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The introduction of 3D chip architectures is an increasingly attractive integration solution due to the

potential performance improvement, power consumption reduction and heterogeneous integration.

Nevertheless, thermal distribution, evacuation and limitation constitute some of the key issues that can

hinder widespread adoption of 3D integration technology. Efficient 3D floorplan algorithms have to be

developed to address such complexity. In this paper we first discuss the implementation of such an

algorithm and identify parameters that play a role in the solution quality. We then propose the use of a

genetic algorithm to discover sets of parameters that guarantee good floorplan quality. Then, we

present an improved thermal-aware floorplanner based on a new formulation of the cost function that

minimizes not only peak temperature, but also thermal gradients. The temperature minimization goal

is reinforced using a smart heuristic that guides 3D moves in the direction of placing power hungry

blocks next to the heat sink. Experimental results show the ability of the method to reduce the

temperature peak and gradient significantly, while maintaining area, wirelength and computation time.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction and related work

Three-dimensional integration, where multiple device layers
are vertically stacked and interconnected, is perceived as a
solution to scale the performance of electronic devices beyond
Moore’s law. It provides means to drastically decrease intercon-
nect length, which directly results in increased speed [1,2], and to
combine various technologies (digital, analog, memory, etc.) [3]
and physical domains [4] in a single product, thereby greatly
extending the capabilities of systems-on-chip (SoC). Other inter-
esting characteristics such as low power consumption and high
performance are expected from 3D integration, and make this
solution a good candidate for a wide range of applications
(medical, automotive, communication, wireless, etc.) [5].

However, these benefits come at a price: testing becomes
difficult [6], yield can decrease rapidly with the number of layers
in the stack [7], while the design space grows exponentially
with the number of layers. Another major concern is the heat
evacuation problem [8]. Indeed, when stacking two 100 W/cm2

microprocessors, the net power density becomes 200 W/cm2,
which is beyond the heat removal capacity of currently avai-
lable air-cooled heat sinks. Therefore, inter-layer micro channel
ll rights reserved.
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cooling [9] is proposed as an alternative for these high perfor-
mances applications.

In a 3D–IC design flow, we identify three main approaches
to reduce on-chip temperature: (i) thermal-aware floorplanning,
(ii) thermal via insertion and (iii) package and heat sink design.
While both (ii) and (iii) have been proved to help heat dissipation
[10–13], they require additional silicon area and external compo-
nents (fan, pump, etc.), respectively. Thus, to be cost effective, the
use of these latter solutions should be limited by tackling the heat
problem during floorplanning.

Thermal-aware floorplanners have already been presented by
multiple authors, all of them minimizing a weighted sum of area,
wirelength and peak temperature. Zhou et al. [14] use an analy-
tical method, where temperature is a force repelling blocks from
clustering. Cong et al. [15] use the simulated annealing heuristic
(SA) to solve the minimization problem and introduce a fast
method to compute temperature. In [16], the authors also use SA,
but suggest a two-phase algorithm where temperature is only
minimized in the second stage.

In this work, we propose to address several issues to facilitate
the implementation and improve the performance of thermal
aware floorplanners. First, we consider the process of tuning
the floorplan algorithm. Indeed, even if some floorplanners use
analytical methods, an overwhelming number rely on the simu-
lated annealing (SA) heuristic to determine the best floorplan.
This heuristic (as with all optimization algorithms) needs to
be tuned to the specific problem to allow a fast and efficient
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Fig. 1. Workflow of the floorplan algorithm and the meta-optimization.
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convergence to a global minimum. This tedious task is generally
not discussed, and most attention is devoted to the other crucial
aspect, the cost function. We propose techniques to improve the
floorplan quality on both aspects in the following ways:
�
 We use a multi-objective optimization based on Genetic Algo-
rithms (GA) to find the tuning parameters for a 3D–IC floor-
planner. This meta-optimization is performed offline (Fig. 1) on a
limited set of benchmarks and generates the default parameters
to be used on all other problems.

�
 We propose a new cost function formulation that allows

Through Silicon Via (TSV) dimensions to be taken into account.
Indeed most other approaches consider the TSV count in the
floorplan without including its impact on the total area. Here,
we include the area and height of the 3D-via directly into the
footprint and wirelength computation, providing means to
better evaluate the tradeoffs of using such interconnection.

Second, we propose to increase the capabilities of thermal-
aware floorplanners in two ways:
�
 By using a relevant formulation of the optimization problem to
reduce peak temperature as well as thermal gradients while
maintaining a good tradeoff in area and wirelength.

�
 By adding a smart heuristic that will help the floorplan search

algorithm to converge to thermally efficient solutions.

The remainder of this paper is organized as follows. Section 2
is dedicated to the implementation of the floorplan algorithm,
discussing the cost function, the floorplan representation and
the critical parameters of the SA heuristic. Section III details our
meta-optimization approach. Section IV provides a background on
the temperature minimization problem identifying key elements
and pitfalls. Our proposed methodology for thermal-aware floor-
planning is presented in Section V. The experimental results are
analyzed and discussed in Section VI. Finally, Section VII concludes
our work.
2. 3D floorplan algorithm

In this section we discuss the building blocks of a floorplan-
ning algorithm based on SA and identify, for each of them, design
parameters that can affect the convergence of the optimization
and the quality of the floorplan. First we recall the general formu-
lation of a 3D floorplan problem. Then we discuss the writing
of the cost function, the choice for a floorplan representation,
the main design choices for the SA heuristic and finally how to
perturb the solution. This description will allow us to define the
tuning parameters that must be optimized to build an efficient
floorplanner using our meta-optimization approach.

2.1. Problem formulation

Let B¼{b1, b2, y, bm} be a set of rectangular blocks with height
hi and width wi, and let T¼{t1, t2, y, tp} be the set of terminals.
Each block has a set of pins Pi that connects it to the pins of other
blocks and the terminals, forming nets. Let L¼{li91r irn} be the
set of n layers. Let (xj,yj,lj) denote the coordinates of terminal tj

and (xi,yi,li) denote the coordinates of block bi. The 3D floor-
planning problem is to find a solution S for the assignment of
blocks coordinates (xi,yi,li) so that no two blocks overlap and a
cost function C(S) is minimized.

2.2. Cost function

A desired 3D partitioning is one that will reduce the footprint
(area of the largest tier), the wirelength (or wireload), the
economic cost and that will also respect the temperature budget.
Economic cost is out of the scope of this paper, while the thermal
aspect will be discussed in detail in Section IV.

The cost function of an optimization problem must reflect the
needs of a designer. The most common way to take into account
all the performance tradeoffs is the weighted sum method. In our
work we evaluate the cost of a solution S with the formula:

CðSÞ ¼ anFootprintþbnSumAreaþgnWL ð1Þ

where a, b and g are weight parameters; Footprint is the product
of the largest width and the largest height; SumArea is the sum of
areas of all layers and WL is the wirelength.

To the best of our knowledge, no previous work has employed
the SumArea objective, or any equivalent form. The rationale
behind the SumArea goal is that even if there is no evolution in
Footprint, solutions with more compact arrangements per layer
are still preferred. This rationale holds for die-to-die (D2D)
and die-to-wafer (D2W) integration, where dies do not have the
constraint of equal footprint as in wafer-to-wafer (W2W).

The normalization of each goal is as follows:

FootprintNorm ¼ FootprintNew=ðAreaBlocks=nÞ ð2Þ

SumAreaNorm ¼ SumAreaNew=AreaBlocks ð3Þ

WLNorm ¼WLNew=WLOld ð4Þ

SumArea and Footprint goals are normalized by absolute
values. WL has to be normalized by a relative value since we do
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not know the minimal WL that can be achieved and at what area
expense.

Some authors have also proposed the minimization of the number
of TSVs by adding a factor xnnbvias to the cost function [14,15]. These
approaches only minimize the via count without considering the TSV
dimensions. It is however clear that the relative size of the TSVs is the
factor that will limit their number: for a given design, one can insert a
larger number of high density TSVs than medium density TSVs.
Therefore, in contrast with the previous approaches, we propose to
account for the effects of these interconnects directly in the three
objectives of (1). The height of the TSVs is added to the total
wirelength, and blocks are surrounded by a guard ring to account
for the TSV area overhead.

When formulating a cost function using a weighted sum, the
most important and difficult task is to determine the appropriate
weights that will guide the optimization process in order to find a
solution reflecting the expected tradeoff. The relative importance
of the objectives is not generally known until the system’s best
capabilities are determined and tradeoffs between the objectives
are fully understood. As the number of objectives increases, trade-
offs are likely to become complex and less easily quantified.
The designer must therefore rely on intuition and ability to
express preferences throughout the optimization cycle. The meta-
optimization approach removes the uncertainty introduced by
this human intervention, by considering the weights of the cost
function as optimization variables.

2.3. 3D–SP representation

The sequence pair (SP) is a general floorplan representation
proposed by [17]. It consists of two permutation lists of n

elements, where n is the number of blocks. Topological informa-
tion is encoded by the order in which the blocks appear in the two
lists, for example;
(/y, bi, y, bj, yS, /y, bi, y, bj, yS) - bi is left of bj

(/y, bi, y, bj, yS, /y, bj, y, bi, yS) - bi is above bj
A
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Fig. 2. The notions of WL minimization move and slack demonstrated on a 2D

floorplan example. (a) The cross indicates the ideal location of block F. (b) The

vertical and horizontal critical paths and the slack measure for block C.
To represent 3D floorplans, one SP is used for each layer. The
blocks in a layer’s SP are placed on that layer using the SP packing
method to compute their (x), (y) coordinates.

In [18] the authors compare SP to Transitive Closure Graph (TCG)
and Bn-Tree, which are other popular representations. SP and TCG
capture the same set of floorplans and have a redundant design
space in (n!)2. Their original packing method takes O(n2), but SP is
easier to implement. Bn-Tree can be evaluated in amortized O(1), but
captures only compacted floorplans (i.e.,: a floorplan where no block
can move without overlap or change in the outline): a property that
can exclude some (or all) of the interconnect-optimal packings.
Also, the redundancy in the SP/TCG design space, often seen as a
limitation, can in fact make local search more successful by
increasing the number of paths to the global optima.

2.4. Simulated annealing framework

Two factors influence the convergence of SA: (i) how it moves
from one solution to another and (ii) the rate at which the possi-
bility of an uphill move decreases. Here we discuss the impor-
tant points related to the second factor and identify the free
parameters.

Cooling schedule: The cooling schedule is the manner in which
the annealing temperature T is lowered during annealing.
The authors in [19] discuss different cooling schedules and show
that Aart’s schedule is very regular concerning the number
of iterations it requires before convergence. We have thus
selected this schedule to be implemented in our algorithm. The
temperature update function is written as:

Tkþ1 ¼
Tk

ð1þTklogð1þlÞ=3skÞ
ð5Þ

where sk is the standard deviation of the cost values observed
during the kth loop of the algorithm, and l is a tuning parameter.
The number of iterations at each temperature floor (where the
temperature is held constant during a given algorithm loop) is
directly related to the cooling schedule, and must be explicitly
defined, as we discuss next.

Moves per temperature floor (innerIter): Using a large number
of moves at the same temperature floor does not help conver-
gence, while using a low number can present a noisy sk and affect
the cooling schedule. In our implementation, innerIter is linked to
the number of blocks (nBlocks) by the parameter k:

innerIter¼ knnBlocks: ð6Þ

Initial temperature: a suitable initial temperature T0 is one
that results in a high probability w0 of accepting solutions that
increase C(S), allowing a large exploration of the neighborhood of
S0 in the early iterations. Some authors suggest this probability
to be around 0.8 [19]. It is clear that T0 will depend on the scale
of C(S) and, hence, be tied to the magnitude of the weights in the
cost function and to the circuit under floorplan. To eliminate this
dependency, it is possible to estimate T0 in a first approach. We do
this by accepting all solutions that increase C and calculating the
average cost increase DCþAvg. Then T0 is given by:

T0 ¼�DCþAvg=lnðw0Þ ð7Þ

In our implementation, DCþAvg is measured during the first
innerIter moves.

In the described implementation, only two parameters control
the annealing schedule: the l parameter in the Aart’s schedule
and the k multiplier that defines the number of moves performed
at each temperature floor.

2.5. Solution perturbation

The core of a floorplanning algorithm is the manner in which it
modifies the solution and improves it over time. The simplest and
most robust way to perturb the solution is to randomly permute
the blocks position. However this can be time consuming. There-
fore efficient algorithms make use of more sophisticated moves to
guide the search.

In [20], the authors present a series of heuristic moves that can
be applied to 2D SP to achieve good results for area and wirelength
minimization with limited runtime. Among the important contribu-
tions are (i) WL minimization moves and (ii) the notion of slack in a
floorplan:

A WL minimization move (Fig. 2(a)) corresponds to moving a
block bi close to the ‘‘ideal’’ location that would minimize the
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Table 1
Meta-optimization variables.

Algorithm structure No of variables Optimization phase

SA schedule 2 f1

C(F) weights 3 f1

2D moves selection 5 f1

3D moves selection 4 f2

Porbability 2D/3D 3 f2

F. Frantz et al. / Microelectronics Journal 43 (2012) 423–432426
wirelength of its incident nets. This ‘‘ideal’’ location (xa,ya) is simply
the average of the position of all modules connected to bi weighted
by the net degree (number of connected pins). Once a block bj,
sitting close to (xa,ya) is identified, bi is moved next to bj in the SP.

The notion of slack in a floorplan is analog to that in Static
Timing Analysis (STA). It is the distance that a block can be moved
in a given direction without changing the floorplan outline. As in
STA, there is also the notion of a critical path, which constrains
the floorplan dimensions (Fig. 2(b)). A slack move then consists of
removing a block in the critical path and inserting it in a position
with large slack.

Our implementation is based on Parquet-4.5 [20]. We have
extended its original SP representation to 3D and defined
new move actions using the notions above. We can perturb the
solution in the following ways:
�
 3D move action set:
1 Swap blocks from two layers
2 Move block to another layer
3 Slack move between two layers
4 WL minimization move between two layers.
�
 2D move action set:
5 Random permutation of SP
6 Change orientation
7 Same as (3), but on a single layer
8 Same as (4), but on a single layer
9 Same as (7), but with orientation change to better fill

the slack.
The difficulty here is how to define with what probability
each move action should be applied. Moreover, it is known that
3D moves cause the greatest perturbations in the floorplan and,
when using the SA heuristic, they are increasingly unlikely to
be accepted as the algorithm progresses [15]. Therefore we
reduce the probability of calling the set of 3D move actions with
a Piecewise Linear (PWL) function of the maximum number of
moves Itermax (a stop criteria of SA), as depicted in Fig. 3.

Finding a good distribution of the move actions in the 2D and
3D sets (five and four variables, respectively) and adjusting the
shape of the PWL function (three variables) plays a major role in
the efficiency and robustness of the optimization, and is conse-
quently part of our meta-optimization problem.
3. Meta-optimization based floorplanner tuning

The previous section identified the tuning parameters of each
constituent block of our SA floorplanner algorithm. The task of
assigning values to these parameters has been formulated as a
second optimization problem, to which we have applied a genetic
algorithm (GA). This second problem is solved prior to the release
of the algorithm to the end user. It searches a set of parameters
that are able to minimize the footprint and wirelength of a
reduced, but representative, set of floorplan problems (training
problems). This method gives a means to automate the floor-
planner algorithm tuning, thus avoiding a tedious and knowledge
based process. In this section we recall the features of GA and
then detail how the optimization problem was set up.

3.1. Multi-objective GA and Pareto optimality

GA is a stochastic global search method that mimics natural
evolution. It acts over a population of potential solutions, applying
intensification (crossover) and diversification (mutation) operators
to explore the problem space. The fittest individuals are selected and
are used to generate a new population, in the hope of improving the
solution quality.

Since GA manages a population, it accepts the cost function to be
a vector of objectives, instead of a weighted sum. The GA will then
return a set of Pareto-optimal solutions (Pareto front), instead of a
single solution. A solution S is Pareto-optimal if there exists no other
S0 that is superior to S in terms of all objectives. As opposed to the
weighted sum formulation, the vectorized form does not require
weighting or normalizing of the objectives. Therefore, no prior
knowledge about the problem is required.

3.2. Problem setup

The 3D floorplan problem is an extension of the 2D problem. A
floorplanner must already demonstrate good performance in 2D
cases to ensure good results with 3D cases. Therefore, we have
divided the meta-optimization into two phases. The first phase of
the optimization only takes into account 2D related parameters
(Table 1) and executes the training problems for the planar case.
The optimization continues in the second phase running the
training problems for a 3D case and acting on the remaining
variables. In this approach, the first step guarantees a good usage
of the available intra-layer moves (2D), while the second one
adapts the frequency and the manner in which blocks are
exchanged between layers. The number of variables in each phase
is 10 and 7, respectively.

The proposed meta-optimization approach provides a good
way to automate the simulated annealing algorithm setting,
involved in almost all the floorplanners. Moreover, splitting the
meta-optimization process into multiple steps allows the number
of optimization variables to be limited (to keep the problem
tractable) and enables the incremental addition of more features:
2D and 3D floorplanning and, as will be discussed in the next
sections, thermal-aware features.

4. Temperature minimization background

In this section, we recall the main concepts involved in a
thermal aware floorplanner and highlight some practical issues.
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4.1. Understanding the tradeoffs

Commonly, thermal-aware floorplanners extend the area–
wirelength minimization problem presented earlier by adding
the maximal temperature (Tmax) in the weighted cost function1:

CðSÞ ¼ anAreaþbnWLþwnTmax ð8Þ

In a first approach, it is important to understand the relations
between these objectives. It is known that the solution with
optimal wirelength usually does not correspond to the solution
with optimal area. But, in a general way, wirelength benefits
from area reduction. On the other hand, temperature and area are
completely opposite objectives: compact floorplans present high
temperature while sparser arrangements are cooler. Therefore, a
motivation of this work is to propose solutions to the difficult task
of finding a balance between these two concurrent objectives.

4.2. The choice of a thermal model

During the floorplanning process, millions of iterations are
needed until the search converges to thermally efficient solutions.
With such a high number of solutions to evaluate, it is not feasible to
run a detailed finite element simulation to evaluate the thermal
profile of each one. Several authors have thus proposed the use of
simplified thermal models that are suitable for use in a floor-
planning algorithm. We have identified two models that represent
different degrees of accuracy. Both rely on the thermal–electrical
analogy and use cubes to mesh the chip volume. The temperature
values are obtained solving the linear system T¼PnRth, where Rth is
the thermal resistivity matrix and P is the power vector.

Among the identified models, HotSpot [21] is the most refined.
It solves the linear system with an iterative multi-grid method,
starting with a coarse mesh and then successively refining the
solution. HotSpot also models the heat flow from the chip to the
heat sink and the board.

A faster alternative was used in [15]. Instead of solving the
complete linear system, the lateral heat flow is neglected and
tile stacks are analyzed individually (Fig. 4). Because there is no
interaction between tile stacks, this approach is less accurate
and can produce a noisy thermal profile. Nevertheless, in [16] it is
shown that the correlation between this model and HotSpot
is 0.82, making it a reasonable choice for floorplanning. In our
implementation, we use both approaches, neglecting lateral heat
flow during the optimization and using Hotspot with a fine mesh
to evaluate the final solution.

4.3. The impact of the thermal profile on the search algorithm

Floorplanning algorithms are usually initialized randomly.
Random initializations generally produce disorganized (sparse)
floorplans. This largely favors the Tmax objective and can impede
the search algorithm to move to solutions of smaller area and
wirelength.

Moreover, the thermal conductivity of the bonding interface
material (epoxy, 0.05 W/mK) is much lower than that of silicon
(150 W/mK) and copper (285 W/mK). This large difference creates
a barrier to heat flow, leading to significant temperature increases
at each bonding interface. Consequently, it disturbs the search
and impedes the efficient use of the upper layers. As an example,
in [14], [15], where the formulation (8) has been used, the
temperature reduction comes at the expense of area increase, of
the order of 16%. An alternative to this problem is proposed in
1 For the sake of clarity, the terms footprint and sumArea are noted as a single

term Area.
[16], using a two-phase algorithm. As described in the next
section, this approach has been adapted in our implementation
with different characteristics to improve its efficiency.
5. Proposed methodology for thermal floorplaning

In Section IV we have shown that using temperature measure-
ments on sparse floorplans can disturb the search. Thus, explicit
temperature minimization should be left to a stage where the
area is sufficiently compact. In this section, we present a two-
phase algorithm, where temperature is minimized implicitly
during the first phase and then explicitly during the second. We
also define the criteria based on area to switch from phase one to
two and a heuristic that will help the search algorithm converge
to cooler solutions.

Our two-phase algorithm differs from that in [16] in the
following aspects: first, we switch from phase one to phase two
without restarting the annealing schedule. Second, we are able to
reduce temperature in the first phase. Third, our cost function for
phase two keeps all the objectives of phase one, in contrast with
[16] in which the wirelength objective is not considered when
optimizing temperature.

5.1. Phase 1 – a thermally efficient power density distribution

From a 1D approximation of the vertical heat flow on
the chip (Fig. 5(a)) it can be noticed that a power distribution
with a pyramidal shape (Fig. 5(b)) will implicitly reduce peak
temperature.

Therefore, during the first phase, we seek to arrange the blocks
in n layers so that the power density is maximized and the more
power-hungry blocks are placed closer to the heat sink. For this
purpose the cost function is written as:

CðSÞ ¼ anAreaþbnWLþdnð1=PDensÞ ð9Þ

where PDens is a weighted sum of the power density of each layer:

PDens ¼
Xn

i ¼ 1

Pi

Area
Uqi, ð10Þ

with

qi ¼ R1=
Xi

j ¼ 1

Rj ð11Þ

and the weighting factors qi decrease for higher layers (away from
the heat sink). In such a formulation, the term PDens is maximized
both when the area is reduced and when the power-hungry
blocks are moved to the lower layers. Hence, it provides a means
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to combine the opposite objectives of area and temperature
reduction in the same direction.

5.2. Phase 2 – minimize thermal gradients

The second phase involves thermal simulations and starts once
the area value reaches a threshold l that ensures that all layers
are occupied. This threshold must be at least lrA2D/(n�1),
where A2D is the area of the design in a 2D configuration and n

is the number of available layers (Fig. 6). With this condition,
we avoid the problems mentioned in Section IV.C.

During the second phase, the cost function (9) is augmented
with a temperature term:

CðSÞ ¼ anAreaþbnWLþdnð1=PDensÞþwnRTmax ð12Þ

Instead of minimizing the maximal temperature, our approach
minimizes the sum of maximal temperatures on each layer. This
formulation is motivated by the observation that the x–y coordi-
nates of the hottest spot in each layer does not always coincide,
as exemplified in Fig. 7. When these situations occur, our formu-
lation is able to reward the improvements in the thermal profile
of each internal layer (i.e., gradient reduction). Furthermore we
note that the temperature in the top layers is naturally higher
than that in the lower layers and, consequently, more reward is
given to improvements at the top-most layer.

5.3. The power density heuristic

Based on the observation presented in Section V.A, we propose
a heuristic consisting of biasing all the inter-layer moves in the
direction of attaining a pyramidal power distribution. Therefore, a
block bi in layer lk is only allowed to move to a lower (resp. upper)
layer lp if it meets the condition of having a power density greater
(resp. lesser) than the average power density of the blocks in lk.
When performing a 3D move, we randomly select a block in lk
until this condition is satisfied.
6. Experimental results

The results are presented in two sets. The first set demonstrates
the relevance of the meta-optimization approach. We show how,
using a GA optimization, we can set the floorplanner parameters
with limited human intervention and obtain results equivalent to
or better than the state of the art. The optimized floorplanner is
compared to previous works in the context of the area–wirelength
minimization problem, for which common benchmarks exist. Addi-
tionally we demonstrate the advantages of taking into account TSV
dimensions. We also complete the problem formulation with an
a priori insertion of TSVs to improve 3D via awareness during
floorplanning.

In the second set of results, the emphasis is on the thermal
aspect. We extend our floorplanner to implement the proposi-
tions in Section V. We present a complete analysis comparing
the performance of the two-phase algorithm, the power density
heuristic and the combination of both.

The floorplanner is implemented in Cþþ and compiled with
gþþ 4.5 on Linux. The meta-optimization, as well as all validation
tests, were performed on an Intel Xeon machine (4 CPU, 8 GB
RAM, 2.4 GHz). MCNC and GSRC benchmarks [24] are used for
comparison.

6.1. Meta optimization experimental results

6.1.1. Meta-optimization settings

Two benchmarks with different characteristics have been used
as reference problems for the meta-optimization: n100 (GSRC)
and ami49 (MCNC). In the first, the blocks have very similar sizes,
while in the second, they cover a wide range of dimensions.
The parameters of the floorplanner were explored using the
multi-objective GA implemented in Matlab [22]. The GA was
arbitrarily configured for 32 individuals and 60 generations and
the population was initialized randomly. The fitness of the each
individual is composed by the four objectives to be minimized,
i.e., area and wirelength of n100 and ami49. This fitness is
measured as the average of eight floorplan runs so as to mitigate
the influence of the starting point. The evaluation step is paralle-
lized with a shell script, speeding up the resolution by four
(number of CPUs).

Fig. 8 shows the obtained four-dimensional Pareto front. Two
of the four axes are inverted to render the plot more intuitive.
From this plot we have selected a solution that can simulta-
neously provide a good tradeoff for both benchmark problems
(outlined by the dashed rectangle). This solution becomes the
default parameterization for our floorplanner (Fig. 9).
6.1.2. Validation with benchmarks

The meta-optimization approach is validated comparing the
solution quality of our floorplanner to the state of the art. All
results for this work are averaged over 100 runs. Table 2
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Fig. 8. Four-Dimensional Pareto front obtained with GA. Values are normalized by the average of each objective. The dashed rectangle indicates the selected tradeoff.
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Table 2
Performance comparison for 2D test cases.

Circuit No. Iter. Parquet-4.5 (SP) This work

Area (WS) Wire Area (WS) Wire

(�103) (mm2) (mm) (mm2) (mm)

ami33 66 1.32 (14.1%) 59,983 1.31 (13.4%) 53,802

ami49 98 40.6 (14.5%) 800,884 40.89 (15.4%) 689,881

n100 200 0.197 (9.75%) 234,346 0.196 (9.14%) 233,666

n200 400 0.195 (11.0%) 441,127 0.193 (9.46%) 442,237

n300 600 0.304 (11.3%) 623,822 0.300 (9.94%) 621,030
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compares its 2D performance to Parquet for an equal number of
iterations.2 Our implementation achieves similar wirelength and
a slight reduction in white space (WS). The proposed meta-
2 Parquet is run using Sequence Pair and default weights. Terminals are placed

at the boundary of the chip as defined in the benchmarks available at http://

vlsicad.eecs.umich.edu/BK. Results for Parquet are also averaged over 100 runs.
optimization proved to be successful in parameterizing the floor-
planner. The performance in a 3D scenario is compared to [14]
and [15] for a four layer stack. To enable comparison with these
works, the objective of minimizing the number of vias is intro-
duced in our cost function and its weighting factor is manually set
to obtain similar via count. Table 3 shows that our implementa-
tion significantly reduces the white space compared to both CBA
and 3D–STAF. The wirelength is, in average, 5% longer than 3D–
STAF, but still 8% smaller than CBA. We underline however that,
for a four layer stack, any solution with white space larger than
30% presents little practical interest, since the same area could be
achieved with only three layers. Therefore, the ability of our
floorplanner to find the most compact solutions, regardless of the
number of blocks in the benchmark, demonstrates the power of
this approach.
6.1.3. Accounting for TSV dimensions

In this section we show the improvement that can be achieved
if TSV dimensions are handled directly in the cost function. Here
we consider the two following approaches:

A posteriori insertion: The floorplan is obtained minimizing
the TSV count (as in Table 3). The solution is then modified to
reserve area for the TSVs and their height is added to the total
wirelength. Fig. 10(a) and (b) illustrate this approach.

A priori insertion: The cost function includes the TSV con-
tribution to area and wirelength during the entire optimization
process. Fig. 10(c) shows that this approach can make better
usage of the available area across the layers.

To compare these approaches, a stack with all four layers in
face-to-back (F2B) orientation and terminals on top is considered.
Dimensions for TSVs are taken from ITRS projections [23] and two
cases are considered: for smaller benchmarks (n100, n200, n300)
TSVs have pitch of 4�4 mm2 and height of 10 mm, dimensions
compatible with W2W bonding. For ami33 and ami49, larger
TSVs compatible with D2D and D2W are used: pitch 8�8 mm2

and height 20 mm.
Results are presented in Table 4.3 For each metric the first

column is for a posteriori via insertion and the second for the
proposed approach. The wirelength metric includes the TSV
3 The first column of each metric corresponds to adding the TSV overhead to

the results from table 3, while the second corresponds to the proposed approach.



Table 3
Footprint, wirelength and 3D-vias minimization for four layer stack.

Circuit This work 3D–STAF [14] CBA [15]

Area (WS) Wire Vias Time Area (WS) Wire Vias Time Area (WS) Wire Vias Time

(mm2) (mm) (count) (s) (mm2) (mm) (count) (s) (mm2) (mm) (count) (s)

ami33 0.364 (25.9%) 26.1 116 2 0.379 (31.1%) 22 122 52 0.353 (22.1%) 22.5 93 23

ami49 11.48 (29.6%) 427.2 194 5 13.49 (52.2%) 437.5 227 57 14.90 (68.2%) 446.8 179 86

n100 0.050 (11.5%) 92.7 884 20 0.059 (31.5%) 91.3 828 68 0.053 (17.9%) 100.5 955 313

n200 0.048 (10.1%) 173.9 1810 84 0.059 (34.3%) 168.6 1729 397 0.058 (31.4%) 210.3 2093 1994

n300 0.075 (10.3%) 257.2 1914 160 0.097 (42.0%) 237.9 1554 392 0.089 (30.3%) 315 2326 3480

To allow comparison, terminals are placed at the center of the top-most layer. Results for this work are averaged over 100 independent runs. The data for CBA and 3D-STAF

is presented as in the original publications for the area–wirelength minimization problem. The runtime data is not directly comparable.

Top Middle Bottom

Fig. 10. (a) Footprint¼65,475 mm2, WL¼195,782 mm, vias¼1218. (b) Footprint¼76,012 mm2, WL¼219,907 mm, vias¼1218. (c) Footprint¼73,647 mm2, WL¼215,570 mm,

vias¼1244. Three-layer floorplan results for n300 with various strategies. (a) Minimizing via count and then (b) reserving area for vias or (c) accounting for via dimensions

during the whole optimization process. Here solution (c) uses more vias but has about 3% less area and wirelength than (b).

Table 4
Results considering TSV dimensions.

Circuit Area WireþTSV Vias

ami33 0.367 0.37 28.6 28.3 116 137

ami49 11.49 11.55 431.6 328.9 194 448

n100 0.056 0.054 105.5 104.5 884 966

n200 0.06 0.057 207.5 208.6 1810 1856

n300 0.088 0.086 292.8 289.5 1914 2100

The first column of each metric corresponds to adding the TSV overhead to the

results from Table 3, while the second corresponds to the proposed approach.
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height. As can be seen, the a priori approach, in most cases,
reduces both area and wirelength, while TSVs can be added (or
removed) as long as they contribute to the improvement of the
floorplan. It is thus more relevant to take into account for the
impact of TSV dimensions on area and wirelenght during the
whole floorplanning process rather than to explicitly minimize
the total via count.

6.2. Thermal-aware floorplanning

The thermal aware floorplanner uses the cost functions
described in Eqs. (9) and (12), The additional weights d and w
relative to the temperature effects were determined applying an
incremental meta-optimization based on the result from Section
VI.A.1.

Reported results are an average taken from over 20 indepen-
dent runs. Dimensions and material properties for the stack are
taken from [24]. The MCNC and GSRC benchmarks are annotated
with power values available at [25]. In these benchmarks, the
power density of the blocks varies from 10 to 103 (W/cm2).
During floorplanning we evaluate temperature neglecting the
lateral heat flow and using a grid size that is close to
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the dimensions of the smallest block. The best reported solution is
evaluated with a finer resolution (smaller grid size) using HotSpot
with its default heat sink model. The obtained temperature values
are tightly related to the stack properties (materials and dimen-
sions) and to the power values assigned to the blocks. Since
related works [14–16] do not detail these aspects, direct compar-
ison is not possible.

Table 5 presents the temperature for results obtained con-
sidering only area and wirelength minimization. They serve as a
reference to quantify the impact of our proposed methodology.
In comparison to Table 3, here we have let the algorithm run for
a longer time in order to achieve even more compact floorplans
and exacerbate the temperature effect. From this table, one can
notice that the maximal gradients for ami33 and, more sig-
nificantly, ami49, are very high. This can be explained by the
fact that, for these small benchmarks, it is difficult to achieve a
solution over four layers with low whitespace. In addition, the
packing methods used in most of the floorplanners system-
atically compact the design towards one corner (lower left),
accumulating the whitespace on the opposite corner (upper
right) of each layer.

To underline the impact of each of our propositions, we
perform three tests (Table 6): (i) the heuristic applied to area–
wirelength minimization (weights d and g set to zero), (ii) the
proposed two-phase algorithm with the proposed cost functions
(weights d and g determined by meta-optimization) and (iii) the
two-phase algorithm combined with the heuristic. Case (i) shows
that the simple use of the heuristic can considerably reduce
temperature, even though temperature is not among the explicit
objectives of the cost function. In case (ii), the explicit goal of
temperature reduction improves heat reduction but forces the
solution to occupy a larger area. Finally, in case (iii), the combina-
tion of both techniques yields better results, further reducing the
temperature and gradients with smaller area than that in case (ii).
Additionally, the use of the heuristic in case (iii) delayed the
transition to the second phase, reducing the number of thermal
simulations and leading to shorter runtime. Experimental results
have shown that the use of the aforementioned heuristic is very
efficient, capable of reducing temperature by �25% and gradients
by �47% with little area (þ2%) and wirelength (þ5%) increase.
Table 6
Impact of the proposed techniques on temperature and gradient reduction. Results are

Circuit Area–wirelength with heuristic Proposed algorithm

Area Wire Temp Grad Runtime Area Wire Te

ami33 1.04 1.01 0.72 0.79 1.08 1.09 1.08 0.

ami49 1.03 1.03 0.73 0.49 1.07 1.20 1.15 0.

n100 1.01 1.06 0.77 0.49 1.09 1.12 1.13 0.

n200 1.01 1.09 0.76 0.48 1.09 1.15 1.16 0.

n300 1.01 1.08 0.75 0.42 1.09 1.13 1.12 0.

Average 1.02 1.05 0.75 0.53 1.08 1.14 1.13 0.

Table 5
Reference values from area–wirelength minimization.

Circuit Power Area Wire

(mW) (mm2) (mm)

ami33 703.5 0.3553 24.6

ami49 14,910 10.48 386.2

n100 78.25 0.0496 83.6

n200 78.4 0.0478 158.6

n300 130.5 0.0741 229.1
Its combination with the two-phase algorithm was able to further
reduce temperature (�37%) and gradients (�56%), but compro-
mising area with an average 11% increase.
7. Conclusion

The performance of optimization algorithms always depends
on its tuning parameters and on the cost function formulation.
In this work, we focus on the 3D–IC floorplanning optimization
problem. We discuss the algorithm implementation and identify 17
parameters that play a role in its performance. The tedious task of
discovering sets of parameters that can drive the floorplanner to
good results is automated using a Genetic Algorithm in a meta-
optimization loop. The approach is applied to our implementation
of a 3D floorplanner, but can be easily adapted to others. We also
propose a problem formulation that takes into account the overhead
of 3D-vias during the entire floorplan process in an improved way.

Furthermore, two methods to reduce peak temperature and
thermal gradients in 3D ICs are discussed. On one hand, we
propose to use a smart heuristic that favours high power density
close to the heat sink. On the other hand, we use a two-phase
simulated annealing process which uses two different cost func-
tions. In the first phase we combine the concurrent objectives of
area and temperature minimization in a single term. During the
second phase, the cost function formulation is augmented with a
temperature term that gives means to distribute blocks to mini-
mize not only the maximal temperature, but also the gradients
inside the layers. The results obtained show that combining the
smart heuristic with the cost function reduces the average peak
temperature and gradient by �37% and �56% respectively, while
limiting area increase to 11%, and that of wirelength to 14%. Our
approach shows that, with a smarter problem formulation, one
can efficiently explore the margins left for temperature reduction
during floorplanning. Algorithms that perform thermal via inser-
tion can take advantage of this formulation to further improve the
quality of the solution. Moreover, the approach has been for-
mulated in such a way as to render fairly straightforward the
inclusion of additional objectives in the floorplanning problem,
such as fabrication cost.
relative to Table 5.

Proposed algorithm with heuristic

mp Grad Runtime Area Wire Temp Grad Runtime

71 0.67 1.67 1.07 1.06 0.63 0.61 1.41

64 0.47 1.53 1.13 1.14 0.62 0.37 1.36

67 0.48 2.03 1.12 1.16 0.65 0.41 1.95

65 0.42 1.30 1.13 1.18 0.63 0.37 1.25

66 0.50 1.46 1.12 1.15 0.63 0.42 1.37

66 0.51 1.60 1.11 1.14 0.63 0.44 1.47

Temp Grad Runtime

(1C) (1C) (s)

8 243.32 11.16 5

0 221.89 71.35 13

4 197.02 1.04 53

4 206.08 0.72 279

1 216.63 1.14 670
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