature and the efficient management of
chip heat dissipation will alleviate the effect of the leakage.

Reliability is also strongly related to temperature, and increas-
ing the temperature will exponentially decrease the lifetime of
the chip. The time to failure has been shown to be a function of
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e�Ea=kT , where Ea is the activation energy of the failure mechanism
being accelerated by the increased temperature, k is the
Boltzmann’s constant, and T is the absolute temperature. When
the operating temperature exceeds a threshold, the effect on
reliability can be permanent and catastrophic, impacting on the
lifetime. Each 10 degrees rise reduces the life of the component
by a 50%.

Taking this important fact into account, it is much more
preferable to keep the components as cool as possible for max-
imum reliability. However, the absolute temperature of the chip
is not the only factor that affects performance; moreover, the
thermal gradients that appear on the chip surface degrade the
system reliability by creating dangerous electro-migrations.

In order to maintain the chip temperature under a certain
limit, the power density of the hardware modules can be
decremented by increasing the chip area. However, this is not
admissible in terms of cost, and the problem of meeting all the
geometric constraints should be solved.

Orthogonal to the power density of the functional blocks,
another important factor that affects the temperature distribution
of the chip is the lateral spreading of heat in silicon. This
characteristic depends on the placement of the functional units
in the chip. This placement must take as guidelines the proximity
of the functional units to the chip border, and the proximity of
other units that behave as thermal sinks or thermal sources.

Thermal-aware floorplanning algorithms are able to even out
the temperature of the hardware modules through spreading of
the heat dissipation. This aspect of floorplanning is particularly
attractive in comparison with static external cooling, that reduces
the temperature of the chip surface by a constant factor (it does
not reduce the temperature gradient across the chip).

Three-dimensional (3D) multi-processor chips have been pro-
posed as an effective mechanism to improve the performance of the
system by reducing interconnect delays and increasing the density
of the logic, making the idea of ‘‘many-core single-chip’’ into a
reality. This revolutionary idea allows the integration of multiple
and disparate technologies, such as radio frequency and mixed
signal components, with traditional computing technologies.

A major concern in the adoption of 3D architectures is the
increased power densities that can result from placing one compu-
tational block over another in the multi-layered 3D stack. Also, the
thermal conductivity of the dielectric layers inserted between device
layers for insulation is very low compared to silicon and metal. Since
power densities are already a major concern in 2D architectures, the
move to 3D architectures will accentuate the thermal problem.
Consequently, it is mandatory to devise efficient 3D floorplanning
mechanisms that optimize the thermal profile of these complex 3D
multi-processor architectures.

This work continues the initiated in [6] that proposes a set
of design rules for the generation of thermal-aware floorplans
for the 3D Niagara architecture. This previous work obtained
improvements of the thermal metrics with respect to the baseline
architecture and compared to traditional thermal-aware floor-
planner. The work presented in this paper outperforms this
results with a MOEA formulation and an efficient solver that
manages multiple objectives in the minimization problem, as well
as considering a many-core heterogeneous single-chip for the
experimental purposes.

This paper specifically makes the following contributions:
1.
 It provides a novel multi-objective formulation of the floor-
planning problem in 3D multi-processor architectures with
thermal constraints.
2.
 It performs an efficient resolution of the optimization problem
by the use of a Multi-Objective Evolutionary Algorithm (MOEA)
framework.
3.
 It shows good response in terms of the main thermal metrics
(mean temperature, peak temperature and thermal gradient)
for a many-core homogeneous and heterogeneous single-chip
architecture that resembles the Intel’s SCC.

2. Related work

Floorplanning is one of the most important solutions to
address the problem of thermal impact. This impact is thermically
analyzed in real microprocessor-based systems in [7] where the
placement of components for Alpha and Pentium Pro is evaluated.
Some initial works on thermal aware floorplanning [8] propose
a combinatorial optimization problem to model our problem.
However, the simplification of the considered floorplan and the
lack of a real experimental framework motivated the further
research on the area. Thermal placement for standard cell ASICs is
a well researched area in the VLSI CAD community, where we can
find works as [9].

In the area of floorplanning for microprocessor-based systems,
some authors consider the problem at the microarchitectural
level [10], where it is shown that significant peak temperature
reduction can be achieved by managing lateral heat spreading
through floorplanning. Other works [11] use genetic algorithms to
demonstrate how to decrease the peak temperature while gen-
erating floorplans with area comparable to that achieved by
traditional techniques. Han and Koren [12] use a simulated
annealing algorithm and an interconnect model to achieve ther-
mal optimization. These works have a major restriction since they
do not consider multiple objective factors in the optimization
problem, as opposed to our work. Our floorplanner will optimize
jointly both thermal metrics (mean temperature, peak tempera-
ture and gradient) with a strong impact on the reliability of the
system, and the performance of the system (through the mini-
mization of the wire length delay). Moreover, the thermal models
used in these studies do not reflect the complex diffusion
processes that exist in current technologies. More recent works
[13] have tackled the problem of thermal-aware floorplanning
with geometric programming but, in this case, the area of the chip
is not considered constant.

Thermal-aware floorplanning for 3D stacked systems has also
been investigated. Cong et al. [14] proposed a thermal-driven
floorplanning algorithm for 3D ICs, which is a natural extension of
his previous work on 2D. In [15], Healy et al. implemented a
multi-objective floorplanning algorithm for 2D and 3D ICs, com-
bining linear programming and simulated annealing. Some other
authors [16] have also considered the placement of thermal vias
in these 3D stacks to optimize the thermal profile of ICs.

Our work has more similarities with the reference [17] carried
out by Hung, where a thermal-aware floorplanner for 3D archi-
tectures is proposed. However, this study does not consider the
important fact that the problem must be considered as a multi-
objective problem, as we propose in our work, and it does not
consider the minimization of those thermal variables with a
strong impact on the reliability of the system.

Thus, an efficient model of the optimization problem and an
effective solver are required to achieve good tradeoff between
thermal optimization and performance constrains. In the case of
3D IC design, incremental optimization is a promising way to
handle multi-objective optimization with complicated constraints
and facilitate the design reuse technology. Several works con-
cerned with incremental floorplanning for 2D IC design [18–21]
have been proposed, but none has been proposed, and none has
taken thermal-aware 3D IC design into consideration. Li and Hong
[22] have recently proposed an incremental MILP algorithm.
However the design process could take several iterations, whereas
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our methodology perform the thermal-aware and total wire length
optimization in two steps.

In this work, we propose a novel algorithm to thermally
optimize the 3D layout. It will eliminate hotspots, reduce the
peak and mean temperature and decrease the reliability risks
associated with temperature. Given a 3D package and a chip area,
we study the thermal-aware problem and we formulate the total
wire length problem with two different genetic algorithms. The
first one places the functional units throughout the chip according
to their power densities trying to minimize temperature para-
meters. The second algorithms places the communication units in
strategic points in order to minimize wire length. Experimental
results show that we can reduce the maximum on-chip tempera-
ture in 801 in the best case, for two realistic homogeneous and
heterogeneous many-core single-chip architectures, outperform-
ing previous thermal-aware floorplan designs.
Fig. 1. MOEA operators: tournament selection, cycle crossover and two mutation

operators (swap or resize). (a) Tournament selection, (b) cycle crossover and

(c) swap mutation or rotation.
3. Floorplanner

The optimization phase of our floorplanner is carried out by a
Multi-Objective Evolutionary Algorithm (MOEA). We will briefly
explain in the following the main characteristics of a MOEA
algorithm and why it is the best strategy to solve the floorplan
optimization.

Most of the algorithms presented for the 3D thermal aware
floorplanning problem are based on a Mixed Integer Linear
Program (MILP) [15,23], Simulated Annealing (SA) [14,15] or
Genetic Algorithm (GA) [24]. MILP has proven to be an efficient
solution. However, when MILP is used for thermal aware floor-
planning, the (linear) thermal model must be added to the
topological relations and the resultant algorithm becomes too
complex [25], specially as the problem size (number of cores, in
our case) increases. Regarding SA and GA, the main problem
is based on the representation of the solution. Some common
representations are polish notation [26], combined bucket array
[14] and O-tree [24]. Most of these representations do not
perform well, because they were initially developed to reduce
area. However our problem is not focused on area optimization
because in 3D MPSoCs every layer must have the same area. In
the thermal aware floorplanning problem, hottest elements must
be placed as far as possible in the 3DIC. In this work, we have
developed a straightforward MOEA based on NSGA-II [27], which
tries to minimize maximum temperature and total wire length
while still fulfills all the topological constraints.

MOEAs are stochastic optimization heuristics where the
exploration of the solution space of a certain problem is carried
out by imitating the population genetics stated in Darwin’s theory
of evolution. Selection, crossover and mutation operators, derived
directly from natural evolution mechanisms, are applied to a
population of solutions, thus favoring the birth and survival of the
best solutions. These steps can be seen in Fig. 1. MOEAs have been
successfully applied to many NP-hard combinatorial optimization
problems. MOEAs encode potential solutions (individuals) to
a problem with strings (chromosomes), and combine their codes
and, hence, their properties. In order to apply MOEAs to a
problem, a genetic representation of each individual has first to
be found. Furthermore, an initial population has to be created, as
well as defining a cost function to measure the fitness of each
solution.

As a second step, we need to design the genetic operators that
will allow us to produce a new population of thermal-aware
floorplaning solutions from a previous one, by capturing the inter-
dependencies of the different topological constraints working con-
currently. Then, by iteratively applying the genetic operators to
the current population, the fitness of the best individuals in the
population converges to targeted solutions, according to the metric/s
to be optimized and the weight of each of them. For an overview
of MOEAs the reader is referred to [28].
4. Genetic representation and operators

The chip is split into small blocks as we will see then in Section
5. Every block i in the model Biði¼ 1;2, . . . ,nÞ is characterized by a
width wi, a height hi and a length li while the design volume has a
maximum width W, maximum height H, and maximum length L.
We define the vector ðxi,yi,ziÞ as the geometrical location of
block Bi, where 0rxirL�li, 0ryirW�wi, 0rzirL�hi. We use
ðxi,yi,ziÞ to denote the left-bottom-back coordinate of block Bi

while we assume that the coordinate of left-bottom-back corner
of the resultant IC is (0, 0, 0).

In order to apply a MOEA correctly we need to define a genetic
representation of the design space of all the possible floorplann-
ing alternatives. Moreover, to be able to apply the NSGA-II
optimization process and cover all possible interdependencies
of the topological constraints, we must guarantee that all the
chromosomes, which are the codification of our final floorplan,
represent real and feasible solutions to the problem and ensure
that the search space is covered in a continuous and optimal way.
To this end, we use a permutation encoding [28], where every
chromosome is a string of labels, that represents a position in a
sequence. Fig. 1 depicts the three genetic operators used in our
MOEA on a floorplanning problem. A chromosome in Fig. 1 is
formed by four cores Ci (i¼1, 2, 3, 4) and four memories Li (i¼1,
2, 3,4).

In every cycle of the optimization process (called generation)
two chromosomes are selected by tournament (Fig. 1(a). To this
end, we select two random chromosomes from the whole popula-
tion and we select the best of these. This task is repeated twice
in order to obtain two chromosomes (called parents). Next, as
Fig. 1(b) depicts, we apply the cycle crossover: starting with the
first allele of chromosome A (C1), we look at the allele at the same
position in chromosome B. Next, we go to the position with the
same allele in A, and add this allele to the cycle. Then, we repeat
the previous step until we arrive at the first allele of A. Finally, we
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put the alleles of the cycle in the first child on the positions they
have in the first parent, and take next cycle from the second
parent. As can be seen in Fig. 1(b), dark squares are unchanged
blocks from the parents and gray squares represent when the
children are swapped. Finally, mutation can be executed in two
different ways, both with the same probability (see Fig. 1(c). As a
result, some blocks are chosen and swapped as it happens with C2

and L1 in the first child, and others are rotated 901, as it happens
in C2 in the second child where the length (l) and width (w) of the
block are changed.
4.1. Fitness function

Each chromosome represents the order in which the blocks are
being placed in the design area. Every block Bi is placed taking
into account all the topological constraints, the total wire length,
and the maximum temperature in the chip with respect to all the
previously placed blocks Bj : jo i. In order to place a block i, we
take the best point ðxi,yi,ziÞ in the remaining free positions.
To select the best point we establish a dominance relation
taking into account the following objectives in our multi-objec-
tive evaluation.

The first objective is determined by the topological relations
among placed blocks. It represents the number of topological
constraints violated (no overlapping between placed blocks and
current area less or equal than maximum area).

The second objective is the wire length. The wire length is
approximated as the Manhattan distance between interconnected
blocks.

The third objective is a measure of the thermal impact, based
on the power consumption. To compute the thermal impact for
every power consumption we cannot use an accurate thermal
model, which includes non-linear and differential equations. In a
classical thermal model, the temperature of a unitary cell of the
chip, depends not only on the power density dissipated by the cell
but also on the power density of its neighbors. The first factor
refers to the increase in the thermal energy due to the activity of
the element, while the second one is related to the diffusion
process of heat [29]. Taking this into account, we use the power
density of each block as an approximation of its temperature in
the steady state. This is a valid approximation because the main
term of the temperature of a cell is given by the power dissipated
in the cell, the contribution of its neighbors does not change
significantly the thermal behavior. This approximation is then
considered in the optimization process and many calls to the
thermal simulator are saved, improving the performance of the
optimization loop and its execution time. Thus, our remaining
objectives can be formulated as:

J3 ¼
X

io jA1: :n

ðdpindpjÞ=ðdijÞ ð1Þ

where dpi is the power density of block i, and dij is the Euclidean
distance between blocks i and j.
Fig. 2. Chromosom
4.2. TSV Optimization

The last step of our optimization flow is to minimize the wire
length in the process of placing TSVs. Technologically, TSVs
can only connect two layers. In our work, we have considered
connections from the top layer to any other one. In this way inter-
layer communication is centralized in the top layer, because every
layer in the stack is connected with the top one. This solution
simplifies the wire routing and the technology processes cur-
rently available for TSV integration in 3D chips. The placement of
the TSVs is optimized by another multi-objective genetic algo-
rithm. The problem of placement TSVs in the remaining free cells
requires a previous analysis of free available vertical cells.

Next, we describe the chromosome encoding depicted in Fig. 2.
Our first MOEA has already placed the functional units in the first
phase, we examine the remaining free cells in the resultant stack
and build an array of x-y coordinates of allowed TSVs. Given a
3D IC with N layers, a first region of this array contains the
coordinates of TSVs connecting layers Top and 1, a second region
contains the coordinates of TSVs connecting layers Top and 2, and
so forth. If the total number of allowed TSVs is M, we next build a
chromosome of M0–1 variables. If 1, a TSV is inserted in the
corresponding (x,y) position (and it connects the number of layers
defined in the corresponding region). In this way, Fig. 2 encodes
seven TSVs in four layers (N¼4): one TSV connecting layers 4
and 1, two TSVs connecting layers 4 and 2, and four TSVs
connecting layers 4 and 3. The corresponding (x,y) coordinates
are stored in the array of coordinates. The larger the number of
TSVs, the shorter the total wire length.

Using this representation, we run the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [27].

The algorithm returns a set of solutions, considering the
number of TSVs and the total wire length. This makes a Pareto
front approximation, and it will be the designer who has to select
the optimal solution in terms of economic cost and wire length
reduction, considering that a minimum number of TSVs must be
included in the design in order to fulfill communication con-
straints. The minimum number of TSVs is calculated considering
the communication bandwidth among cores. We have calcu-
lated the data that is transferred considering an FM modulation/
demodulation application as the one explained in [30]. The
maximum number of TSVs is given by the technological para-
meters of the TSVs and the amount of data that is transferred [31].
5. Thermal model

Once the optimization process has proposed a set of optimized
floorplans, these floorplans have to be thermally analyzed by
an accurate thermal model which is briefly described in the
following.

3D integration consists of placing different active layers
with silicon dioxide and joining them with epoxy which works
as a glue material. As inter-layer communication is mandatory,
e description.
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Through Silicon Vias (TSVs) must be deployed in the stack to
allow it.

Some of the goals on the design of 3D stacks are to achieve a
reduction in area and also to decrease the length of the inter-
connections, that would be translated into a decrease in the data
transfer time and the power consumption.

The 3D stack is built over an adiabatic PCB surface and then,
traditional technological dies composed by silicon dioxide and
silicon, are placed one over the others.

The heat flow through the 3D stack is diffusive, hence, it can be
characterized with a 3D RC thermal model as the one presented
in [32].

In order to model the thermal distribution in the stack, the
chip must be split into small cubic unitary cells. These cells are
modeled with six thermal resistances and one thermal capaci-
tance as can be seen in Fig. 3. The resistances in the same layer
connect the cubic cell with its neighbors and the remaining two
resistances connect the cell with the upper and bottom cell.
The capacitance represents self heat storage.

The values of the conductances and the capacitance are
calculated using these mathematical expressions:

Gtop=bottom ¼ kthðl �wÞ=ðh=2Þ ð2Þ

Gnorth=south ¼ kthðl �wÞ=ðh=2Þ ð3Þ

Geast=west ¼ kthðl �wÞ=ðh=2Þ ð4Þ

Ctop ¼ scthðl �w � hÞ ð5Þ

where north, south, east and west indicate the direction in which
heat is diffused; kth and scth are the thermal conductivity and
specific heat capacity per volume unit of the material, respectively.

The model also considers the heat diffusion to the surrounding
environment. Tuning the resistance and capacitance values of the
cells in the border of the stack different chip packages can be
modeled.

As the PCB base is considered to be adiabatic, no heat transfer
occurs in the bottom direction of the first layer. The vertical
diffusion that occurs inside the chip depends on the thermal
characteristics of the interface material. This material is modeled
as an epoxy layer, a pure resistant material. The existence of TSVs
is considered in the model also as a pure resistance element. The
most important thermal properties of the material used in the
model are listed in Table 1.
Fig. 3. Equivalent RC circuit of a single cell.

Table 1
Thermal properties of materials.

Si linear thermal conductivity 295 W/(mK)

Si quadratic thermal conductivity �0.491 W/(mK2)

SiO2 thermal conductivity 1:38 W=ðmmKÞ

Si specific heat 1.628�106 J/m3 K

SiO2 specific heat 4.180�106 J/m3 K
With the values calculated a equation system describing
the RC grid is created. After that, an iterative solving method
(Forward Euler) is applied.

The functional units can be classified as heat sources or heat
sinks. Processor are considered to be strong heat sources because
they dissipate power in the die, which is then spread throughout
the chip. On the other hand memories, which a have a lower
activity and dissipate much less power, can be considered almost
as heat sinks. This is an important consideration to be taken into
account since the floorplanner will try to place both heat sinks
and heat sources as close as possible (provided the routing and
performance constraints) to balance the thermal profile.

Once the previous model has been applied to the 3DIC, we obtain
mean and peak temperatures, as well as the thermal gradient.

In the following, we will define the experimental setup,
showing the floorplans that will be thermally analyzed and
compared with the results obtained by our floorplanner.
6. Experimental Setup

Intel’s SCC is the base architecture for our many-core system
architecture and the proposed ideas developed in the experi-
mental work. This architecture has been modified to include
SPARC cores, like the ones in the Niagara architecture, fabricated
in 90 nm and 40 nm technology and whose power density exhibit
higher thermal issues than Power cores found in SCC.

The architecture has been also modified in order to include an
increased number of cores which are placed in several layers of
the 3D stack. Since our floorplanner can place a variable number
of cores in every layer, the area and power consumption of the
crossbar is scaled accordingly to the number of cores found in
every layer and their required bandwidth. The inter-layer com-
munication is resolved with a set of TSVs that route the commu-
nication signals from the top to the other layers.

As we have seen in the previous section, the floorplanner will
place the functional units that compose the 3D multi-processor
architecture minimizing both, temperature and wire length. The
area is set from the beginning of the optimization, and it is the
original distribution the one that sets the area of the optimization.
The thermal results obtained by our floorplanner will be com-
pared with the stacks composed by these two original layers,
based on Niagara 2 and Niagara 3, presented in Fig. 4. These two
layers are disposed in order to build a 48, 64 and 128 core system.
The cores (C) are disposed in 4, 5 and 9 layers respectively, also
the L2 memories (L2), the shared memories (L2B) and the cross-
bar (Crossbar) can be seen. The original stack with 16 cores in two
layers is based on the original Niagara 2 architecture.

Our experimental work will be focused on the analysis of the
thermal optimization achieved by the floorplanner in two different
scenarios. The first scenario resembles the SCC architecture with a
system where 16, 48, 64 and 128 SPARC cores are integrated in the
3D stack.

The second scenario consists of an heterogeneous system where
the same number of cores are deployed. The heterogeneous system
Fig. 4. Original floorplans.
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is composed by SPARC and Power6 cores, with a ratio of 3/1. This
setup will show the optimized thermal profile that can be expected
when multiple core architectures are considered, as well as the extra
optimization opportunities that the floorplanner will find.

On the other hand genetic algorithms are configured with
different parameters. For the first algorithm, the one in charge of
placing the functional units, crossover probability is set to 0.90
and the mutation probability is set to 1/number of blocks as
recommended in [27].

The algorithm which optimizes TSVs deployment is configured
with a maximum population of 100, and a maximum number
of 250 generations. The probability of mutation is set depending
on the number of variables; in this particular case, it is the
inverse of the number of available points in the plane. Then,
we set a single point crossover with a probability of 0.9 and
the tournament selection method, following the guidelines given
in [27].
7. Results

This section firstly presents the thermal profile of the two
scenarios described in Section 6 calculated by the thermal model.

The metrics considered for the analysis of the experimental
results are the wire length, mean and maximum temperature of
the layer, and the maximum thermal gradient. These metrics are
usually found in all the thermal-related analysis.

Then, these results will be compared with the thermal profiles
exhibited by the outputs of the floorplanner.

The worst case operation environment for power consumption
in the Niagara 2 (84 W at 1.1 V and 1.4 GHz [33]) and Niagara 3
(139 W) is considered to extract the power densities of every
SPARC unit. Also, the area of the layers has been scaled accord-
ingly to the number of cores and the number of layers is also
increased. For the Power 6 cores, the power dissipated by the unit
is found in [34] and equal to 2.6 W.
Fig. 5. Thermal maps of the original
7.1. Scenario 1, homogeneous distribution

This first scenario presents the results for 16, 48, 64 and 128
cores for the homogeneous case.

Figs. 6–9 shows the thermal maps for the simulation of the
homogeneous system. Black spots in the figures show the position
of the TSVs. The previously defined thermal metrics, the mean
temperature, thermal gradient and maximum temperature for
every layer of the configuration, have been calculated. The com-
parison with the baseline homogeneous system (48 core original
system depicted in Fig. 5) shows that the floorplanner is capable
of optimizing the maximum temperature in 601, the mean
temperature in 14 and the thermal gradient is decreased in 75
in the best case.

This can be explained because our floorplanner spaces heat
sources (cores) as much as possible, trying to place them at the
border of the chip, helping on the cooling down of the cores. The
floorplanner also takes into account vertical heat spread, and each
layer will have a different layout, avoiding placing heat sources
one over the other. As can be seen in the optimized floorplans the
cores are mainly placed in the first and last layer, leaving inner
layers with heat sinks. Using this approach heat is spread equally
in all the chip achieving big reductions in main and maximum
temperature, as well as a decrease in the thermal gradient.

Also, as shown in Table 2, the deviation of temperatures is
clearly reduced in both scenarios. This reduction determines a
more homogeneous thermal distribution, which is translated into
a reduced reliability risk and diminished leakage currents.
7.2. Scenario 2, heterogeneous distribution

The second scenario presents the same results for the hetero-
geneous case. These results for 16, 48, 64 and 128 cores can be
seen in Figs. 10–13 respectively.

Similarly to the previous setup, the mean temperature,
thermal gradient and maximum temperature for every layer of
48-core homogeneous system.



Fig. 7. Thermal maps of the optimized 48-core homogeneous system.

Fig. 6. Thermal maps of the optimized 16-core homogeneous system.
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the configuration have been calculated. The comparison with the
baseline heterogeneous system shows that the floorplanner is
capable of optimizing the maximum temperature in 801, the
mean temperature in 14 and the thermal gradient is decreased
in 85, again for the best case. Also, the heterogeneous architecture
outperforms the results of the homogeneous system in 211 for the
maximum temperature, 14 for the mean temperature and 18 for
the thermal gradient in the case of the 128 cores, where the
differences are better appreciated.

In this case, our floorplanner will try again to maximize the
distance between the heat sources. However, the Power cores will
not be considered as heat sources anymore by the optimizer since
their temperature is much lower than the SPARC’s temperature.
Therefore, the floorplanner will place the warm Power cores
between actual hotspots, achieving a better thermal profile.

Also, as shown in Table 2, the reduced deviation of tempera-
tures across the layers determines a more homogeneous thermal
distribution, which is translated into a reduced reliability risk and
diminished leakage currents.

The optimization of the placement of the TSVs is carried
out using a multi-objective genetic algorithm as explained in
Section 3.

The algorithm gives the designer a Pareto front approximation
with the number of TSVs and chip wire length. As was said, it will



Fig. 8. Thermal maps of the optimized 64-core homogeneous system.

Fig. 9. Thermal maps of the optimized 128-core homogeneous system.
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be the designer who will choose which solution is more con-
venient in every case, depending on the economic cost and
technological issues.
Fig. 14(a)–(d) shows the Pareto front approximation for the
optimized homogeneous case. As can be seen in the figures, the
tendency is like a negative exponential.
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Every thermal improvement entails an overhead in the per-
formance of the IC because of communication delays caused by
the increase in wire length, however, this overhead in the wiring
is not directly translated into an increase in the communication
Table 2
Thermal deviation (K).

Scenario 16 cores 48 cores 64 cores 128 cores

S.1 Original 15.10 21.58 24.70 38.67

S.1 Floorplanner 11.06 10.72 14.34 41.45

S.2 Original 28.65 18.71 21.22 29.81

S.2 Floorplanner 14.61 8.98 15.41 21.15

Fig. 10. Thermal maps of the optimize

Fig. 11. Thermal maps of the optimize
delay because core-to-core communication is regulated by the
crossbar. As the crossbar is the module that limits the bandwidth
and speed of the link, this overhead is seen diminished. On the
other hand, the big savings reached in the maximum temperature
(65 K and 80 K for the Scenario 1 and 2, respectively) justify the
overhead in wiring.

Table 3 shows the wirelength associated with the 3D system
when the minimum number of needed TSVs is chosen. As can be
seen, the overhead incurred by the floorplanner in the worst case
scenario (128 cores) has been a 63% when compared to the
original homogeneous distribution and 51% for the heterogeneous
system.

MOEA optimization is a real fast method for multi-objective
problems. Table 4 shows the execution time of the algorithm.
d 16-core heterogeneous system.

d 48-core heterogeneous system.



Fig. 12. Thermal maps of the optimized 64-core heterogeneous system.

Fig. 13. Thermal maps of the optimized 128-core heterogeneous system.

D. Cuesta et al. / INTEGRATION, the VLSI journal 46 (2013) 10–21 19
Execution time is not a critical metric in our work. Since the
optimization is done in the design phase of the stack, some time
can be invested in order to decrease further costs. Our optimiza-
tions have been run in a Intel Core2 Quad CPU Q8300 @ 2.50 GHz.
8. Conclusions

This work has proposed a novel and an effective MOEA formu-
lation to cope with the problem of thermal-aware floorplanning



Fig. 14. Pareto front approximation for 16, 48, 64 and 128-core systems. (a) 16-core

system. (b) 48-core system. (c) 128-core system.

Table 3
Wire Length (mm).

Scenario 16 cores 48 cores 64 cores 128 cores

S.1 Original 329 794 1481 3314

S.1 Floorplanner 399 1116 1830 5336

S.2 Original 338 796 1481 3314

S.2 Floorplanner 361 1265 1567 5546

Table 4
Execution Time (s).

16 cores 48 cores 64 cores 128 cores

3200 13,000 31,000 258,100
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in 3D many-core single-chips. This floorplanner provides the
optimization of the floorplan and it interfaces with an accurate
thermal model, which calculates the promising results in the
minimization of the main thermal and reliability metrics (peak
and mean temperature, thermal gradients) with low performance
overhead. The experimental results have been obtained for two
realistic many-core single-chip architectures: an homogeneous
system resembling INTEL’s SCC, and an improved heterogeneous
setup. These results outperform previous results obtained by
traditional thermal-aware floorplanners which used traditional
techniques such as MILP formulation or Simulated Annealing.
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