
Fast Thermal-Aware Floorplanning using
White-Space Optimization

Sheldon Logan, Matthew R. Guthaus
Department of CE, University of California Santa Cruz, Santa Cruz, CA 95064

{slogan,mrg}@soe.ucsc.edu

Abstract— The power density of modern ICs continues to
increase with each new process technology. Larger power density
blocks result in higher temperatures which in turn decrease the
reliability of chips and produce more leakage power. In this
paper we present a method to help reduce the temperature of
chips at the floorplan design level by adjusting block utilizations
based on the available whitespace in a floorplan. We also briefly
outline a method for fast and accurate thermal floorplanning.
Our experimental results show that peak IC temperatures can
be significantly reduced at the floorplan design stage by using the
aforementioned methods without sacrificing significant increases
in floorplanning run-time, or wirelength.

I. INTRODUCTION

High on-chip temperatures have quickly become one of
the major concerns for modern integrated circuit designers.
Extreme power densities due to the aggressive scaling of
transistor sizes have resulted in large peak temperatures and
drastic temperature gradients. This chip temperature problem
has caused most designers to now consider temperature, along
with power, in the early parts of the design phase.

One way in which designers have tried to address the tem-
perature problem is with thermal-aware floorplanning, which
consists of adjusting the cost function of a floorplanner to
include some temperature metric (maximum or average) in
addition to the other typical design metrics such as area
and wirelength. This method of thermal floorplanning has
two major drawbacks. Firstly, computing thermal profiles is
very slow in comparison to the other design metrics such
as wirelength and area. Consequently, adding temperature to
the cost function results in undesirably long floorplanning run
times. The second drawback is that there is only one method
of reducing temperatures, separating high temperature blocks.
Since floorplanning is done at such an early design stage,
other methods of reducing temperatures, specifically smart
white space usage can be used to help decrease temperatures
effectively.

Previous researchers have investigated algorithms for both
2-D [1]–[3] and 3-D [4]–[7] floorplans. The above papers,
however, simply change the cost function without investigating
how to best decrease the temperature. The 3-D papers do have
heuristics for layer ordering, but temperature is simply left as
part of the objective.

Of previous floorplanning research, most use grid-based
thermal simulators [1], [4], [6]–[8]. Some [4], [8] perform
simplifications in the z-axis to reduce thermal simulation

complexity. Cong et al. [4] mention heuristics to run incre-
mental thermal computations only after operations that “tend
to have large impacts,” but they do not provide details. They
claim that swapping two blocks will result in a large change
while modifying a single block will not. Since rotating a
block can change the perimeter and thermal interaction with
adjacent blocks, it is not clear that this is completely true.
In addition, a sequence of seemingly small moves may have
a cumulatively large impact. In general, most floorplanners
trade off accuracy in temperature calculations for run-time.
The temperature is typically modeled using detailed finite-
element (FEM) simulation [9], [10], compact resistive network
modeling [11], or other approximations [12].

In an orthogonal direction, there has been significant re-
search in fast and accurate chip thermal simulators that are
not grid-based. Semi-analytic approaches using Green’s func-
tions [13] and image filtering approaches [14] have all been
proposed by researchers as faster methods of temperature
estimation in ICs. However, even though these methods are
much faster than the grid-based approaches used in previous
floorplanners, they still require much longer run-times than
calculating traditional design metrics such as area and wire-
length.

Our contributions in this paper are two-fold. First, we show
that in addition to moving blocks around in a floorplan, an
effective way to lower maximum temperatures is by adjusting
white space usage. Second, we create a power metric for
thermal floorplanning that is faster than other methods and
still results in excellent solutions.

Our work proceeds as follows: Section II introduces the the-
oretical and experimental motivation for our work. Section III
then provides an outline of our novel thermal-aware floor-
planner. Section IV provides the experimental setup and then
the results obtained from our fast thermal-aware floorplanner
are presented in Section V. Finally, Section VI concludes the
results.

II. INTEGRATED CIRCUIT THERMAL ANALYSIS

Heat is created in ICs when the transistors which comprise
the various logic blocks dissipate power. The rate at which
this heat is removed determines the temperature of the block
and is governed by Heat Conduction Equation:

−k∇2T = g (1)

where g is volume power density(W/m3), T is the temper-
ature(K) and k is the thermal conductivity (W/mK). The
boundary conditions for Equation 1 are usually assumed to
be as follows: The vertical sides of the chip, and the side not
attached to the heat sink are assumed to be adiabatic. The
side of the chip attached to the heat sink is assumed to be
convective. Equation 1 also assumes steady state temperature
and that the thermal conductivity is not a function of tempera-
ture. These assumptions and approximations are used in most
thermal simulators used in floorplanning.

A. Integrated Chip Cooling

There are several factors that affect chip cooling that can be
controlled during the floorplanning stage of IC development
such as block power densities, proximity of hot blocks to one
another and proximity of hot blocks to the chip edges.

Analyzing Equation 1 it is not quite clear how power den-
sities affect chip cooling. Consequently a simplified version
of Equation 1 in which heat flows only in the z-direction
(heat flowing upwards from the substrate to heat sink) will be
utilized. While this assumption is not realistic, it allows one to
gain a more intuitive understanding of heat flow in ICs. The
implications of this assumption will be discussed later. Given
the 1-D assumption, Equation 1 reduces to:

g = k
∆T
∆z

(2)

where ∆z is the distance between substrate and the heat sink,
∆T is the difference in temperature between the ambient air
and substrate, k is the effective thermal conductivity from the
substrate to the ambient air and g is the power density(W/m2)
of the block under consideration. Equation 2 can be rewritten
as:

Tsubstrate = ∆z
k g + Tair (3)

where Tsubstrate and Tair are the substrate and ambient air
temperatures, respectively.

Analyzing Equation 3 it is quite clear that the block tem-
peratures can be decreased by lowering block power densities.
Block power densities can be lowered by two means: 1)
Lowering the power used by the block and 2) Increasing the
area of the block. Method 1) is applicable at the floorplanning
stage since as shown in [2], [6], the leakage power of a block
varies with different floorplans. Method 2 is one of the primary
focuses of the paper; what is the best method of allocating
available whitespace to high power density blocks in floorplans
to increase their area and consequently reduced their power
densities.

Analyzing Equation 3 it would appear that block temper-
atures are independent of other blocks or floorplan position.
This fallacy is a result of the approximation (heat flow in
one direction) used in deriving Equation 3 from Equation 1.
When blocks dissipate power the primary direction of heat
flow is in the z-direction however, heat flows in the other
cardinal directions. The amount of heat flow is determined
by the difference in temperature between the block under

consideration and the neighbouring blocks. If the difference
in temperature is small, there is less heat flow in the other
cardinal directions. Consequently a hot block surrounded by
other hot blocks will have a higher temperature than a hot
block surrounded by cooler blocks. This phenomena is called
thermal coupling. In a similar vein, since the edge of the chips
are almost adiabatic, hot blocks placed close to the edge of a
chip will have higher temperatures than if they were placed
closer to the center. It should also be noted that blocks with
the same power density and different areas will have different
temperatures due to the fact that a larger block will have less
thermal diffusion in its center than a smaller block. As a result
the larger block will have a higher temperature than the smaller
block.

To illustrate these effects we ran several experiments using
the well know chip thermal simulator HotSpot [15]. For
our first experiment we incrementally increased the distance
between two high power-density blocks. The results shown in
Figure 1 illustrates that block temperatures can be decreased
by spreading high power density blocks away from each other.

The second experiment involved incrementally increasing
the distance of a high power density block from the edge of
the chip. The results shown in Figure 1 illustrate that block
temperatures can also be decreased by spreading high power
density blocks from the edge of the chip which is congruent
with the results of [16].

0 0.5 1 1.5 2325

326

327

328

329

330

331

332

Distance (mm)

M
ax

 T
em

pe
ra

tu
re

 (K
)

spread
edge

Fig. 1. Maximum Temperature vs Distance from Edge for a 100 W/cm2

Block and Maximum Temperature vs Separation Distance for two 100 W/cm2

Blocks.
For our final experiment we incrementally increased the area

of a 200W/cm2 block. The results shown in Figure 2 illustrate
that block temperatures are in indeed dependent on area which
is congruent with the results found in [17].

III. THERMAL FLOORPLANNING

In this section we will outline methods of incorporating the
findings of the previous section into a fast thermal floorplanner.
Specifically we will investigate the best method of allocating
whitespace to increase the area of high power density blocks.
We will also discuss our novel power metric that can be
used during floorplanning to evenly space high power density
blocks from each other and the edge of the chip.

A. Whitespace Allocation
There are two types of blocks used in floorplanning, soft

blocks and hard blocks. Hard blocks are usually IP blocks

0 2 4 6 8 10 12 14 16326

328

330

332

334

336

338

340

342

Area (mm2)

M
ax

im
um

 T
em

pe
ra

tu
re

 (K
)

Fig. 2. Maximum Temperature vs Area for a 200 W/cm2 Block

and consequently have a fixed area and fixed aspect ratio.
Soft blocks are usually generated from synthesized logic and
consequently have variable aspect ratios and areas. The area
of soft blocks is usually decided by routing congestion; blocks
need to have enough whitespace to be routed. We propose that
temperature should also be considered when determining the
final utilization of a block. Blocks that are expected to have
high switching activity should be given slightly more area
than what is required for routing to help reduce maximum
temperatures. The amount of area to be allocated can be
determined pre-floorplanning by using an algorithm to dis-
tribute the available whitespace to high power density blocks
based on some metric. The area can also be allocated during
floorplanning by adding additional moves to the floorplanner.
For our experiments we tried both and the results are presented
in the experiment section. The only bound for maximum area
is the overall cost of die area. In a fixed-die scenario, the area
has no cost as long as the floorplan fits.

Due to the fixed area constraint of hard blocks, increasing
the area of these blocks during floorplanning is not a viable
solution. An intuitive method of allocating whitespace for
hard blocks is to place a small amount of whitespace around
a high activity block in the form of a “halo” which would
reduce thermal coupling and consequently reduce maximum
temperatures.

B. Power Spreading

The main bottleneck of thermal floorplanning is calcu-
lating block temperatures. Solving Equation (1) accurately
can require significant computation time, consequently, many
researchers have developed alternate methods of computing
block temperatures for chips [9], [13], [14]. Other researchers
[5], [18], [19], have abandoned temperature simulations alto-
gether and have used the approximated linear 1-D form of
Equation (1) presented in Equation (3) to approximate block
temperatures using power densities. We believe however, that
the best method of doing fast thermal floorplanning is not
to do temperature calculations but to develop a cost function
that is minimal when high power density blocks are maximally
spaced from each other and the edge of the chip. Such a cost
function would avoid the need for time consuming simulations
yet would be more accurate than estimating temperature from
power densities alone.

A similar approach is presented in [18], however our work
differs from theirs in several ways. Firstly, they do not take
into consideration block areas or edge proximity which can
significantly affect peak temperatures. Secondly, they use a
diffusion cost that is based on the difference in power densities
between two blocks whereas we use a force directed approach
based on spreading high power density blocks. Thirdly, as
shown in Figure 1, the thermal coupling of two blocks is
quadratic with distance between them. Consequently, we use
the squared distance between blocks as opposed to the linear
formulation in [18]. And finally, they only consider adjacent
blocks despite the fact that significant thermal coupling can
exist if a small block is placed between two high power density
blocks. Improvements to the work in [18] can be found in [19],
but they also follow a similar thermal diffusion approach. The
prior force directed approaches [6], [7] perform temperature
(not power) spreading and consequently require long thermal
simulations.

Our power spreading approach is based on statistical me-
chanics. We create a set of long and short range attraction and
repulsion equations to govern the interactions of high power
density blocks so as to evenly space them apart and also to
space them away from the edge of the chip.

1) Block Repulsion Force: We first create a power spread-
ing block repulsion force (PB) that is used to maximally
spread high power density blocks. The equation to calculate
the average block cost is:

PB =
1
n

n∑
i,j

pi + pj

d2
ij

(4)

where pi is the power of block i, dij is the Euclidean distance
between the edges of block i and block j, and n represents
the number of blocks in the floorplan that have a power
density greater than the average power density plus a standard
deviation. Not all blocks were considered for two reasons.
Firstly, by limiting the number of blocks we calculate a
power spread cost for, we reduce the run-time of calculating
the cost. Secondly, from our initial test results we noticed
that the hottest block in a floorplan was always one with a
comparatively large power density value with respect to the
other blocks in the floorplan. Consequently, it is sufficient
to just consider those blocks for power spreading since a
block that has a low power density will never become the
hottest block. It should also be noted that even though we use
power density to select which blocks to consider for power
spreading, the cost function uses the power of the blocks to
calculate the cost. By doing this, the area of a block is taken
into consideration. Otherwise, two small high power density
blocks spaced a fixed distance apart would have the same cost
as two large blocks with the same power density spaced at the
same distance, even though there is significantly more thermal
coupling between the two large high power density blocks.

2) Edge Repulsion Force: The problem with using only
a block repulsion force is that it results in many blocks
being pushed to the edge of the chip which can increase

peak temperature as shown in Section II-A. To illustrate this
concept, we consider our cost function for 20 blocks (shown
as asterisks) in Figure 3. If we only consider power spreading,
many hot blocks will be forced to the chip’s edge as shown
in Figure 3(a).

(a) Edge Cost = 0 (b) Edge Cost = 10

Fig. 3. Power Spreading without and with Edge Costs

To combat the edge problem an edge repulsion term is
incorporated into the power spreading cost. The edge repulsion
term is:

PE =
n∑
i

(
pi

x2
i

+
pi

y2
i

)
(5)

where xi is the smallest distance in the x direction of block i
from edge of the chip and yi is the smallest distance in the y
direction of block i from edge of the chip.

The results of the simulation with the combined edge and
block repulsion cost is illustrated in Figure 3(b) and clearly
show that the hot blocks are no longer congregated at the edge
of the chip.

Our final power spreading cost is:

SP = PB + c× PE (6)

where c determines the contribution of edge and weight
repulsion forces. Changing c adjusts how close hot blocks will
get to the edge of the chip. Large values results in too many
blocks congregated in the center and small values of c, result
in blocks being too close to the edge. For our final cost we
used c = 4, which was found experimentally to give us the best
results. The vale of c however, should be specific to the chip
material parameters and the cooling solution. For example,
we assumed a bulk silicon process in our experiments with a
fairly large heat-sink (the default in HotSpot), however, if a
SOI process was used a smaller value of c would enable better
results since less heat diffusion occurs around blocks.

C. Proposed Thermal Floorplaning

Given the above insights, we wanted to formally investigate
the effectiveness of area utilization and our power metric
in thermal floorplanning. Our baseline floorplanner uses a
simulated annealing algorithm that is is similar to other current
floorplanners [4], [20]. Our simulated annealer has three
moves: interchange two blocks by swapping both sequence
pairs, displace a single block by swapping one pair in a single

sequence pair, and the rotation of a single block. In addition
to these normal moves, we add two additional perturbations to
help allocate and manage whitespace in the floorplan solution:
change the area of a soft block and change the virtual area of a
hard block in order to increase the size of the halo around that
block. We also changed the cost function to include our new
power spreading metric in addition to a standard maximum
temperature cost like prior works [4], [20]. The final cost
function for our floorplanner is:

cost = α · area + β · HPWL + ηTMax + λSP (7)

where area represents the floorplan area, HPWL is the half
perimeter wirelength, Tmax is the maximum chip temperature,
Sp is the spreading cost and α, β, η, λ, are the different
weights associated with each value.

IV. EXPERIMENTAL SETUP

We implemented our floorplanner in C++. It uses a simu-
lated annealing algorithm with a sequence-pair (SP) represen-
tation [21]. For thermal analysis,we integrated with HotSpot
4.1 using the default parameters. We use the faster block mode
for optimization and the slower, more accurate grid mode
for final results. The temperature simulation is a steady-state
analysis so improvements in transient simulators [9], [12]–
[14] would not improve our run-times. Our results are run on
a CentOS 5.1 Linux system with a 2.6GHz AMD Opteron
processor and 8GB of memory.

We use the GSRC and MCNC benchmarks for our experi-
ments. Both the GSRC and MCNC benchmarks do not have
actual dimensions or power information and both of these
parameters dramatically affect the performance of the heat
sink and overall chip cooling. For benchmark dimensions, we
scaled all the GSRC and MCNC benchmarks to be in range
of medium to large area chips(0.5cm2 - 2cm2). To do this,
we assume that the dimensions for the MCNC benchmarks
are in microns and the GSRC benchmarks are in tenths of
a micron. The aspect ratio of soft blocks is constrained to
the limits specified in the respective benchmarks (0.3 to 3.0).
Also, the area is limited so that blocks can not increase
their area past 50% of their original area. These constraints
are necessary since highly rectangular aspect ratios become
increasing difficult to route and blocks that are very large will
also increase the wirelengths within the blocks. Also, having
too low of a block utilization will require significant buffering
to drive signals across the block. In the case of hard blocks,
large halos tend to increase wirelengths between blocks.

For block power information, we randomly generate power
numbers using design power densities similar to the predicted
65nm node in [22]. The power densities used are 750 W

cm2 ,
250 W

cm2 and 25 W
cm2 with corresponding frequencies of 15%,

45% and 40%. The mean is therefore 235 W
cm2 and there is

approximately a 3.2× difference between the average and
maximum power density as observed in [22].

During our initial experiments, we noticed that floorplans
with more whitespace tend to have lower temperatures. This is
due to two factors: a larger chip will decrease the chance that

TABLE II
PEAK TEMPERATURE OPTIMIZATION RESULTS FOR HARD BLOCKS

Experiment HPWL Max Temp (K) Time (s)
HPWL and Power 0.20% 5.94 1.14x
HPWL and Temp 1.80% 6.12 158.4x

HPWL, Power and Halo 3.30% 9.16 1.14x

two hot blocks are close together and a larger chip area will
improve the thermal conductivity to the heat sink which results
in lower maximum and average temperatures. Consequently,
for fair comparisons, we perform fixed-area floorplanning. The
area cost during annealing is the area outside of the fixed
area. We do not place constraints on the floorplan aspect ratio,
however. For the experiments in the subsequent sections, we
used a fixed area that is 10% larger than the total area of
all blocks. All the results presented are mean values for 100
simulated annealing runs.

V. EXPERIMENTS

A. Fast Thermal Floorplanning

To verify our power density metric, we ran experiments for
thermal floorplanning using both an actual temperature metric
and the power metric in Equation 6. The results depicted in
Table I clearly show that our power metric is effective for
thermal-aware floorplanning. In the results, we perform HPWL
only optimization, HPWL along with our power metric, and
HPWL with integrated thermal simulation like prior works
[1]–[7]. For the larger benchmarks, the integrated thermal
simulation is too slow to finish in a reasonable amount of time.
Our power metric, however, is very fast even when compared
to HPWL-only optimization. Our maximum temperatures,
however, are comparable or better than the direct temperature
optimization results in all cases. The improved results are due
to the global view of our cost function when compared to
the other, more direct temperature optimization method. Our
method may accept a move that improves the temperature in
a region that is not the highest temperature, but soon becomes
a hotspot whereas the temperature-direct method would reject
the move. This allows our optimization to get more useful
work out of the random SA moves and achieve improved
results.

B. Whitespace Allocation

To determine the best method for using the available whites-
pace, we investigated the effectiveness of the different methods
of allocating it: 1) halo allocation for hard blocks, 2) area al-
location for soft blocks. The peak temperature results from the
experiments are summarised in Table II and III, respectively.
From Table II, we can see that almost a 2× peak temperature
decrease can be obtained by adjusting the halo around hard
blocks. For soft blocks, Table III shows that dynamically
allocating the whitespace for area utilization is effective at
reducing temperatures but has only a small improvement over
our power metric alone. Consequently, a more efficient method
was investigated for whitespace allocation for soft blocks.

TABLE III
PEAK TEMPERATURE OPTIMIZATION RESULTS FOR SOFT BLOCKS

Experiment HPWL Max Temp (K) Time (s)
HPWL and Power 1.80% 7.41 1.11
HPWL and Temp 3.00% 5.9 158.44

HPWL, Power, Static 6.40% 11.44 1.12
HPWL, Power, Dynamic 4.20% 7.60 1.12

C. Static or Dynamic Whitespace Allocation

Dynamic area allocation performs slightly better than
temperature-aware placement alone, but an interesting question
is whether static allocation of the whitespace before floorplan-
ning is better than dynamically allocating during floorplanning.
To study this, we compare with a greedy a priori algorithm that
statically allocates whitespace to the most power dense blocks
before floorplanning. Area is added to the highest power
density block until either it is no longer the highest, there is no
more available whitespace or the block is 50% larger than its
original size. If it is no longer the highest power density, we
start allocating area to the next highest power density block.
The advantage of this method is that it is performed before
annealing begins and consequently is simpler and slightly
faster than the dynamic methods. Statically allocating the area
might, however, result in an isolated block being inflated when
the whitespace might be best used to inflate a cluster of
relatively lower power density blocks that result in a high peak
temperature.

We investigated both the static and dynamic floorplanning
methods with 10% available whitespace. It should be noted
that only 5% of the available whitespace was statically allo-
cated for the a priori optimization. If all 10% of the whitespace
available was used for the a priori optimization the floorplan
would have to be perfect (i.e., contain no additional white
space).

The results in Table III show that a priori static allo-
cation does better than dynamic area allocation on average
for all benchmarks. This occurs because increasing the area
of a block will always decrease its maximum temperature.
Consequently, dynamic allocation of the whitespace during
floorplanning results in low power density blocks being in-
flated even though the whitespace might be best use for a
high power density block. In addition, the usage of the SA
random moves to adjust the whitespace usage detracts from
more useful moves that reduce area, HPWL, and minimize the
adjacency of high power blocks.

An example plot of n100 with and without power-aware
optimization is shown in Figure 4 with identical fixed-areas.
Figure 4(a) corresponds to HPWL-only optimization. The
HPWL for this placement is 278431, the maximum tem-
perature is 400.1K and it required 24.6s computing time.
Figure 4(b) corresponds to HPWL, power spreading and static
whitespace optimization. Its HPWL is 310124, the maximum
temperature is 382.7K and required 28.6s computing time.
These figures show that by utilizing static area allocation
along with our power density metric significant temperature
reductions can be obtained with a modest increase in HPWL

TABLE I
PEAK TEMPERATURE OPTIMIZATION RESULTS

HPWL Only HPWL and Power HPWL and Temp
Benchmark HPWL Max Temp (K) Time (s) HPWL Max Temp (K) Time (s) HPWL Max Temp (K) Time (s)

n10 43653 448.40 2.87 44598 430.40 2.97 44378 440.67 108.35
n30 131170 401.33 8.40 132393 389.86 9.02 134340 389.10 1724.50
n50 172521 414.84 15.16 175237 404.88 15.59 179270 406.35 7082.00

n100 286352 394.63 28.62 290480 389.41 28.54 n/a n/a n/a
n200 545746 396.92 88.11 559340 393.07 114.50 n/a n/a n/a
n300 799656 397.83 191.05 815146 395.54 266.92 n/a n/a n/a
ami33 82287 358.54 10.68 84206 357.87 11.37 84627 358.26 2212.10
ami49 1190385 455.47 22.00 1192307 449.99 23.65 1262700 453.29 6495.20
apte 641408 453.27 4.89 648447 444.89 5.16 656604 446.95 92.73
hp 202489 444.36 5.23 213080 432.86 5.27 209961 439.17 133.90

xerox 540676 366.75 11.64 540177 362.03 11.91 546782 361.97 119.13
Mean Change 0 0.00 0.00 1.8% 7.41 1.12 3.0% 5.90 158.44

and a very small increase in run-time. The non-whitespace-
aware placement tends to cluster unused area in the upper-right
of the floorplan due to the sequence pair representation. The
whitespace-aware placements however, distributes available
whitespace to the internal floorplan blocks which results in
fewer hotspots being created.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300 350 400 450 350

 360

 370

 380

 390

 400

sb0

sb1

sb2
sb3

sb4

sb5

sb6

sb7

sb8

sb9

sb10

sb11

sb12

sb13

sb14

sb15

sb16

sb17

sb18

sb19

sb20

sb21

sb22

sb23

sb24

sb25

sb26

sb27

sb28

sb29

sb30

sb31

sb32

sb33

sb34

sb35

sb36

sb37sb38
sb39

sb40

sb41

sb42

sb43

sb44

sb45

sb46

sb47
sb48

sb49

sb50
sb51

sb52

sb53

sb54

sb55

sb56

sb57
sb58

sb59

sb60

sb61
sb62

sb63

sb64
sb65

sb66

sb67

sb68
sb69

sb70

sb71

sb72

sb73

sb74

sb75

sb76

sb77

sb78

sb79 sb80
sb81

sb82 sb83

sb84 sb85

sb86

sb87sb88

sb89

sb90

sb91

sb92

sb93

sb94

sb95

sb96

sb97
sb98

sb99

(a) HPWL Optimization Only

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300 350 400 450 350

 360

 370

 380

 390

 400

sb0

sb1

sb2

sb3

sb4

sb5

sb6
sb7

sb8

sb9

sb10

sb11

sb12

sb13

sb14

sb15

sb16

sb17 sb18

sb19sb20

sb21

sb22

sb23

sb24

sb25

sb26

sb27

sb28 sb29

sb30

sb31sb32

sb33

sb34

sb35

sb36

sb37

sb38 sb39

sb40

sb41

sb42

sb43

sb44

sb45

sb46

sb47

sb48

sb49

sb50

sb51

sb52

sb53

sb54

sb55

sb56

sb57

sb58

sb59

sb60

sb61 sb62

sb63

sb64

sb65

sb66

sb67

sb68

sb69

sb70

sb71

sb72

sb73

sb74

sb75

sb76

sb77

sb78

sb79

sb80

sb81

sb82

sb83

sb84

sb85

sb86

sb87

sb88

sb89

sb90

sb91

sb92

sb93

sb94

sb95

sb96

sb97
sb98

sb99

(b) HPWL, Power Spreading
and Static Whitespace Opti-
mization

Fig. 4. Example Results for n100

VI. CONCLUSIONS AND FUTURE WORK

High temperatures on chips have recently become a ma-
jor concern of IC designers. In this paper we developed
several methods for addressing the temperature problem in
floorplanning for ICs. By strategically allocating pre-existing
whitespace during floorplanning, we were able to significantly
reduce the maximum temperature of the GSRC and MCNC
benchmarks. We were also able to significantly decrease the
runtime of thermal floorplanning by using a metric based on
power density as opposed to direct thermal simulations.

ACKNOWLEDGMENTS

This work was supported in part by the National Sci-
ence Foundation under grant 0720913; a Special Research
Grant from the University of California, Santa Cruz; and the
Sun OpenSPARC Center of Excellence at UCSC. Any opin-
ions, findings, and conclusions or recommendations expressed
herein are those of the authors and do not necessarily reflect
the views of the NSF.

REFERENCES

[1] W.-L. Hung et al., “Thermal-aware floorplanning using genetic algo-
rithms,” in ISQED, 2005, pp. 634–639.

[2] A. Gupta et al., “LEAF: A system level leakage-aware floorplanner for
socs,” in ASP-DAC, 2007, pp. 274–279.

[3] J.-L. Tsai et al., “Temperature-aware placement for socs,” Proc. of the
IEEE, vol. 94, no. 8, pp. 1502–1518, 2006.

[4] J. Cong, J. Wei, and Y. Zhang, “A thermal-driven floorplanning algorithm
for 3D ICs,” in ICCAD, 2004, pp. 306–313.

[5] W.-L. Hung et al., “Interconnect and thermal-aware floorplanning for
3D microprocessors,” in ISQED, 2006, pp. 98–104.

[6] P. Zhou et al., “3D-STAF: scalable temperature and leakage aware floor-
planning for three-dimensional integrated circuits,” in ICCAD, 2007, pp.
590–597.

[7] B. Goplen and S. Sapatnekar, “Efficient thermal placement of standard
cells in 3D ICs using a force directed approach,” in ICCAD, 2003, p. 86.

[8] X. Li et al., “Thermal-aware incremental floorplanning for 3D ICs,”
ASICON, pp. 1092–1095, 2007.

[9] T.-Y. Wang and C. C.-P. Chen, “Thermal-ADI: A linear-time chip-level
dynamic thermal simulation algorithm based on alternating-direction-
implicit (adi) method,” in ISPD, 2001, pp. 238–243.

[10] Y.-K. Cheng et al., “ILLIADS-T: An electrothermal timing simulator
for temperature-sensitive reliability diagnosis of CMOS VLSI chips,”
TCAD, vol. 17, pp. 668–681, 1998.

[11] M. Stan et al., “Hotspot: A dynamic compact thermal model at the
processor-architecture level.” Microelectronics Journal, pp. 1153–1165,
2003.

[12] Y. Zhan and S. Sapatnekar, “Fast computation of the temperature
distribu- tion in vlsi chips using the discrete cosine transform and table
look-up,” in ASPDAC, 2005, pp. 87–92.

[13] B. Wang and P. Mazumder, “Fast thermal analysis for vlsi circuits via
semi-analytical green’s function in multi-layer materials,” ISCAS, vol. 2,
pp. 409–412, 2004.

[14] J.-H. Park et al., “Fast computation of temperature profiles of VLSI ICs
with high spatial resolution,” in Semi-Therm, 2008, pp. 50–54.

[15] W. Huang et al., “Compact thermal modeling for temperature-aware
design,” in DAC, 2004.

[16] J. Lee, “General thermal force model with experimental studies,” Trans.
on Packaging, vol. 29, no. 1, pp. 20–29, 2006.

[17] R. J. Ribando and K. Skadron, “Many-core design from a thermal
perspective,” DAC, pp. 746–749, 2008.

[18] Y. Han et al., “Temperature aware floorplanning,” in Temperature-Aware
Computer Systems, 2005.

[19] C.-T. Chu et al., “Temperature aware microprocessor floorplanning
considering application dependent power load,” in ICCAD, 2007, pp.
586–589.

[20] K. Sankaranarayanan et al., “A case for thermal-aware floorplanning at
the microarchitectural level,” JILP, 2005.

[21] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI module
placement based on rectangle-packing by the sequence-pair,” TCAD,
vol. 15, no. 12, pp. 1518–1524, Dec 1996.

[22] G. M. Link and N. Vijaykrishnan, “Thermal trends in emerging tech-
nologies,” ISQED, pp. 625–632, 2006.

