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Question 1

The code implements a Fibonacci sequence.

addi 2,0,1 Add 1 to the content of R0 and store the result into R2. (1 is put into R2) Increments PC.

sw 2,1,0 Store the content of R2 in the Data Mem at the address found in R1 with an offset of 0. (1 is put
into address 0)

addi 1,1,1 Add 1 to the content of R1 and store the result into R1. (1 is put into R1)

sw 2,1,0 Store the content of R2 in the Data Mem at the address found in R1 with an offset of 0. (1 is put
into address 1)

addi 1,1,1 Add 1 to the content of R1 and store the result into R1. (2 is put into R1)

add 3,2,2 Add the content of R2 to the content of R2 and stores the result into R3 (2 is put into R3).

sw 3,1,0 Store the content of R3 in the Data Mem at the address found in R1 with an offset of 0. (2 is put
into address 2)

addi 1,1,1 Increments the content of R1.

addi 7,0,7 Put 7 into R7.

beq 7,0,end If the content of R7 is 0, jump to label end, else increment PC.

lw 2,1,-2 Load a word from the data memory in R2. The word to load is at the address contained in R1
minus 2.

add 3,3,2 Add the content of R2 to the content of R3 and stores the result into R3.

sw 3,1,0 Store the content of R3 in the Data Mem at the address found in R1 with an offset of 0.

addi 1,1,1 Add 1 to the content of R1 and store the result into R1.

addi 7,7,-1 Decrement the content of R7 of 1.

beq 0,0,loop Inconditionnal jump to the label loop.

Question 2

See question 1.



Question 3

Question 4

1 //R1 : op 1
2 //R2 : op 2
3 //R3 : mask , then final result
4 //R4 : report flag
5 //R5 : temp 1, used fo R1 NAND R3, loop verification , temporary serious

science , final temp to check flag status
6 //R6 : temp 2, temp 0xFFFF for serious science
7 movi 1,0xEFFF //We want to store a 16-bits word. "addi" is not enough. op1
8 movi 2,0xEFFF // op2
9 addi 3,0,1 //set the mask in R3, initialized at 1

10 nand 5,1,3 //NOT(R1 && R3) in R5
11 nand 6,2,3
12 beq 5,6,flag //If equal , maybe set the flag , iff the result is not 0xFFFF
13 beq 0,0,loop //If not equal , skip the operation setting the flag (label "flag")

and go directly to the loop.
14 flag: movi 5,0xFFFF //put 0xFFFF inside R5. R5 will act as a buffer (its

content does not interest us anymore)
15 beq 5,6,loop //If R6 (the result of R2 NAND mask , which was equal to R1 NAND

mask) == 0xFFFF , it means that at the set bit in the mask (the position of
the bit set to 1 in the mask), we had 0 in both operands (stored in R1 and
R2). That means that we would have the same NAND mask , but no report needed.

16 add 4,3,3 //Set the mask at the mask + the mask (mask stored in R3). Flag.
17 loop: movi 5,0x4000 // Stores the constant to be checked.
18 beq 3,5,final_op //We want to run the loop 14 times , that is , until the mask is

equal to 0100 0000 0000 0000 (0 X4000 in hexa). We’ll increment the mask at
each run and it will eventually end up on 0x4000.

19 add 3,3,3 //Shift the mask. We want to move the set bit one place to the left ,
this is done by mutlplying the mask by 2.

20 nand 5,1,3
21 nand 6,2,3
22 beq 5,6,flag_loop
23 nand 5,4,3 //If not equal proceed to some serious science. Temp(R5) = flag NAND

mask
24 nand 5,5,3 //Temp = temp NAND mask
25 movi 6,0xFFFF



26 beq 5,6,flag_loop //If temp == 0xFFFF , set flag.
27 beq 0,0,loop //If not equal , just ignore the flag and rerun.
28 flag_loop: movi 5,0xFFFF //May be made more efficient by using R7
29 beq 5,6,loop
30 add 4,3,3
31 beq 0,0,loop
32 //Final operations
33 final_op: add 3,3,3 // Update mask
34 nand 5,1,3
35 nand 6,2,3
36 beq 5,6, report
37 nand 5,4,3 //If not equal proceed to some serious science. Temp = flag NAND mask
38 nand 5,5,3 //Temp = temp NAND mask
39 movi 6,0xFFFF
40 beq 5,6,report //If temp == 0xFFFF , report.
41 beq 0,0,end
42 report: movi 5,0xFFFF
43 beq 5,6,end
44 addi 4,0,1 // Carry bit.
45 end: add 3,1,2 // Addition
46 addi 5,0,1 //Set R5, temp , to check the flag
47 beq 5,4,halt
48 addi 4,0,0 //If the msb of the flag array is not set , this means the operation

does not need a report => empty the array
49 beq 0,0,halt
50 halt: halt

Question 5

1 addition_report: nop
2 [code from question 4]
3 halt: beq 0,7,0

Question 6

In general, a synchronous circuit can be made from an asynchronous one by adding bistables between
combinatorial blocks and a clock to synchronize those bistables. It increases the calculus rate but also
the time taken for a particular input to produce an output.
The surface of the processor will increase to allow for the housing of all those new elements. The dis-
tance between different combinatorial blocks has to be minimized to reduce the problem with critical
races.

"The majority of the blocks run in an asynchronous manner. It means that between blocks, there is
no intermediate register controlled by a clock or a control signal. On the other hand, the control unit is
synchronized with the clock, and, the program counter, the register bank and the data memory are syn-
chronized with control signals for the writeback operations. Globally, synchronization is achieved at the
instruction level because the read control signal of the program memory is produced by the clockdriven
control unit." (RISC 16, simulators)

The internal propagation is asynchronous, to make it synchronous synchronisation bistables should
be added.

Question 7

Here are some things we thought would be interesting on the sofware side:



• A more complete set of bitwise instructions, like OR, XOR, AND, NOT, XNOR.

• A multiply/divide instruction.

• The unary minus operator, or the binary minus operator.

• Comparaison operations, like greater than, lower than...

On the hardware side:

• A multiplier for the multiplications.

• A pipeline design for the processor to allow a better calculation rate.

• An interruption system to deal with important procedures.

Question 8

Here is the idea of the algorithm:

1 // R : current result
2 // A : operand A
3 // B : operand B
4
5 counter = 0
6 B’ = B
7
8 loop:
9 if (A.currentBit == 1){

10 R = R + B’
11 }
12
13 B’ = B’ + B’
14
15 if (counter == 16)
16 goto write_res
17 else{
18 A.currentBit -> nextBit
19 counter ++
20 }
21 goto loop
22
23 write_res:
24 put the result in R3 & R4
25
26 }

The idea of the algorithm is to do like the written binary multiplication. At the beginning of the code,
we choose one of the 2 operands, let’s say A (the other is B). A and B are encoded on 16 bits. We loop
on the 16 bits of A. For each bit, if it is set to 1, we add the current B’ to the current result R. At each
iteration, we multiply B’ by 2, and increment the counter. When the counter is equal to 16, we get out
the loop and write the result in the 2 registers.

The code:

1 // M0 : A
2 // M1 : B LSB
3 // M2 : B MSB
4 // M3 : mask
5 // M4 : result LSB
6 // M5 : result MSB



7 // M6 : counter
8 MOVI 1, 2 // Put operant A into R1
9 MOVI 2, 0xFFFF // Put operant B into R2

10 SW 1, 0, 0
11 SW 2, 0, 1
12 ADDI 3, 0, 1
13 SW 3, 0, 3
14
15 loop_prim: LW 2, 0, 3 // Load mask
16 LW 1, 0, 0 // Load A into R1
17 NAND 3, 1, 2 // NAND of mask & A
18 MOVI 4, 0xFFFF // AND between R1 & R2 == 00...0 if A.curBit == 0 => NAND ==

11...1
19 BEQ 3, 4, not_one
20
21 // If curBit == 1, do R = R + B (if curBit == 0, we do nothing)
22
23 LW 1, 0, 1 // B LSB in R1
24 LW 2, 0, 4 // R LSB in R2
25 ADDI 3, 0, 45 // Prepare the call to addition_report
26 JALR 7, 3 // Jump with save of return address to R7
27
28 SW 3, 0, 4 // New result LSB from R3 stored in M4
29 LW 5, 0, 5 // Result MSB loaded in R5
30 ADD 5, 4, 5 // Add R4 (carry bit) & R5 in R5
31 LW 6, 0, 2 // Load B MSB to R6
32 ADD 5, 5, 6 // Add B MSB & result MSB
33 SW 5, 0, 5 // Save new R MSB in M5
34
35 // end
36
37
38
39 // Do B = B + B
40 not_one: LW 1, 0, 1 // B LSB in R1
41 LW 2, 0, 1 // B LSB in R2
42 ADDI 3, 0, 45 // Prepare the call to addition_report
43 JALR 7, 3 // Jump with save of return address to R7
44
45 SW 3, 0, 1 // Save new B LSB to M1
46 LW 5, 0, 2 // Load B MSB to R5
47 ADD 5, 5, 5 // Add B MSB & B MSB and write to R5
48 ADD 5, 4, 5 // Add the carry bit if any
49 SW 5, 0, 2 // Save the new B MSB to M2
50
51 // End of B = B + B
52 // Load counter and increment
53 LW 1, 0, 6
54 ADDI 1, 1, 1
55
56 // Check if counter == 16
57 ADDI 2, 0, 16 // Load 16 into R2
58 BEQ 1, 2, write_res // If last bit , go to write result
59 // Else
60 SW 1, 0, 6 // Save counter
61 LW 1, 0, 3 // Load mask
62 ADD 1, 1, 1 // Mask x2
63 SW 1, 0, 3 // Save mask
64



65 BEQ 0, 0, loop_prim // Unconditional jump to beginning of loop
66
67 write_res: LW 3, 0, 4 // Load result LSB into R3
68 LW 4, 0, 5 // Load result MSB into R4
69 halt
70
71 // Put the LSB of R1 + R2 in R3 with carry bit in R4
72 addition_report: nop
73 //R1 : op 1
74 //R2 : op 2
75 //R3 : mask , then final result
76 //R4 : report flag
77 //R5 : temp 1, used fo R1 NAND R3, loop verification , temporary serious

science , final temp to check flag status
78 //R6 : temp 2, temp 0xFFFF for serious science
79 addi 3,0,1 //set the mask in R3, initialized at 1
80 nand 5,1,3 //NOT(R1 && R3) in R5
81 nand 6,2,3
82 beq 5,6,flag //If equal , maybe set the flag , iff the result is not 0xFFFF
83 beq 0,0,loop //If not equal , skip the operation setting the flag (label "flag")

and go directly to the loop.
84 flag: movi 5,0xFFFF //put 0xFFFF inside R5. R5 will act as a buffer (its

content does not interest us anymore)
85 beq 5,6,loop //If R6 (the result of R2 NAND mask , which was equal to R1 NAND

mask) == 0xFFFF , it means that at the set bit in the mask (the position of
the bit set to 1 in the mask), we had 0 in both operands (stored in R1 and
R2). That means that we would have the same NAND mask , but no report needed.

86 add 4,3,3 //Set the mask at the mask + the mask (mask stored in R3). Flag.
87 loop: movi 5,0x4000 // Stores the constant to be checked.
88 beq 3,5,final_op //We want to run the loop 14 times , that is , until the mask is

equal to 0100 0000 0000 0000 (0 X4000 in hexa). We’ll increment the mask at
each run and it will eventually end up on 0x4000.

89 add 3,3,3 //Shift the mask. We want to move the set bit one place to the left ,
this is done by mutlplying the mask by 2.

90 nand 5,1,3
91 nand 6,2,3
92 beq 5,6,flag_loop
93 nand 5,4,3 //If not equal proceed to some serious science. Temp(R5) = flag NAND

mask
94 nand 5,5,3 //Temp = temp NAND mask
95 movi 6,0xFFFF
96 beq 5,6,flag_loop //If temp == 0xFFFF , set flag.
97 beq 0,0,loop //If not equal , just ignore the flag and rerun.
98 flag_loop: movi 5,0xFFFF //May be made more efficient by using R7
99 beq 5,6,loop

100 add 4,3,3
101 beq 0,0,loop
102 //Final operations
103 final_op: add 3,3,3 // Update mask
104 nand 5,1,3
105 nand 6,2,3
106 beq 5,6, report
107 nand 5,4,3 //If not equal proceed to some serious science. Temp = flag NAND mask
108 nand 5,5,3 //Temp = temp NAND mask
109 movi 6,0xFFFF
110 beq 5,6,report //If temp == 0xFFFF , report.
111 beq 0,0,end
112 report: movi 5,0xFFFF
113 beq 5,6,end



114 addi 4,0,1 // Carry bit.
115 end: add 3,1,2 // Addition
116 addi 5,0,1 //Set R5, temp , to check the flag
117 beq 5,4,halt
118 addi 4,0,0 //If the msb of the flag array is not set , this means the operation

does not need a report => empty the array
119 beq 0,0,halt
120 halt: JALR 0,7

Since the number of calls to the addition function is function of the number of bits set to 1 in the A
operand, the number of cycles needed for the program to compute the value depends on it too. It is thus
best to use the number with the least number of bits set to 1 as the A operand. One possible optimisation
of the code would be to select the best operand as A before the present code is launched.

The largest number of instructions needed is 6258, when the A operand is 0xFFFF. The lowest is
3013, for A = 0. We thus see that multiplication is very time consuming and ressource consuming. An
integrated multiplier would be better, to allow the use of a multiplication instruction.

The url of the latex document, in case you want to copy the code: https://www.writelatex.com/
read/vzxmttrgsfhr.

https://www.writelatex.com/read/vzxmttrgsfhr
https://www.writelatex.com/read/vzxmttrgsfhr

