
ANTHONY DEBRUYN

QUENTIN DELHAYE

ALEXIS LEFEBVRE

AURÉLIEN PLISNIER

Labo 6

dsPIC33

Dragomir Milojevic & Yannick Allard ELEC-H-473

1. Sequentially.

2.
Operation Correct Error Result
c=a+b yes
g=a+b yes
g=e+f (l.21) yes
g=e-f no Trying to put a negative number in an un-

signed variable
65280

g=e+f (l.26) no Overflow. The bit SRBits.C is then set to
1,
the test passes and sets g to 0xFFFF (the
maximum allowed by its type).

3399

s3=s1+s2 (l.32) no overflow -120
s3=s1+s2 (l.39) no overflow 120
c=a*b no overflow 0
g=a*b yes
g=e*f no overflow 42496
h=e*f no overflow due to the operation made on 16

unsigned bits.
42496

h=(INT32U)e*(INT32U)f yes
j=h*i no overflow due to the operation made on 32

unsigned bits.
1510719488

j=(INT64U)h*(INT64U)i yes

3.
Multiplication Instruction cycles Correct
c=a*b 6 5
g=a*b 6 6
g=e*f 4 4
h=e*f 6 6
h=(INT32U)e*(INT32U)f 15 15
j=h*i 22 19
j=(INT64U)h*(INT64U)i 110 15

4. We see that the various manner of computing a ∗ b/c corresponds to the different associations
possible among the operands.

1

Different ways Precision
d=(a*b)/c; Since the result is 442.2 (floored to 442), we see that the amount of bits needed

to represent the number in the memory is not sufficient. The value written in
memory is 0xBA (186).

d=(a/c)*b; Idem. The value written in the memory is even further from the correct value:
0xB8 (184).

f=a*b/c; The result written in the memory is correct (0x1BA, 442), since the number of
bits given to the variable to be represented in memory is sufficient (16 bits).

f=(a*b)/c; Idem.
f=(a/c)*b; There is a problem here. The result written in memory is 440 (6= 442). This is

due to the floor operation after each mathematical operation on the operands.
Since the results are stored as integers, the decimal part is always erased.
We need to minimize the error caused by this, this is why the multiplication
should always be first.

f=a*(b/c); The outcome is even worse for this association. This is again due to the floor
operation on the result after each mathematical operation. The value written
is 402 (6= 442).

f=(a*b)/c; The result written is correct (80).
d=(a/c)*b; Since the intermediate error is too small, the final result is not altered this

time, even with the division first. We get 80 in the memory.

5. The reasons for these differences come from the fact that either the result variable is too small in
bits to store the value, or the intermediate results are floored to the nearest ≤ integer.

For the first reason, as the result is finally stored in a 8bits variable, the 8 MSB are not taken into
account. The result which was 0b1.1011.1010 in binary was written 0b1011.1010.

For the second reason, we must remember that the results are stored as integers in the memo-
ry/registers. Even the intermediate ones. So, if all the intermediate results are floored, we add an
error to the value at each mathematical operation. As an example, let’s consider the association
(f=(a/c)*b;):
At first, a is divided by c: temp = a/c = 201/5 = 40.2→ 40.
Then: f = temp ∗ b = 440 6= 442.

The computation without any parenthesis is calculated in the right order. One conclusion could
be that we don’t need to deal with the order ourselves, the machine decides for us what is the best
one.

6. If we look in the documentation "Programmer’s Reference Manual", we can see that multiplication
takes only 1 cycle, while division takes 18 cycles. So division is the longest operation.

Operation Cycles µs
d=(a*b)/c; 28 0.466667
d=(a/c)*b; 29 0.483333
f=a*b/c; 28 0.466667
f=(a*b)/c; 28 0.466667
f=(a/c)*b; 30 0.5
f=a*(b/c); 30 0.5
f=(a*b)/c; 28 0.466667
d=(a/c)*b; 29 0.483333

We can tell by looking at the table that the longest operations are the one where the result is put in
the 16bits variable, and the division is made first.

2

7.
Method Cycles µs Result
1st method (classical) 253 4.216667 0x39
2nd method 13 0.216667 0x38
3rd method 14 0.233333 0x39

8. In the 3rd method, the "d + 128" is used to correct the rounding. For example, 2.999 + 0.5 (the "+
0.5" coming from the addition of 128) gives 3.499, which allows a better rounding. Indeed, with
the truncation we have 3, not 2.

9. By multiplying every operand by 16, being on 8 bits encoding, the risk of overflow is really high.

10. We have b = 432, which cannot be stored anymore on 8 bits. Therefore we need 16 bits to code b.

11. In the stack frame created at the begining of the main function.

12. In the first working registers (w0, w1 and w2).

13. At the begining of the stack frame created for the function add3().

14. In the stack frame created at the begining of the function add3().

15. They both use the working registers to compute the intermediate results of their computation and
store the final result in w0.

16. This parameter is obviously passed as a reference (the name of the section was very helpful).
Anyway, vectors/arrays are always passed as reference in C.

17. The "cells" of the array are set to given values, obtained from operations on a and b.

18. &a: The & operator returns the address in memory of the following variable.

*i: The * operator is used to get the value at address i in memory. In French, we speak about
"déréférencer".

19. "The swapnum function is used to swap numbers." - Captain Obvious, 2014.
The 2 variables are passed by reference (their addresses). We access to their values by the addresses
(with the * operator). We swap the 2 values by using a temporary variable. We put the first value
(*i) in it. Then we take the value from the second variable and put it in the memory at the address
of the first variable (i). We eventually put the temporary value at the address of the second variable
(j).

20. It is viewed as a normal area, only it’s using the PSV address. It is so beceause that area of the
program memory is mapped to the upper half of the data memory.

21. Using a 16 bits index requires less instructions since there no address extension needed as it’s the
case for a 8 bits index.

3

