
Dragomir MILOJEVIC
dragomir.milojevic@ulb.ac.be

ELEC-H-473
Microprocessor architecture

Intel x86 micro-architecture
Intro and NetBurst architecture

Lecture 09

Friday 11 April 14 (-38)

mailto:dragomir.milojevic@ulb.ac.be
mailto:dragomir.milojevic@ulb.ac.be

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Previously ...

• Some basic concepts necessary to understand in more
detailed manner current CPU architectures :

✓ basic execution environment

✓ few technology issues and their impact on the
micro-processor architecture

✓ need for parallelism :
❖ for high-performance multi-media computing (SIMD),
❖ but also more general parallel computing (thread-

level parallelism)

2

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Program for today

• Apply all this on the real example !
• What is better then Intel CPUs ?
✓ Few infos on the company
✓ Brief overview of the past and future Intel’s

micro-architectures
✓ Few words on NetBurst micro-architecture (past)

(Pentium4 micro-processors)
✓ More detailed overview of Sandy/Ivy Bridge (present)

micro-architectures
(i3, i5 and i7 micro-processors)

✓ Power and thermal management in recent micro-
architectures

3

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Intel Corporation
• Funded in 1968
• Largest and highest valued semiconductor co still today
• Mostly involved in CPUs, but they manufacture other chips

too (motherboard chipsets, various controllers, memory,
graphics, etc.)

• In 2012 (big company!):
✓ 100k employees
✓ 55 billion $ revenue
✓ 11 billion $ net income

• Major competitor → AMD
✓ Intel : more then 80% market share

4

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Intel’s strategy from the start
• Combine :
✓ Technology development for (proprietary) IC manufacturing

(AKA process technology)
✓ Circuit design (i.e. IC architecture)

• Keep both aspects for themselves only !!!
→ This was true until now :
FPGAs vendors (Altera) might use their 14nm fab (revolution!)

• At some point in time Tech & Design were considered to be
independent :
✓ Split into : Fab + Fabless companies
→ Intel always ignored that with success

✓ As we move along towards more and more advanced
technologies, these two become very closely coupled

✓ “Alone” approach not sustainable any more, hence the open-up

5

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Intel’s product line
• Focuses mostly on micro-processor market

• Targets mostly high-performance (and thus high-power)
devices for laptops, desktops, servers, data-centers and super-
computing

• In that field they have very little competition ...

• However one thing they missed is low-power applications !

• There was some trials to enter low-power market,
 but this ended with nothing great
✓ ARM already created significant niche in this domain and

established them as major player
❖ Guess what is inside iPhone, iPad etc …

6

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Tick-Tock model: alternate process/design

7
1 2/15/12

Tick-Tock Development Model:
Sustained Microprocessor Leadership

Intel® Core™
Microarchitecture

TOCK

New
Micro-

architecture

Merom

65nm

TICK

Penryn

New
Process
Technology

45nm

Intel® Microarchitecture
Codename Nehalem

TOCK

New
Micro-

architecture

Nehalem

45nm

TICK

Westmere

32nm

New
Process
Technology

Intel® Microarchitecture
Codename Sandy
Bridge

TOCK

Sandy
Bridge

32nm

New
Micro-

architecture

TICK

Ivy
Bridge

22nm

New
Process
Technology

Intel® Microarchitecture
Codename Haswell

TOCK

Haswell

22nm

New
Micro-

architecture

TICK

Future

14nm

New
Process
Technology

• Combine Technology & Design in (extremely!) profitable way that
alternate micro-architecture and technology development →
maintains the product pipeline full all the time:)

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Intel nomenclature disambiguation
• Micro—architecture : key differentiator, defines ISA,

there are 2 major releases :
✓ x86 → laptop/desktop/server

depending on data/address path bit width
❖ CISC
❖ 32 bit and now 64 bit

✓ Itanium → servers/high-performance computing
❖ VLIW based architecture
❖ remained low-volume
❖ still in the roadmap

• Micro-architecture code name
✓ Each of the above will have a specific code name

(e.g. NetBurst or Nehelem)
• Brand name — this what you by in the end of the day
✓ Pentium 4 (NetBurst) or i7 (Nehelem)

8

Friday 11 April 14 (-38)

From 8086
to planned future generations

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Intel micro-architectures and CPUs 1/3
• 8086 — First x86 processor
• 186 — Included a DMA, interrupt controller, timers, and chip select logic
• 286 — First x86 processor with protected mode
• i386 — First 32-bit x86 processor
• i486 — Intel's second-generation of 32-bit x86 processors,

included built in floating point unit and pipelining
• P5 — Original Pentium microprocessors
• P6 — Pentium Pro, Pentium II, Pentium II Xeon, Pentium III, and Pentium III

Xeon
✓ Pentium M — Updated version of Pentium III's P6 micro-architecture designed from the

ground up for mobile computing
✓ Enhanced Pentium M — Updated, dual core version of the Pentium M micro-architecture

used in Core microprocessors
• NetBurst (2001)

✓ Used in Pentium 4, Pentium D, and some Xeon microprocessors
✓ Commonly referred to as P7 although its internal name was P68 (P7 → Itanium)
✓ Later revisions were the first to feature Intel's x86-64 architecture

10

Multi-

core

Single-co
re

Planar

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Intel micro-architectures and CPUs 2/3
• Core (2006) — Re-architected P6-based micro-architecture used

in Core2 and Xeon microprocessors, built in 65nm process
✓ Penryn

❖ 45nm shrink of the Core micro-architecture with larger cache,
faster FSB and clock speeds, and SSE4.1 instructions.

• Nehalem (2008)
✓ 45nm process → Core i7, Core i5, Core i3 microprocessors
✓ Incorporates the off-chip memory controller into the CPU die.

❖ Westmere 32nm shrink of the Nehalem micro-architecture with several
new features

• Sandy Bridge (2011) — 32 nm process
→ Core i7, Core i5, Core i3 2nd generation CPUs
✓ Ivy Bridge (2012)

❖ 22 nm shrink of the Sandy Bridge micro-architecture

11

Multi-c
ore

Multi-G
ate

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Intel micro-architectures and CPUs 3/3
• Haswell — Future Intel micro-architecture, expected 2013, 22nm process
✓ Broadwell — 14nm shrink of the Haswell micro-architecture

❖ expected around 2014 (formerly called Rockwell)

• Skylake — Future Intel micro-architecture, based on a 14nm process
✓ Skymont — 10 nm shrink of the Skylake micro-architecture

• Larrabee — Multi-core in-order x86-64 updated version of P5 micro-architecture
✓ wide SIMD vector units and texture sampling hardware for use in graphics
✓ cores derived from this micro-architecture are called MIC (Many Integrated

Core)

• Bonnell — Low-power, in-order micro-architecture for use in Atom processors
✓ Saltwell — 32 nm shrink of the Bonnell micro-architecture.

12

Future : advanced
tech nodes

Delayed!!!

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Cores roadmap, micro-architectures

13

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 3

CLOCK RATES
Processor microarchitectures can be pipelined to different
degrees. The degree of pipelining is a microarchitectural
decision. The final frequency of a specific processor
pipeline on a given silicon process technology depends
heavily on how deeply the processor is pipelined. When
designing a new processor, a key design decision is the
target design frequency of operation. The frequency
target determines how many gates of logic can be
included per pipeline stage in the design. This then helps
determine how many pipeline stages there are in the
machine.

There are tradeoffs when designing for higher clock rates.
Higher clock rates need deeper pipelines so the efficiency
at the same clock rate goes down. Deeper pipelines make
many things take more clock cycles, such as mispredicted
branches and cache misses, but usually more than make
up for the lower per-clock efficiency by allowing the
design to run at a much higher clock rate. For example, a
50% increase in frequency might buy only a 30% increase
in net performance, but this frequency increase still
provides a significant overall performance increase.
High-frequency design also depends heavily on circuit
design techniques, design methodology, design tools,
silicon process technology, power and thermal
constraints, etc. At higher frequencies, clock skew and
jitter and latch delay become a much bigger percentage of
the clock cycle, reducing the percentage of the clock cycle
usable by actual logic. The deeper pipelines make the
machine more complicated and require it to have deeper
buffering to cover the longer pipelines.

Historical Trend of Processor Frequencies
Figure 2 shows the relative clock frequency of Intel’s last
six processor cores. The vertical axis shows the relative
clock frequency, and the horizontal axis shows the various
processors relative to each other.

1 1 1

1.5

2.5

1

0
0.5

1
1.5

2
2.5

3

286 386 486 P5 P6 P4P
R

el
at

iv
e

Fr
eq

ue
n

cy

Figure 2: Relative frequencies of Intel’s processors

Figure 2 shows that the 286, Intel386™, Intel486™ and
Pentium® (P5) processors had similar pipeline depths–
they would run at similar clock rates if they were all
implemented on the same silicon process technology.
They all have a similar number of gates of logic per clock
cycle. The P6 microarchitecture lengthened the processor
pipelines, allowing fewer gates of logic per pipeline stage,
which delivered significantly higher frequency and
performance. The P6 microarchitecture approximately
doubled the number of pipeline stages compared to the
earlier processors and was able to achieve about a 1.5
times higher frequency on the same process technology.

The NetBurst microarchitecture was designed to have an
even deeper pipeline (about two times the P6
microarchitecture) with even fewer gates of logic per
clock cycle to allow an industry-leading clock rate.
Compared to the P6 family of processors, the Pentium 4
processor was designed with a greater than 1.6 times
higher frequency target for its main clock rate, on the
same process technology. This allows it to operate at a
much higher frequency than the P6 family of processors
on the same silicon process technology. At its
introduction in November 2000, the Pentium 4 processor
was at 1.5 times the frequency of the Pentium III
processor. Over time this frequency delta will increase as
the Pentium 4 processor design matures.

Different parts of the Pentium 4 processor run at different
clock frequencies. The frequency of each section of logic
is set to be appropriate for the performance it needs to
achieve. The highest frequency section (fast clock) was
set equal to the speed of the critical ALU-bypass
execution loop that is used for most instructions in integer
programs. Most other parts of the chip run at half of the
3GHz fast clock since this makes these parts much easier
to design. A few sections of the chip run at a quarter of
this fast-clock frequency making them also easier to
design. The bus logic runs at 100MHz, to match the
system bus needs.

As an example of the pipelining differences, Figure 3
shows a key pipeline in both the P6 and the Pentium 4
processors: the mispredicted branch pipeline. This
pipeline covers the cycles it takes a processor to recover
from a branch that went a different direction than the
early fetch hardware predicted at the beginning of the
machine pipeline. As shown, the Pentium 4 processor has
a 20-stage misprediction pipeline while the P6
microarchitecture has a 10-stage misprediction pipeline.
By dividing the pipeline into smaller pieces, doing less
work during each pipeline stage (fewer gates of logic), the
clock rate can be a lot higher.

 You now know why !

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Intel IA32

14

8/05/2012'

1'

COMP3320/6464:'The'Intel'i86'Story'

'
Jiri'Jaros,'Alistair'Rendell'and'Jun'Zhou'

__________________COMP3320)Lecture)1520)Copyright)©)2012)The)Australian)National)University_______________)

15.1'The'Intel'IAF32'Family'

Proc) Intro) MHz(init)) Trans/Die) Registers) Ext)Bus) Max)
Addr)

Cache)

8086' 1978' 8' 29K' 16GP' 16' 1MB' None'

286' 1982' 12.5' 134K' 16GP' 16' 16MB' None'

386' 1985' 20' 275K' 32GP' 32' 4GB' 8KB'on'chip'

486' 1989' 25' 1.2M' 32GP/80FPU' 64' 4GB' L1:8KB'

Pentium' 1993' 60' 3.1M' 32GP/80FPU' 64' 4GB' L1:16KB'

Pent'Pro' 1995' 200' 5.5M' 32GP/80FPU' 64' 64GB' L1:16KB'
L2:256KB'or'512KB'

Pent'II' 1997' 266' 7M' 32GP/80FPU'
64MMX'

64' 64GB' L1:16KB'
L2:256KB'or'512KB'

Pent'III' 1999' 500' 8.2M' 32GP/80FPU'
64MMX/128XMM'

64' 64GB' L1:'32KB'
L2:'512KB'

Pent'IV' 2000' 1500' 42M' 32GP/80FPU'
64MMX/128XMM'

64' 64GB' L1:12Kuops(trace)'
''''''8KB'data'
L2:256KB'

__________________COMP3320)Lecture)1521)Copyright)©)2012)The)Australian)National)University_______________)

15.2'The'Intel'IAF32'and'Intel64'Family'

Proc) Intro) MHz(init)) Trans/Die) Registers) Ext)Bus) Max)
Addr)

Cache)

Pent'M' 2003' 900' 140M' 32GP/80FPU'
64MMX/128XMM'

64' 64GB' L1:'32KB'
L2:'1M'

Core''
(Duo)'

2006' 1500'
1600'

228M' 32GP/80FPU'
64MMX/128XMM'

64' 64GB' L1:'32KB'
L2:'2M'

Core'2'
(Duo/Quad)'

2006' 1600'
2000'

410M'(2)'
820M'(4)'

32GP/80FPU'
64MMX/128XMM'

2x64' 1TB' L1:'32KB'
L2:'2M/4M'or'6/12MB'

Nehalem''
(2F8'cores)'

2008' 2660' 731M' 32GP/80FPU'
64MMX/128XMM'

3x64' 256TB' L1:32KB'
L2:256KB'
L3:'4MBF12MB'

Sandy'
Bridge'
(2F8'cores)'

2011' 2800' 1.16G'(4)'
2.27G'(8)'

32GP/80FPU'
64MMX/128XMM'
256YMM'

4x64' 256TB'
'

L1:32KB'
L2:256KB'
L3:'8MBF20MB'

__________________COMP3320)Lecture)1522)Copyright)©)2012)The)Australian)National)University_______________)

15.3'���������	��Law'(1971F2011)'

__________________COMP3320)Lecture)1523)Copyright)©)2012)The)Australian)National)University_______________)

8/05/2012'

2'

15.4'Intel'4004'(1971),'2300'Transistors'

__________________COMP3320)Lecture)1524)Copyright)©)2012)The)Australian)National)University_______________)

15.5'Intel'8086'(1978),'29K'Transistors'

__________________COMP3320)Lecture)1525)Copyright)©)2012)The)Australian)National)University_______________)

15.6'Intel'80386'(1985),'275K'Transistors'

__________________COMP3320)Lecture)1526)Copyright)©)2012)The)Australian)National)University_______________)

15.7'Pentium'P6'Architecture'

� Pentium)P6)Architecture)is)basis)for)Pentium)Pro,)Pentium)II,))

and)Pentium)III.)

� Can)still)run)object)code)produced)for)Intel)processors)built)in)1978!!))

� item'it'carries'a'LOT'of'history!'

� 322bit)CISC)processor)with)RISC2like)micro2operations)

� Processor)and)cache)are)packaged)on)a)single)board)

� Two)level)cache)

� L1:'On'chip'J'16K'data'and'16K'instruction,'32'byte'cache'line'size,'4Jway'set'associative'

� L2:'Off'chip'J'256KBJ2MB'depending'on'exact'chip'(runs'at'half'clock'speed)''

'

� Just)one)floating)point)operation)per)cycle)

� general)purpose)registers)and)8)802bit)floating)point)registers)

__________________COMP3320)Lecture)1527)Copyright)©)2012)The)Australian)National)University_______________)

8/05/2012'

6'

15.20'Pentium'IV'(2000),'42M'transistors'

_________________COMP3320)Lecture)15220)Copyright)©)2012)The)Australian)National)University_______________)

15.21'Intel'Tic?Tock'Development'Model'

)
)
)
)
)
)
)
)
)
)

� Tick)) �)Process)technology)advancement)
� Tock))�)New)microarchitecture)

_________________COMP3320)Lecture)15221)Copyright)©)2012)The)Australian)National)University_______________)

15.22'Intel'Core'Architecture'#1'
� Intel®)Wide)Dynamic)Execution)(142stage)pipeline))

� Wider'execution'path'(four'(+)'�������'per'cycle)'
� Advanced'branch'prediction'
� Macro?fusion'

� Roughly'~15%'of'all'instructions'are'conditional'branches'
� Macro?fusion'fuses'a'comparison'and'jump'to'reduce'micro?ops'running'down'the'pipeline'

� Micro?fusion'
� Merges'the'load'and'operation'micro?ops'into'one'macro?op'

� 642Bit)Support)(Core)2))
� Merom,'Conroe,'and'Wood'

� Intel®)Advanced)Memory)Access)
� Improved'prefetching'
� Memory'disambiguation'

� Advance'load'before'a'possible'data'dependency'(pointer'conflict)'
� Earlier'loads'hide'memory'latencies'

_________________COMP3320)Lecture)15222)Copyright)©)2012)The)Australian)National)University_______________)

15.23'Intel'Core'Architecture'#2'
� Intel®)Advanced)Smart)Cache:)Multi2core)optimization)

� Shared'between'the'two'cores'
� Advanced'Transfer'Cache'architecture'
� Reduced'bus'traffic'
� Both'cores'have'full'access'to'the'entire'cache'
� L1D'and'L2'cache'prefetching'

'

� Intelligent)Power)Capability):)Advanced)power)gating)&)Dynamic)power)
coordination)
� Multi?point'demand?based'switching'
� Voltage?Frequency'switching'separation'
� Supports'transitions'to'deeper'sleep'modes'
� Event'blocking'
� Clock'partitioning'and'recovery'
� Dynamic'Bus'Parking'
� During'periods'of'high'performance'execution,'many'parts'of'the'chip'core'can'be'shut''''

off'

_________________COMP3320)Lecture)15223)Copyright)©)2012)The)Australian)National)University_______________)

Operand size & register file
evolution

8086

Pentium4

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

IA32 and Intel64

15

8/05/2012'

1'

COMP3320/6464:'The'Intel'i86'Story'

'
Jiri'Jaros,'Alistair'Rendell'and'Jun'Zhou'

__________________COMP3320)Lecture)1520)Copyright)©)2012)The)Australian)National)University_______________)

15.1'The'Intel'IAF32'Family'

Proc) Intro) MHz(init)) Trans/Die) Registers) Ext)Bus) Max)
Addr)

Cache)

8086' 1978' 8' 29K' 16GP' 16' 1MB' None'

286' 1982' 12.5' 134K' 16GP' 16' 16MB' None'

386' 1985' 20' 275K' 32GP' 32' 4GB' 8KB'on'chip'

486' 1989' 25' 1.2M' 32GP/80FPU' 64' 4GB' L1:8KB'

Pentium' 1993' 60' 3.1M' 32GP/80FPU' 64' 4GB' L1:16KB'

Pent'Pro' 1995' 200' 5.5M' 32GP/80FPU' 64' 64GB' L1:16KB'
L2:256KB'or'512KB'

Pent'II' 1997' 266' 7M' 32GP/80FPU'
64MMX'

64' 64GB' L1:16KB'
L2:256KB'or'512KB'

Pent'III' 1999' 500' 8.2M' 32GP/80FPU'
64MMX/128XMM'

64' 64GB' L1:'32KB'
L2:'512KB'

Pent'IV' 2000' 1500' 42M' 32GP/80FPU'
64MMX/128XMM'

64' 64GB' L1:12Kuops(trace)'
''''''8KB'data'
L2:256KB'

__________________COMP3320)Lecture)1521)Copyright)©)2012)The)Australian)National)University_______________)

15.2'The'Intel'IAF32'and'Intel64'Family'

Proc) Intro) MHz(init)) Trans/Die) Registers) Ext)Bus) Max)
Addr)

Cache)

Pent'M' 2003' 900' 140M' 32GP/80FPU'
64MMX/128XMM'

64' 64GB' L1:'32KB'
L2:'1M'

Core''
(Duo)'

2006' 1500'
1600'

228M' 32GP/80FPU'
64MMX/128XMM'

64' 64GB' L1:'32KB'
L2:'2M'

Core'2'
(Duo/Quad)'

2006' 1600'
2000'

410M'(2)'
820M'(4)'

32GP/80FPU'
64MMX/128XMM'

2x64' 1TB' L1:'32KB'
L2:'2M/4M'or'6/12MB'

Nehalem''
(2F8'cores)'

2008' 2660' 731M' 32GP/80FPU'
64MMX/128XMM'

3x64' 256TB' L1:32KB'
L2:256KB'
L3:'4MBF12MB'

Sandy'
Bridge'
(2F8'cores)'

2011' 2800' 1.16G'(4)'
2.27G'(8)'

32GP/80FPU'
64MMX/128XMM'
256YMM'

4x64' 256TB'
'

L1:32KB'
L2:256KB'
L3:'8MBF20MB'

__________________COMP3320)Lecture)1522)Copyright)©)2012)The)Australian)National)University_______________)

15.3'���������	��Law'(1971F2011)'

__________________COMP3320)Lecture)1523)Copyright)©)2012)The)Australian)National)University_______________)

Sandy Bridge 995 million transistors in a 216 m^2

Memory controller, the PCI Express (PCIe) controller, and video functions are all located within
the processor die

Features
• Uop Micro-operation Cache
• Improved Branch Prediction
• Advanced Vector Extensions (AVX)
• The last level cache (LLC)
• The System Agent
• Turbo Boost
• Quick Sync

Note the bit-width evolution for
the off-chip DRAM

As much L2 as total
addressable memory of 8086

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Intel’s future ?
• Not very clear …
• Desktop will not be there for a very long time
• Market for high-performance micro-processors will most likely

dramatically shrink in the next few years :
❖ It has been already some time that mobile market

(smart-phones + tablets) surpassed PC market

• Will data-center/server/high-performance computing be
enough to feed the monster ?
✓ Very difficult to say … but we can have reasonable doubts
✓ Sign for the winds of change is the fab opening
✓ After all they did cut a deal with Apple ...

• Anyhow for 14, 10 and maybe 7nm they are going to be there for
sure ...

16

Friday 11 April 14 (-38)

NetBurst micro-architecture
(Pentium4)

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Evolution
• Micro-architecture that lasted from 2000 to 2006 ! (long …)
• Tick-tock principal applied but more then this …
• Important micro-architectural changes introduced throughout

different revisions
• Revision (process) Brand pipe depth

Willamette (180nm) Celeron, Pentium 4 20
Northwood (130nm) Celeron, Pentium 4, Pentium 4 HT 20
Gallatin (130nm) Pentium 4 HT Extreme Edition, Xeon 20
Prescott (90nm) Celeron D, Pentium 4, 4 HT, Extreme 31
Cedar Mill (65nm) Celeron D, Pentium 4 31
Smithfield (90nm) Pentium D 31
Presler (65nm) Pentium D 31
42 million transistors, six aluminum metal layers, die=217 mm2,
55W@1.5GHz, 3.2 GB/second system bus

18

Friday 11 April 14 (-38)

mailto:55W@1.5GHz
mailto:55W@1.5GHz

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Global overview
• NetBurst micro-architecture → significant upgrade from P6
✓ Single core, 20 stage pipeline (31 for Prescott) — hyper-pipeline

❖ enables much higher clock rates
➡ early beginnings of thermal issues — abandon of certain high-

speed revisions (see road-map → beginning of multi-core era)
❖ two cycles to drive result across the chip!

✓ Seven integer execution units against 5 for P6
❖ additional integer ALU plus additional address unit

✓ Further extensions of SIMD (MMX + SSE→SSE2)
✓ SMT (HyperThreading) from Prescott revision

• Uses register renaming
• Different parts of the Pentium4 run at different clock speeds
• An aggressive integer ALU operates at twice the clock rate

19

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Architecture overview
1. Bus unit and unified (data & instructions) L2 cache memory
✓ 256kB 8-way set-associative cache with 128B per cache line
✓ write-back strategy
✓ associated with the L2 cache is a hardware prefetcher

❖ monitors data access patterns
and prefetches data
automatically into the L2

❖ attempts to stay 256 bytes
ahead of the current data
access locations

2. In-order front-end
3. Out-of-order execution engine
4. Integer & FP execution core

with multiple ALUs

20

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 2

OVERVIEW OF THE NETBURST™
MICROARCHITECTURE
A fast processor requires balancing and tuning of many
microarchitectural features that compete for processor die
cost and for design and validation efforts. Figure 1 shows
the basic Intel NetBurst microarchitecture of the Pentium
4 processor. As you can see, there are four main sections:
the in-order front end, the out-of-order execution engine,
the integer and floating-point execution units, and the
memory subsystem.

BTB/Branch Prediction

Out-of-order
execution

logic
RetirementFetch/Decode

Trace Cache

Microcode ROM

Front End

Branch History Update

Level 1 Data Cache

Execution Units

Bus Unit

Level 2 Cache

System Bus

Memory Subsystem

Out-of-order Engine

Integer and FP Execution Units

Figure 1: Basic block diagram

In-Order Front End
The in-order front end is the part of the machine that
fetches the instructions to be executed next in the program
and prepares them to be used later in the machine
pipeline. Its job is to supply a high-bandwidth stream of
decoded instructions to the out-of-order execution core,
which will do the actual completion of the instructions.
The front end has highly accurate branch prediction logic
that uses the past history of program execution to
speculate where the program is going to execute next.
The predicted instruction address, from this front-end
branch prediction logic, is used to fetch instruction bytes
from the Level 2 (L2) cache. These IA-32 instruction
bytes are then decoded into basic operations called uops
(micro-operations) that the execution core is able to
execute.

The NetBurst microarchitecture has an advanced form of
a Level 1 (L1) instruction cache called the Execution
Trace Cache. Unlike conventional instruction caches, the
Trace Cache sits between the instruction decode logic and
the execution core as shown in Figure 1. In this location
the Trace Cache is able to store the already decoded IA-
32 instructions or uops. Storing already decoded
instructions removes the IA-32 decoding from the main
execution loop. Typically the instructions are decoded

once and placed in the Trace Cache and then used
repeatedly from there like a normal instruction cache on
previous machines. The IA-32 instruction decoder is only
used when the machine misses the Trace Cache and needs
to go to the L2 cache to get and decode new IA-32
instruction bytes.

Out-of-Order Execution Logic
The out-of-order execution engine is where the
instructions are prepared for execution. The out-of-order
execution logic has several buffers that it uses to smooth
and re-order the flow of instructions to optimize
performance as they go down the pipeline and get
scheduled for execution. Instructions are aggressively re-
ordered to allow them to execute as quickly as their input
operands are ready. This out-of-order execution allows
instructions in the program following delayed instructions
to proceed around them as long as they do not depend on
those delayed instructions. Out-of-order execution allows
the execution resources such as the ALUs and the cache
to be kept as busy as possible executing independent
instructions that are ready to execute.

The retirement logic is what reorders the instructions,
executed in an out-of-order manner, back to the original
program order. This retirement logic receives the
completion status of the executed instructions from the
execution units and processes the results so that the proper
architectural state is committed (or retired) according to
the program order. The Pentium 4 processor can retire up
to three uops per clock cycle. This retirement logic
ensures that exceptions occur only if the operation
causing the exception is the oldest, non-retired operation
in the machine. This logic also reports branch history
information to the branch predictors at the front end of the
machine so they can train with the latest known-good
branch-history information.

Integer and Floating-Point Execution Units
The execution units are where the instructions are actually
executed. This section includes the register files that store
the integer and floating-point data operand values that the
instructions need to execute. The execution units include
several types of integer and floating-point execution units
that compute the results and also the L1 data cache that is
used for most load and store operations.

Memory Subsystem
Figure 1 also shows the memory subsystem. This
includes the L2 cache and the system bus. The L2 cache
stores both instructions and data that cannot fit in the
Execution Trace Cache and the L1 data cache. The
external system bus is connected to the backside of the
second-level cache and is used to access main memory
when the L2 cache has a cache miss, and to access the
system I/O resources.

2.

1.

3.

4.

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

• In-order front-end (1.) feeds the Out-of-Order (OO) Execution
Core (2.) connected to L1 data cache (3.)

• Prefetches instructions that are likely to be executed
• Fetches instructions that have not already been prefetched
• Decodes instructions into u-ops
• Generates microcode for

complex instructions and
special-purpose code (CISC)

• Delivers decoded instructions
from the execution
trace cache (Instruction L1)

• Predicts branches using
advanced prediction algorithm

Front-end

21

Vol. 1 2-9

INTEL® 64 AND IA-32 ARCHITECTURES

2.2.2.1 The Front End Pipeline

The front end supplies instructions in program order to the out-of-order execution core. It performs a number of
functions:
• Prefetches instructions that are likely to be executed
• Fetches instructions that have not already been prefetched
• Decodes instructions into micro-operations
• Generates microcode for complex instructions and special-purpose code
• Delivers decoded instructions from the execution trace cache
• Predicts branches using highly advanced algorithm

The pipeline is designed to address common problems in high-speed, pipelined microprocessors. Two of these
problems contribute to major sources of delays:
• time to decode instructions fetched from the target
• wasted decode bandwidth due to branches or branch target in the middle of cache lines

The operation of the pipeline’s trace cache addresses these issues. Instructions are constantly being fetched and
decoded by the translation engine (part of the fetch/decode logic) and built into sequences of µops called traces.
At any time, multiple traces (representing prefetched branches) are being stored in the trace cache. The trace
cache is searched for the instruction that follows the active branch. If the instruction also appears as the first
instruction in a pre-fetched branch, the fetch and decode of instructions from the memory hierarchy ceases and the
pre-fetched branch becomes the new source of instructions (see Figure 2-2).

The trace cache and the translation engine have cooperating branch prediction hardware. Branch targets are
predicted based on their linear addresses using branch target buffers (BTBs) and fetched as soon as possible.

Figure 2-2. The Intel NetBurst Microarchitecture

Fetch/Decode Trace Cache
Microcode ROM

Execution
Out-Of-Order

Core
Retirement

1st Level Cache
4-way

2nd Level Cache
 8-Way

BTBs/Branch Prediction

Bus Unit

System Bus
Frequently used paths

Less frequently used
paths

Front End

3rd Level Cache
Optional

Branch History Update

OM16521

3.

2.

1.

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Front-end operation
• Instructions are most of the time loaded from Trace Cache

(instruction L1) : instructions are already decoded here !
• If we have cache miss, the instruction will be loaded from L2 and

decoded into micro-ops
• Instruction Translation Lookaside Buffer (ITLB) translates the

virtual memory pointer into physical
addresses needed to access the
L2 cache

• Branch prediction using
Branch Target Buffer (BTB)

• If the instruction is complex, the
correct micro-ops sequence
might come from Microcode ROM

• micro-ops are queued for
out-of-order execution

22

8/05/2012'

5'

15.16'Pentium'IV'(NetBurst'Architecture)'#2'

� Replaces(L1(I,Cache(with(an(Instruction(Trace(Cache(containing(decoded(
uops(

� Branch(target(buffer(eight(times(larger(with(improved(branch(prediction(
algorithm(
� very'long'pipeline'expensive'when'wrong'

� Extends(SIMD(instructions(with(streaming(SIMD(Extension(2((SSE2)(that(
can(be(used(to(perform(double(precision(floating(point(arithmetic(
� peak'FLOPS'is'now'2'times'clock'rate'NOT'1'as'for'Pentium'III'
� to'achieve'this'currently'requires'use'of'Intel'Compiler'

� Greatly(improved(memory(bandwidth(via(400MHz(system(bus(
� Adds(performance(counters!(
� 1.7(GHz(Pentium(IV(outperforms(1GHz(Pentium(III(by(factor(of(1.26(for(

SEPC(CINT200,(but(1.8(for(SPEC(CFP2000(

_________________COMP3320(Lecture(15,16(Copyright(©(2012(The(Australian(National(University_______________(

15.17'Pentium'IV'MicroQArchitecture'

_________________COMP3320(Lecture(15,17(Copyright(©(2012(The(Australian(National(University_______________(

15.18'Pentium'IV'�'Front'End'

Allocate(a(ROB(entry((
and(registers(or(L/S(buffer(
(

_________________COMP3320(Lecture(15,18(Copyright(©(2012(The(Australian(National(University_______________(

!

Instruction'loaded'from'L2'
and'branch'prediction'using'
BTB'
'

x86'instruction'decoded'into'
�ops'
'

Decoded'instruction'read'
from'TC'or'Microcode'ROM'
into'the'�ops'queue'
'
8'standard''x86'register'are'
mapped'on'128'(FX'or'FP)'
architecture'registers'

15.19'Pentium'IV'Scheduler'and'Execution'Units'

_________________COMP3320(Lecture(15,19(Copyright(©(2012(The(Australian(National(University_______________(

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Branch prediction
• Hardware instruction prefetching logic associated with the front-

end BTB fetches IA-32 instruction bytes from the L2 cache that are
predicted to be executed next

• The fetch logic attempts to keep the instruction decoder fed with the
next IA-32 instructions the program needs to execute

• This instruction prefetcher is guided by the branch prediction logic
(branch history table and branch target buffer listed here as the front-
end BTB) to know what to fetch next

• Branch prediction allows the processor to begin fetching and
executing instructions long before the previous branch outcomes are
certain

• The front-end branch predictor is large to capture most of the branch
history information for the program

• If a branch is not found in the BTB, the branch prediction hardware
statically predicts the outcome of the branch based on the direction
of the branch displacement

23

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Allocator
• Out-of-order execution engine has buffers to perform its re-ordering,

tracking, and sequencing operations
• Allocator logic allocates buffers needed by micro-op to execute
• If a needed resource, such as a register file entry, is unavailable for one

of the three uops coming to the Allocator this clock cycle, the Allocator
will stall this part of the machine

• When the resources become available
the Allocator assigns them to the
requesting uops and allows these
satisfied uops to flow down the
pipeline to be executed

• The Allocator also allocates one of
the 128 integer or floating-point
register entries for the result data
value of the uop, and possibly a
load or store buffer used to track one of the 48 loads or 24 stores in the
machine pipeline

24

8/05/2012'

5'

15.16'Pentium'IV'(NetBurst'Architecture)'#2'

� Replaces(L1(I,Cache(with(an(Instruction(Trace(Cache(containing(decoded(
uops(

� Branch(target(buffer(eight(times(larger(with(improved(branch(prediction(
algorithm(
� very'long'pipeline'expensive'when'wrong'

� Extends(SIMD(instructions(with(streaming(SIMD(Extension(2((SSE2)(that(
can(be(used(to(perform(double(precision(floating(point(arithmetic(
� peak'FLOPS'is'now'2'times'clock'rate'NOT'1'as'for'Pentium'III'
� to'achieve'this'currently'requires'use'of'Intel'Compiler'

� Greatly(improved(memory(bandwidth(via(400MHz(system(bus(
� Adds(performance(counters!(
� 1.7(GHz(Pentium(IV(outperforms(1GHz(Pentium(III(by(factor(of(1.26(for(

SEPC(CINT200,(but(1.8(for(SPEC(CFP2000(

_________________COMP3320(Lecture(15,16(Copyright(©(2012(The(Australian(National(University_______________(

15.17'Pentium'IV'MicroQArchitecture'

_________________COMP3320(Lecture(15,17(Copyright(©(2012(The(Australian(National(University_______________(

15.18'Pentium'IV'�'Front'End'

Allocate(a(ROB(entry((
and(registers(or(L/S(buffer(
(

_________________COMP3320(Lecture(15,18(Copyright(©(2012(The(Australian(National(University_______________(

!

Instruction'loaded'from'L2'
and'branch'prediction'using'
BTB'
'

x86'instruction'decoded'into'
�ops'
'

Decoded'instruction'read'
from'TC'or'Microcode'ROM'
into'the'�ops'queue'
'
8'standard''x86'register'are'
mapped'on'128'(FX'or'FP)'
architecture'registers'

15.19'Pentium'IV'Scheduler'and'Execution'Units'

_________________COMP3320(Lecture(15,19(Copyright(©(2012(The(Australian(National(University_______________(

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Register renaming
• The register renaming logic renames the logical IA-32 registers (e.g. EAX)

on a 128-entry physical register file
• This allows the small, 8-entry, architecturally defined IA-32 register file to

be dynamically expanded to use the 128 physical registers
• Renaming process removes false

conflicts caused by multiple instructions
creating their simultaneous but unique
versions of a register such as EAX

• There could be dozens of unique
instances of EAX in the machine
pipeline at one time!

• The renaming logic remembers the
most current version of each register,
such as EAX, in the Register Alias Table
(RAT) so that a new instruction coming
down the pipeline can know where to get the
correct current instance of each of its input operand registers

25

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 7

Pentium III N etBurst

R A T
EAX

EBP
ESP
EDI
ESI
EDX
ECX
EBX

R R F

R O B
D ata Status

Frontend R A T
EAX

EBP
ESP
EDI
ESI
EDX
ECX
EBX

R etirem ent R A T
EAX

EBP
ESP
EDI
ESI
EDX
ECX
EBX

R O B
Status

R F
D ata

Figure 5: Pentium® III vs. Pentium® 4 processor register allocation

The ROB entries, which track uop status, consist only of
the status field and are allocated and deallocated
sequentially. A sequence number assigned to each uop
indicates its relative age. The sequence number points to
the uop’s entry in the ROB array, which is similar to the
P6 microarchitecture. The Register File entry is allocated
from a list of available registers in the 128-entry RF–not
sequentially like the ROB entries. Upon retirement, no
result data values are actually moved from one physical
structure to another.

Uop Scheduling
The uop schedulers determine when a uop is ready to
execute by tracking its input register operands. This is the
heart of the out-of-order execution engine. The uop
schedulers are what allow the instructions to be reordered
to execute as soon as they are ready, while still
maintaining the correct dependencies from the original
program. The NetBurst microarchitecture has two sets of
structures to aid in uop scheduling: the uop queues and
the actual uop schedulers.

There are two uop queues–one for memory operations
(loads and stores) and one for non-memory operations.
Each of these queues stores the uops in strict FIFO (first-
in, first-out) order with respect to the uops in its own
queue, but each queue is allowed to be read out-of-order
with respect to the other queue. This allows the dynamic
out-of-order scheduling window to be larger than just
having the uop schedulers do all the reordering work.

There are several individual uop schedulers that are used
to schedule different types of uops for the various
execution units on the Pentium 4 processor as shown in
Figure 6. These schedulers determine when uops are
ready to execute based on the readiness of their dependent
input register operand sources and the availability of the
execution resources the uops need to complete their
operation.

These schedulers are tied to four different dispatch ports.
There are two execution unit dispatch ports labeled port 0
and port 1 in Figure 6. These ports are fast: they can
dispatch up to two operations each main processor clock
cycle. Multiple schedulers share each of these two
dispatch ports. The fast ALU schedulers can schedule on
each half of the main clock cycle while the other
schedulers can only schedule once per main processor
clock cycle. They arbitrate for the dispatch port when
multiple schedulers have ready operations at once. There
is also a load and a store dispatch port that can dispatch a
ready load and store each clock cycle. Collectively, these
uop dispatch ports can dispatch up to six uops each main
clock cycle. This dispatch bandwidth exceeds the front-
end and retirement bandwidth, of three uops per clock, to
allow for peak bursts of greater than 3 uops per clock and
to allow higher flexibility in issuing uops to different
dispatch ports. Figure 6 also shows the types of
operations that can be dispatched to each port each clock
cycle.

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Execution core
• Specialized 4 port dispatch unit with 7 ALUs → super-scalar
• Floating-Point (x87), MMX, SSE (Streaming SIMD Extension), and

SSE2 (Streaming SIMD Extension 2) operations are executed by the
two floating-point execution blocks

• MMX instructions are 64-bit packed integer SIMD operations that
operate on 8, 16, or 32-bit operands

• SSE instructions are 128-bit packed IEEE single-precision FP
floating-point operations

• SSE2
✓ 128-bit single

and double
precision FP

26

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 8

Exec
Port 0

Exec
Port 1

Load Port Store Port

ALU
(Double
Speed)

FP Move
Memory

Load
Memory

Store
FP

execute
Integer

Operation

ALU
(Double
Speed)

Add/Sub
Logic
Store Data
Branches

FP/SSE Move
FP/SSE Store
FXCH

Add/Sub Shift/rotate FP/SSE-Add
FP/SSE-Mul
FP/SSE-Div
MMX

All loads
LEA
SW prefetch

Store Address

Figure 6: Dispatch ports in the Pentium® 4 processor

Integer and Floating-Point Execution Units
The execution units are where the instructions are actually
executed. The execution units are designed to optimize
overall performance by handling the most common cases
as fast as possible. There are several different execution
units in the NetBurst microarchitecture. The units used to
execute integer operations include the low-latency integer
ALUs, the complex integer instruction unit, the load and
store address generation units, and the L1 data cache.

Floating-Point (x87), MMX, SSE (Streaming SIMD
Extension), and SSE2 (Streaming SIMD Extension 2)
operations are executed by the two floating-point
execution blocks. MMX instructions are 64-bit packed
integer SIMD operations that operate on 8, 16, or 32-bit
operands. The SSE instructions are 128-bit packed IEEE
single-precision floating-point operations. The Pentium 4
processor adds new forms of 128-bit SIMD instructions
called SSE2. The SSE2 instructions support 128-bit
packed IEEE double-precision SIMD floating-point
operations and 128-bit packed integer SIMD operations.
The packed integer operations support 8, 16, 32, and 64-
bit operands. See IA-32 Intel Architecture Software
Developer’s Manual Volume 1: Basic Architecture [3] for
more detail on these SIMD operations.

The Integer and floating-point register files sit between
the schedulers and the execution units. There is a separate
128-entry register file for both the integer and the
floating-point/SSE operations. Each register file also has
a multi-clock bypass network that bypasses or forwards
just-completed results, which have not yet been written
into the register file, to the new dependent uops. This
multi-clock bypass network is needed because of the very
high frequency of the design.

Low Latency Integer ALU
The Pentium 4 processor execution units are designed to
optimize overall performance by handling the most
common cases as fast as possible. The Pentium 4
processor can do fully dependent ALU operations at twice
the main clock rate. The ALU-bypass loop is a key
closed loop in the processor pipeline. Approximately 60-
70% of all uops in typical integer programs use this key
integer ALU loop. Executing these operations at ½ the
latency of the main clock helps speed up program
execution for most programs. Doing the ALU operations
in one half a clock cycle does not buy a 2x performance
increase, but it does improve the performance for most
integer applications.

This high-speed ALU core is kept as small as possible to
minimize the metal length and loading. Only the essential
hardware necessary to perform the frequent ALU
operations is included in this high-speed ALU execution
loop. Functions that are not used very frequently, for
most integer programs, are not put in this key low-latency
ALU loop but are put elsewhere. Some examples of
integer execution hardware put elsewhere are the
multiplier, shifts, flag logic, and branch processing.

The processor does ALU operations with an effective
latency of one-half of a clock cycle. It does this operation
in a sequence of three fast clock cycles (the fast clock
runs at 2x the main clock rate) as shown in Figure 7. In
the first fast clock cycle, the low order 16-bits are
computed and are immediately available to feed the low
16-bits of a dependent operation the very next fast clock
cycle. The high-order 16 bits are processed in the next
fast cycle, using the carry out just generated by the low
16-bit operation. This upper 16-bit result will be
available to the next dependent operation exactly when
needed. This is called a staggered add. The ALU flags

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

micro-op scheduling
• The micro-op schedulers determine when a micro-op is ready to

execute by tracking its input register operands
• They reorder instructions to execute as soon as they are

ready:
✓ uop queues : store in FIFO fashion but read in out-of-order

❖ For memory operations
❖ For non-memory operations (computation)

• Schedulers are tied to four different dispatch ports
• There are two fast exec units dispatch ports: Port0 & Port1
✓ fast: they can dispatch up to two operations each main

processor clock cycle
• Multiple schedulers share each of these two dispatch ports
• Other schedulers can only schedule once per main processor

clock cycle
• There is also a load and a store schedule

27

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Complete CPU

28

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 4

11 22 33 44 55 66 77 88 99 1010
FetchFetch FetchFetch DecodeDecode DecodeDecode DecodeDecode RenameRename ROB RdROB Rd RdyRdy/Sch/Sch DispatchDispatch ExecExec

Basic Pentium III Processor Basic Pentium III Processor MispredictionMisprediction Pipeline Pipeline

Basic Pentium 4 Processor Basic Pentium 4 Processor MispredictionMisprediction Pipeline Pipeline

11 22 33 44 55 66 77 88 99 1010 1111 1212
TC TC Nxt Nxt IPIP TC FetchTC Fetch DriveDrive AllocAlloc RenameRename QueQue SchSch SchSch SchSch

1313 1414
DispDisp DispDisp

1515 1616 1717 1818 1919 2020
RFRF ExEx FlgsFlgs Br CkBr Ck Drive DriveRF RF

Figure 3: Misprediction Pipeline

Allocator / Register RenamerAllocator / Register Renamer

Memory Memory uopuop Queue Queue Integer/Floating Point Integer/Floating Point uop uop QueueQueue

FP Register / BypassFP Register / Bypass

FPFP
MMXMMX
SSESSE
SSE2SSE2

FPFP
MoveMove

Simple FPSimple FP

L1 Data Cache (8Kbyte 4-way)L1 Data Cache (8Kbyte 4-way)

Memory SchedulerMemory Scheduler FastFast Slow/General FP SchedulerSlow/General FP Scheduler

Integer Register File / Bypass NetworkInteger Register File / Bypass Network

ComplexComplex
Instr.Instr.

Slow ALUSlow ALU

SimpleSimple
Instr.Instr.

2x ALU2x ALU

SimpleSimple
Instr.Instr.

2x ALU2x ALU

LoadLoad
AddressAddress

AGUAGU

StoreStore
AddressAddress

AGUAGU

256 bits256 bits

64-bits wide64-bits wide

QuadQuad
PumpedPumped
3.2 GB/s3.2 GB/s

BusBus
InterfaceInterface

UnitUnit

SystemSystem
BusBus

L2 CacheL2 Cache
(256K Byte(256K Byte

8-way)8-way)

48GB/s48GB/s

InstructionInstruction
TLB/TLB/PrefetcherPrefetcher

Front-End BTBFront-End BTB
(4K Entries)(4K Entries)

Instruction DecoderInstruction Decoder

Trace CacheTrace Cache
(12K (12K µµopsops))

Trace Cache BTBTrace Cache BTB
(512 Entries)(512 Entries)

MicrocodeMicrocode
ROMROM

µµopop Queue Queue

Figure 4: Pentium® 4 processor microarchitecture

NETBURST MICROARCHITECTURE
Figure 4 shows a more detailed block diagram of the
NetBurst microarchitecture of the Pentium 4 processor.
The top-left portion of the diagram shows the front end of
the machine. The middle of the diagram illustrates the
out-of-order buffering logic, and the bottom of the
diagram shows the integer and floating-point execution
units and the L1 data cache. On the right of the diagram
is the memory subsystem.

Front End
The front end of the Pentium 4 processor consists of
several units as shown in the upper part of Figure 4. It
has the Instruction TLB (ITLB), the front-end branch
predictor (labeled here Front-End BTB), the IA-32
Instruction Decoder, the Trace Cache, and the Microcode
ROM.

Friday 11 April 14 (-38)

Dragomir MILOJEVIC
dragomir.milojevic@ulb.ac.be

ELEC-H-473
Microprocessor architecture

Intel x86 micro-architecture
Ivy/Sandy Bridge

Lecture 10,11

Friday 11 April 14 (-38)

mailto:dragomir.milojevic@ulb.ac.be
mailto:dragomir.milojevic@ulb.ac.be

Sandy & Ivy Bridge
Micro-architectures

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Overview
• Sandy Bridge (2011)
✓ Used in Core i7, Core i5, Core i3 second generation

microprocessors (succeeding Core architecture)
✓ With 32nm process
→ Tick : new micro-architecture

• Ivy Bridge (2012)
✓ 22 nm shrink of the Sandy Bridge micro-architecture
→ Tock : new technology

• This 22nm technology node brought new technology
feature :
✓ Multi-gate transistors
✓ Main gain : performance per watt

❖ 0.5X power for the same performance
31

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Planar transistor vs. 3D transistor
• Standard CMOS transistors are planar devices
• Shrinking starts to be a trouble since electrical

properties are coupled to geometry
• At one point in time it is complicated

to reduce all areas !
• 3D transistor concept in 1989
• First 3-gate transistor in 2002 & 2006
• 3-D transistors (multi-gate, or FinFETs), a block material

across the top of the channel
• A tri-gate transistor has a channel with three dimensions
• The flow of electricity is on all three sides
• It reduces transistor size on silicon die to the width of the fin

while still being a long enough gate for a good signal
32

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Planar vs. multi-gate

33

3D Tri-gate Transistors
“The easiest way to imagine a Tri-Gate

transistor is to think of it as a normal transistor
folded up in the middle”

•Ivy bridge's three sides of the channel equate to
22 nm (transistor width = 2H + w)
•3-D concept Digh Hisamoto MuGFet in 1989
•First tri-gate transistor was made by Ghau and
Kayalieros in 2002 and 2006.
•3-D transistors are known as FinFET, a block
material across the top of the channel
•A tri-gate transistor has a channel with three
dimensions. The flow of electricity is on all three
sides. It reduces transistor size on silicon die to
the width of the fin while still being a long
enough gate for a good signal.

3D Tri-gate Transistors
“The easiest way to imagine a Tri-Gate

transistor is to think of it as a normal transistor
folded up in the middle”

•Ivy bridge's three sides of the channel equate to
22 nm (transistor width = 2H + w)
•3-D concept Digh Hisamoto MuGFet in 1989
•First tri-gate transistor was made by Ghau and
Kayalieros in 2002 and 2006.
•3-D transistors are known as FinFET, a block
material across the top of the channel
•A tri-gate transistor has a channel with three
dimensions. The flow of electricity is on all three
sides. It reduces transistor size on silicon die to
the width of the fin while still being a long
enough gate for a good signal.

Channel
grows into

vertical direction

Link

3D Tri-gate Transistors
“The easiest way to imagine a Tri-Gate

transistor is to think of it as a normal transistor
folded up in the middle”

•Ivy bridge's three sides of the channel equate to
22 nm (transistor width = 2H + w)
•3-D concept Digh Hisamoto MuGFet in 1989
•First tri-gate transistor was made by Ghau and
Kayalieros in 2002 and 2006.
•3-D transistors are known as FinFET, a block
material across the top of the channel
•A tri-gate transistor has a channel with three
dimensions. The flow of electricity is on all three
sides. It reduces transistor size on silicon die to
the width of the fin while still being a long
enough gate for a good signal.

Friday 11 April 14 (-38)

http://www.intel.com/content/www/us/en/silicon-innovations/standards-22nm-explained-video.html
http://www.intel.com/content/www/us/en/silicon-innovations/standards-22nm-explained-video.html

SandyBridge :
micro-architecture overview

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

CPU → SoC : global overview
1. 2-8 physical cores implementing Intel’s

SMT → HyperThreading
• each physical core correspond to 2

logical cores (2 threads per core)
• TurboBoost Technology

2. Integrated memory controller
2 channel DDR3
(up to 4 channels of DDR3@1600MHz)

3. High bandwidth Least Level Cache
(LLC) → L3

4. SoC interconnect
5. Embedded high-performance graphics

processor (GPU)
6. System Agent — Overall SoC controller
7. SoC IO

35

2

Sandy Bridge: Overview

Sandy Bridge - Intel® Next Generation Microarchitecture

Integrated Memory Controller
2ch DDR3

High Bandwidth
Last Level Cache

Next Generation Processor
Graphics and Media

Next Generation Intel® Turbo
Boost Technology

Intel® Hyper-Threading
Technology

4 Cores / 8 Threads
2 Cores / 4 Threads

Integrates CPU, Graphics, MC,
PCI Express* On Single Chip

Embedded Display Port

Substantial performance
improvement

Intel® Advanced Vector
Extension (Intel® AVX)

High BW/low-latency modular
core/GFX interconnect

Discrete Graphics Support:
1x16 or 2x8

2ch DDR3

x16
PCIe

PECI Interface
To Embedded

Controller

Notebook
DP Port

PCH

Energy Efficiency

Stunning PerformanceStunning Performance

2.
1.

3.

4.

5.
6.

7.

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Hyper-threading in action

36

Physical
cores

Logical
cores

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

How to assign a given thread to a core?

37

#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <stdio.h>
HANDLE *m_threads = NULL;
DWORD_PTR WINAPI threadMain(void* p);

DWORD_PTR GetNumCPUs() { // get n° of logical cores
 SYSTEM_INFO m_si = {0, };
 GetSystemInfo(&m_si);
 return (DWORD_PTR)m_si.dwNumberOfProcessors;
}
int wmain(int argc, wchar_t **args) {
 DWORD_PTR c = GetNumCPUs();
 m_threads = new HANDLE[c];
 for(DWORD_PTR i = 0; i < c; i++) {
 DWORD_PTR m_id = 0;
 DWORD_PTR m_mask = 1 << i;
 m_threads[i] = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)threadMain, (LPVOID)i,
NULL, &m_id); // create threads
 SetThreadAffinityMask(m_threads[i], m_mask); // set thread affinity
 wprintf(L"Creating Thread %d (0x%08x) Assigning to CPU 0x%08x\r\n", i,
(LONG_PTR)m_threads[i], m_mask);
 }
 return 0;
}
DWORD_PTR WINAPI threadMain(void* p) {return 0;}

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Turbo Boost
• Le CPU has few operating points in terms of Vdd, F

✓ Depending on the Vdd we can chose F

❖ Higher Vdd → higher operating F

✓ But both have impact on power since :

❖ P = C x Vdd2 x F

• TurboBoost : allows cores to run much faster then nominal
operating F for a very short amount of time

• Idea behind : uses thermal inertia of the IC + package !

✓ Much slower then processing bursts

✓ Uses whole IC as kind of a heat spreader/sink

38

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

DDR IO — solving memory bottleneck
• Embedded DDR-DRAM Controller
• 2 (up to 4) independent channels for DDR3 & DDR3L

support
✓ Low voltage DDR3 (DDR3L) support for mobile

• DDR Over-clocking
✓ support for up to 2800 MT/s (up from 2133)
✓ Finer grain steps in adjusting frequency
✓ Added 200 MHz

• DDR I/O embedded power gating
✓ Power off DDR I/O when idle

39

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

LLC
• High graphics performance, DRAM power savings, more DRAM

BW available for cores
• LLC is shared among all cores, graphics and media
✓ Graphics driver controls which streams are cached/coherent

• Any agent can access all data in the LLC, independent of who
allocated the line, after memory range checks

• Controlled LLC way allocation mechanism to
prevent thrashing between Core/graphics

• Multiple coherency domains
✓ IADomain - cores (Fully coherent via cross-snoops)
✓ Graphic domain (Graphics virtual caches, flushed to

IA domain by graphics engine)
✓ Non-Coherent domain (Display data, flushed to memory by graphics

engine)

40

45

Sandy Bridge LLC Sharing
• LLC shared among all Cores, Graphics and Media
– Graphics driver controls which streams are cached/coherent
– Any agent can access all data in the LLC, independent of who

allocated the line, after memory range checks
• Controlled LLC way allocation mechanism to prevent

thrashing between Core/graphics
• Multiple coherency domains
– IA Domain (Fully coherent via cross-snoops)
– Graphic domain (Graphics virtual caches,

flushed to IA domain by graphics engine)
– Non-Coherent domain (Display data, flushed to

memory by graphics engine)

Block Diagram Illustrative only. Number of processor cores will vary with different processor models based on the Sandy Bridge
Microarchitecture. Represents client processor implementation. Sandy Bridge - Intel® Next Generation Microarchitecture

Much higher Graphics performance,
DRAM power savings, more DRAM BW

available for Cores

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

On-die Interconnect (it is not a bus!)
• High Bandwidth, Low Latency, Modular
• Ring based interconnect between : Cores,

Graphics CPU, Last Level Cache (LLC)
and System Agent domains

• Composed of 4 rings :
✓ 32 Byte data, Request, Acknowledge & Snoop
✓ Fully pipelined at core frequency/voltage:

bandwidth, latency and power scale with cores
• Massive ring wire routing runs over the LLC

with no area impact (already paid by LLC)
• Access on ring always picks the shortest path to minimize latency
• Distributed arbitration, sophisticated ring protocol to handle

coherency, ordering, and core interface
• Scalable to servers with large number of processors

41

28

Scalable Ring On-die Interconnect
• Ring-based interconnect between Cores, Graphics, Last

Level Cache (LLC) and System Agent domain
• Composed of 4 rings

– 32 Byte Data ring, Request ring, Acknowledge
ring and Snoop ring

– Fully pipelined at core frequency/voltage:
bandwidth, latency and power scale with cores

• Massive ring wire routing runs over the LLC
with no area impact

• Access on ring always picks the shortest
path – minimize latency

• Distributed arbitration, sophisticated ring
protocol to handle coherency, ordering, and
core interface

• Scalable to servers with large number of
processors

Block Diagram Illustrative only. Number of processor cores will vary with different processor models based on the Sandy Bridge
Microarchitecture. Represents client processor implementation.

High Bandwidth, Low Latency, Modular

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

System agent
• An arbiter that handles all accesses from the ring domain

and from I/O (PCIe* and DMI) and routes the accesses to the
right place

• PCIe controllers connect to external PCIe devices
• The PCIe controllers have different

configuration possibilities
• DMI controller connects to the

Platform Controller Hub (PCH)chipset
• Integrated display engine,

Flexible Display Interconnect, and
Display Port, for the internal
graphic operations

• Memory controller
42

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

• An embedded GPU
• Started in Nehalem micro-architecture as

Multi-Chip Module and heterogeneous IC manufacturing
process

• Here embedded into the same IC
(SoC) using the same process technlogy

• Functionality
✓ Multi-media and gaming oriented
✓ HW support for high-performance

video encoding/decoding

Graphics Processor

43

CPU GPU

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Versions (branded as Core i3, i5, i7)

44

Note the impact of the cache memory size on
the total die size

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Dies
• For most dense configuration
✓ Up to 2 billion transistors on the single die for Sandy Bridge
✓ 435mm2 area
✓ This is huge !

45

Sandy Bridge 995 million transistors in a 216 m^2

Memory controller, the PCI Express (PCIe) controller, and video functions are all located within
the processor die

Features
• Uop Micro-operation Cache
• Improved Branch Prediction
• Advanced Vector Extensions (AVX)
• The last level cache (LLC)
• The System Agent
• Turbo Boost
• Quick Sync

Sandy bridge

Ivy bridge

Friday 11 April 14 (-38)

SandyBridge :
core architecture

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Single core pipeline

47

2-4

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

b. Instruction Cache, via activating the legacy decode pipeline

c. L2 cache, last level cache (LLC) and memory, as necessary

2. The micro-ops corresponding to this code are sent to the Rename/retirement
block. They enter into the scheduler in program order, but execute and are de-
allocated from the scheduler according to data-flow order. For simultaneously
ready micro-ops, FIFO ordering is nearly always maintained.
Micro-op execution is executed using execution resources arranged in three
stacks. The execution units in each stack are associated with the data type of
the instruction.
Branch mispredictions are signaled at branch execution. It re-steers the front
end which delivers micro-ops from the correct path. The processor can overlap
work preceding the branch misprediction with work from the following corrected
path.

Figure 2-1. Intel microarchitecture code name Sandy Bridge Pipeline Functionality

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4

256- FP MUL

ALU

V-Shuffle

Scheduler

ALU ALU
JMPV-AddV-Mul

Fdiv
V-Shuffle

Load Load STD
StAddr StAddr

256- FP Add
256- FP Shuf

256- FP Blend

256- FP Bool

Memory Control

32K L1 Data Cache

Allocate/Rename/Retire

Branch Predictor
1.5K uOP Cache

256K L2 Cache (Unified)

32K L1 Instruction Cache Pre-decode
Decoders

Instr Queue

256- FP Blend

Load
Buffers

Store
Buffers

Reorder
Buffers

Line Fill
Buffers

In-order
out-of-order

48 bytes/cycle

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

SandyBridge Pipeline overview
• An in-order issue front-end that fetches instructions and decodes them

into micro-ops (similar to NetBurst)
• The front-end feeds the next pipeline stages with a continuous stream of

micro-ops from the most
likely path that the program
will execute

• An out-of-order,
superscalar execution
engine that dispatches up to
six micro-ops to execution
per cycle

• The allocate/rename block
reorders micro-ops to
“dataflow” order so they can
execute as soon as their
sources are ready and
execution resources are
available

48

2-4

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

b. Instruction Cache, via activating the legacy decode pipeline

c. L2 cache, last level cache (LLC) and memory, as necessary

2. The micro-ops corresponding to this code are sent to the Rename/retirement
block. They enter into the scheduler in program order, but execute and are de-
allocated from the scheduler according to data-flow order. For simultaneously
ready micro-ops, FIFO ordering is nearly always maintained.
Micro-op execution is executed using execution resources arranged in three
stacks. The execution units in each stack are associated with the data type of
the instruction.
Branch mispredictions are signaled at branch execution. It re-steers the front
end which delivers micro-ops from the correct path. The processor can overlap
work preceding the branch misprediction with work from the following corrected
path.

Figure 2-1. Intel microarchitecture code name Sandy Bridge Pipeline Functionality

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4

256- FP MUL

ALU

V-Shuffle

Scheduler

ALU ALU
JMPV-AddV-Mul

Fdiv
V-Shuffle

Load Load STD
StAddr StAddr

256- FP Add
256- FP Shuf

256- FP Blend

256- FP Bool

Memory Control

32K L1 Data Cache

Allocate/Rename/Retire

Branch Predictor
1.5K uOP Cache

256K L2 Cache (Unified)

32K L1 Instruction Cache Pre-decode
Decoders

Instr Queue

256- FP Blend

Load
Buffers

Store
Buffers

Reorder
Buffers

Line Fill
Buffers

In-order
out-of-order

48 bytes/cycle

Front-end

Execution engine

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Front-end
• Similar to Net Burst
• Instruction Cache 32KB

8-way + decoded
instruction cache
(micro-ops)

• Pre-decoding and
instruction queuing

• 3 simple decode engines
• 1 complex decode engine

49

8/05/2012'

9'

15.32'Intel'SandyBridge'Architecture'
� Improved)Nehalem)microarchitecture)

� 2<8'cores'
� 1.5K'uops'cache'in'front'end'(analogy'to'trace'cache),'80%'hit'rate'
� Physical'register'file.'It'does'not'store'operands'in'ROB'(eliminate'data'movements)'
� Cache'broken'into'slices,'connected'with'a'ring'bus'
� Introduces'AVX'instructions'(256b'SIMD)'

� PCI4Express)2.0)on)the)die)
� 32'lines,'8GB'per'line'

� Intel)GPU)integrated)on)the)die)
� The'GPU'shares'L3'cache'
� High'performance'Video'decoder'and'encoder'

� Integrated)Memory)controller)
� Up'o'4'channels'DDR3'1600MHz'

� Inter)Turbo)Technology)2.0)
� Multi'step'frequency'scaling'based'on'actual'power'consumption'
� Uses'accumulated'budget'(when'the'cooler'is'cold,'go'beyond'TDP'limit)'
� Can'clock'down'the'GPU'and'clock'up'the'CPU'for'CPU'intensive'task'and'vice'versa'

)
)

_________________COMP3320)Lecture)15432)Copyright)©)2012)The)Australian)National)University_______________)

15.33'Sandy'Bridge'Organization'

_________________COMP3320)Lecture)15433)Copyright)©)2012)The)Australian)National)University_______________)

15.34'Sandy'Bridge'Front<end'

_________________COMP3320)Lecture)15434)Copyright)©)2012)The)Australian)National)University_______________)

15.35'��
�����	�����
�
���Dispatch'

_________________COMP3320)Lecture)15435)Copyright)©)2012)The)Australian)National)University_______________)

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Front-end functionality
• Legacy DecodePipeline
✓ Decode instructions to micro-ops, delivered to the micro-op queue and

the Decoded ICache
✓ Provides the same decode latency and bandwidth as prior Intel

processors
• Decoded ICache
✓ Provide stream of micro-ops to the micro-op queue
• MSROM
✓ Complex instruction micro-op, accessible from both Legacy Decode

Pipeline and Decoded ICache
• Branch Prediction Unit (BPU)
✓ Determine next block of code to be executed and drive lookup of

Decoded ICache and legacy decode pipelines
• Micro-op queue
✓ Queues micro-ops from the Decoded ICache and the legacy

decode pipeline
50

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Out-of-order engine
• Improve ILP by detecting dependency chains and by executing them

out-of-of order while maintaining the correct data flow
• When a dependency chain is waiting for a resource, such as a

second-level data cache line, it sends micro-ops from another chain
to the execution core

• Designed with power savings in mind too !
• Components :
✓ Renamer — moves micro-ops from the front-end to the execution core;

eliminates false dependencies among micro-ops, thereby enabling out-
of-order execution of micro-ops

✓ Schedule — queues micro-ops until all source operands are ready;
schedules and dispatches ready micro-ops to the available execution
units in as close to a first in first out (FIFO) order as possible

✓ Retirement — retires instructions and micro-ops in order and handles
faults and exceptions

51

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Execution core
• Superscalar core that processes instructions in out-of-order fashion
• The out-of-order core consist of three execution stacks, each stack

encapsulates a certain type of data :
✓ General purpose integer
✓ SIMD integer and X86

floating point
✓ X87 floating

point instructions

• The execution core also
contains connections to and
from the cache hierarchy

• The loaded data is fetched
from the caches and written
back into one of the stacks

• The scheduler can dispatch up to six micro-ops every cycle,
one on each port, specialized for certain functionality

52

2-4

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

b. Instruction Cache, via activating the legacy decode pipeline

c. L2 cache, last level cache (LLC) and memory, as necessary

2. The micro-ops corresponding to this code are sent to the Rename/retirement
block. They enter into the scheduler in program order, but execute and are de-
allocated from the scheduler according to data-flow order. For simultaneously
ready micro-ops, FIFO ordering is nearly always maintained.
Micro-op execution is executed using execution resources arranged in three
stacks. The execution units in each stack are associated with the data type of
the instruction.
Branch mispredictions are signaled at branch execution. It re-steers the front
end which delivers micro-ops from the correct path. The processor can overlap
work preceding the branch misprediction with work from the following corrected
path.

Figure 2-1. Intel microarchitecture code name Sandy Bridge Pipeline Functionality

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4

256- FP MUL

ALU

V-Shuffle

Scheduler

ALU ALU
JMPV-AddV-Mul

Fdiv
V-Shuffle

Load Load STD
StAddr StAddr

256- FP Add
256- FP Shuf

256- FP Blend

256- FP Bool

Memory Control

32K L1 Data Cache

Allocate/Rename/Retire

Branch Predictor
1.5K uOP Cache

256K L2 Cache (Unified)

32K L1 Instruction Cache Pre-decode
Decoders

Instr Queue

256- FP Blend

Load
Buffers

Store
Buffers

Reorder
Buffers

Line Fill
Buffers

In-order
out-of-order

48 bytes/cycle

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Dispatch Port and Execution Stacks

53

2-14

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

! General purpose integer
! SIMD integer and floating point
! X87

The execution core also contains connections to and from the cache hierarchy. The
loaded data is fetched from the caches and written back into one of the stacks.

The scheduler can dispatch up to six micro-ops every cycle, one on each port. The
following table summarizes which operations can be dispatched on which port.

After execution, the data is written back on a writeback bus corresponding to the
dispatch port and the data type of the result. Micro-ops that are dispatched on the
same port but have different latencies may need the write back bus at the same
cycle. In these cases the execution of one of the micro-ops is delayed until the write-
back bus is available. For example, MULPS (five cycles) and BLENDPS (one cycle)
may collide if both are ready for execution on port 0: first the MULPS and four cycles
later the BLENDPS. Intel microarchitecture code name Sandy Bridge eliminates such
collisions as long as the micro-ops write the results to different stacks. For example,
integer ADD (one cycle) can be dispatched four cycles after MULPS (five cycles) since
the integer ADD uses the integer stack while the MULPS uses the FP stack.

When a source of a micro-op executed in one stack comes from a micro-op executed
in another stack, a one- or two-cycle delay can occur. The delay occurs also for tran-
sitions between Intel SSE integer and Intel SSE floating-point operations. In some of

Table 2-3. Dispatch Port and Execution Stacks

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer ALU, Shift ALU,
Fast LEA,
Slow LEA,
MUL

Load_Ad
dr,
Store_ad
dr

Load_Ad
dr
Store_ad
dr

Store_dat
a

ALU,
Shift,
Branch,
Fast LEA

SSE-Int,
AVX-Int,
MMX

Mul, Shift,
STTNI, Int-
Div,
128b-Mov

ALU,
Shuf,
Blend,
128b-Mov

Store_dat
a

ALU, Shuf,
Shift,
Blend,
128b-Mov

SSE-FP,
AVX-
FP_low

Mul, Div,
Blend,
256b-Mov

Add, CVT Store_dat
a

Shuf,
Blend,
256b-Mov

X87,
AVX-
FP_High

Mul, Div,
Blend,
256b-Mov

Add, CVT Store_dat
a

Shuf,
Blend,
256b-Mov

Functional specialisation of execution ports

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Cache hierarchy
• The cache hierarchy contains a first level instruction cache, a

first level data cache (L1 DCache)
• Unified second level (L2) cache for each core

(shared by instructions and data)
• All cores in a physical processor package are connected to a

shared last level cache (LLC) via a ring connection

54

2-16

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.1.5.1 Load and Store Operation Overview

This section provides an overview of the load and store operations.

Loads

When an instruction reads data from a memory location that has write-back (WB)
type, the processor looks for it in the caches and memory. Table 2-6 shows the
access lookup order and best case latency. The actual latency can vary depending on
the cache queue occupancy, LLC ring occupancy, memory components, and their
parameters.

The LLC is inclusive of all cache levels above it - data contained in the core caches
must also reside in the LLC. Each cache line in the LLC holds an indication of the
cores that may have this line in their L2 and L1 caches. If there is an indication in the
LLC that other cores may hold the line of interest and its state might have to modify,
there is a lookup into the L1 DCache and L2 of these cores too. The lookup is called
"clean" if it does not require fetching data from the other core caches. The lookup is

Table 2-5. Cache Parameters

Level Capacity
Associativity
(ways)

Line Size
(bytes)

Write Update
Policy Inclusive

L1 Data 32 KB 8 64 Writeback -

Instruction 32 KB 8 N/A N/A -

L2 (Unified) 256 KB 8 64 Writeback No

Third Level (LLC) Varies, query
CPUID leaf 4

Varies with
cache size

64 Writeback Yes

Table 2-6. Lookup Order and Load Latency

Level Latency (cycles) Bandwidth (per core per cycle)

L1 Data 41

NOTES:
1. Subject to execution core bypass restriction shown in Table 2-4.

2 x16 bytes

L2 (Unified) 12 1 x 32 bytes

Third Level (LLC) 26-312

2. Latency of L3 varies with product segment and sku. The values apply to second generation Intel
Core processor families.

1 x 32 bytes

L2 and L1 DCache in other
cores if applicable

43- clean hit;

60 - dirty hit

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Cache hierarchy
• L1 is private to a core
• L1D cache may be shared by two logical processors if the

processor support HyperThreading
• The L2 cache is shared by instructions and data
• The caches use the services of the
✓ Instruction Translation Lookaside Buffer (ITLB),
✓ Data Translation Lookaside Buffer (DTLB) and
✓ Shared Translation Lookaside Buffer (STLB)

• These are used to translate linear addresses to physical
address

• Data coherency in all cache levels is maintained using the MESI
protocol

55

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Load operation latency

• When an instruction reads data from a memory location that has write-
back (WB) type, the processor looks for it in the caches and memory

• This is best case latency, the actual latency will vary depending on the
cache queue occupancy, LLC ring occupancy, memory components

• Each cache line in the LLC holds an indication of the cores that may have
this line in their L2 and L1 caches → if this is the case lookup
✓ The lookup is called "clean" if it does not require fetching data from the

other core caches
✓ The lookup is called "dirty" if modified data has to be fetched from the

other core caches and transferred to the loading core

56

2-16

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.1.5.1 Load and Store Operation Overview

This section provides an overview of the load and store operations.

Loads

When an instruction reads data from a memory location that has write-back (WB)
type, the processor looks for it in the caches and memory. Table 2-6 shows the
access lookup order and best case latency. The actual latency can vary depending on
the cache queue occupancy, LLC ring occupancy, memory components, and their
parameters.

The LLC is inclusive of all cache levels above it - data contained in the core caches
must also reside in the LLC. Each cache line in the LLC holds an indication of the
cores that may have this line in their L2 and L1 caches. If there is an indication in the
LLC that other cores may hold the line of interest and its state might have to modify,
there is a lookup into the L1 DCache and L2 of these cores too. The lookup is called
"clean" if it does not require fetching data from the other core caches. The lookup is

Table 2-5. Cache Parameters

Level Capacity
Associativity
(ways)

Line Size
(bytes)

Write Update
Policy Inclusive

L1 Data 32 KB 8 64 Writeback -

Instruction 32 KB 8 N/A N/A -

L2 (Unified) 256 KB 8 64 Writeback No

Third Level (LLC) Varies, query
CPUID leaf 4

Varies with
cache size

64 Writeback Yes

Table 2-6. Lookup Order and Load Latency

Level Latency (cycles) Bandwidth (per core per cycle)

L1 Data 41

NOTES:
1. Subject to execution core bypass restriction shown in Table 2-4.

2 x16 bytes

L2 (Unified) 12 1 x 32 bytes

Third Level (LLC) 26-312

2. Latency of L3 varies with product segment and sku. The values apply to second generation Intel
Core processor families.

1 x 32 bytes

L2 and L1 DCache in other
cores if applicable

43- clean hit;

60 - dirty hit

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Store
• When an instruction writes data to a memory that has a write back

memory type, the processor first ensures that it has the line
containing this memory location in its L1 DCache

• If the cache line is not there (and in the right coherency state), the
processor fetches it from the next levels of the memory hierarchy
using a Read for Ownership request in the specified order:
✓ L1 DCache
✓ L2
✓ Last Level Cache
✓ L2 and L1 DCache in other cores, if applicable
✓ Memory

• Once the cache line is in the L1 DCache, the new data is written to it,
and the line is marked as Modified state

• Low latency cost, except if multiple consecutive write cache misses

57

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

SIMD
• Legacy : from MMX to SSE4.2 + AVX
• AVX
✓ Support for 256-bit wide vectors and 16 SIMD register set
✓ 256-bit floating-point instruction set enhancement with up to 2X

performance gain relative to 128-bit Streaming SIMD extensions.
✓ Instruction syntax support for generalized three-operand syntax

to improve instruction programming flexibility and efficient
encoding of new instruction extensions

✓ Enhancement of legacy 128-bit SIMD instruction extensions to
support three-operand syntax and to simplify compiler
vectorization of high-level language expressions.

✓ Support flexible deployment of 256-bit AVX code, 128-bit AVX
code, legacy 128- bit code and scalar code

58

Friday 11 April 14 (-38)

Power and thermal management

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Power in ICs
• Power is a problem in current ICs : limited frequency speed-ups

from node to node because of the power and associated thermal
• Has two components
✓ Dynamic — when gates are toggling (output of the gates changes

due to input changes)
✓ Static — due to leakage, transistors are not perfect switches

• While in the past dynamic component has been pre-dominant,
over the years static power dissipation became as important

• To deal with static power dissipation we need to “cut” the
✓ clock supply — clock gating or reduce clock period
✓ Vdd — power gating

• Most of the ICs implement these techniques; for general purpose
CPU it is important to have an interface with the layers above

60

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Hierarchical management
• Previously done in BIOS → moves from firmware to OS using

dedicated core (here a core 1M transistors! ~ 486)
• Advanced Configuration and Power Interface (ACAPI)
✓ Open standard for platform independent hardware discovery,

configuration, power management and monitoring (Intel, HP, etc.)
✓ Operating System-directed configuration and Power Management

(OSPM)
• Different CPU state classes :
✓ S-State — System Sleep States
→ system level sleep state
❖ C-State — Microprocessor and Package Idle States
→ off, can wake up (4 different states)

➡ P-State — Microprocessor Performance State
→ CPU in active state defines 6 different states (DVFS couples)

✓ T-State — Microprocessor Throttle States
→ we know little about these ...

61

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

S-States — System Sleep States

62

S0

S1

S2

S3

S5

ShutDown

S4

Hibernation
State is saved on HDD,
practically no power
dissipation

CPU + chipset is off
but DRAM remains
powered-up and
contains the saved
execution context

System is active :
any P or C-state

CPU is off, the
execution context is
saved in DRAM

Time to wake-
up increases
but the power
goes down

Minimum
live
state

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

C-States
• When fully powered (CPU is in S0

state) it can be in one of the C-
States:
✓ C0 — cores are in one of the

P-States (that is having one of the
Vdd, Clk couple)
❖ Defines P sub-states

✓ C1 — no execution, all Clk signals
are off (Clk gating)

✓ C3 — caches are empty but Vdd is
applied, core is active

✓ C6 — no Vdd @ core level to avoid
leakage →system state is saved in
LLC practically 0W, core is inactive

63

Datasheet, Volume 1 43

Power Management

4 Power Management

This chapter provides information on the following power management topics:

= Advanced Configuration and Power Interface (ACPI) States
= Processor Core
= Integrated Memory Controller (IMC)
= PCI Express*
= Direct Media Interface (DMI)
= Processor Graphics Controller

Figure 4-1. Power States

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

P-States
• Thermal Design Power (TDP) — maximum amount

of power the cooling system in a computer is required to dissipate
• Processor operates at power levels

higher than rated TDP limit for short durations
✓ P0 is max possible frequency
✓ P1 is guaranteed frequency
✓ Pn is the energy efficient state

• In between OS controls Pn-P1 range
• P1-P0 has significant frequency range (GHz)
✓ P1 to P0 range is fully H/W controlled
✓ User preferences and policies
✓ Single thread or lightly loaded applications

• GFX <>CPU balancing

64

Intel® Turbo,Boost,Technology,2.0

14

� Performance on Demand

� CPU can run faster than base
operating frequency

� Working within power, current and
temperature constraints

� Dependent on number of active cores

� Highest frequency is with 1 core (gets all
the headroom)

� Processor operates at power level
higher than rated upper power limit
(TDP) for short durations

� P0 is Maximum Possible Frequency

� P1 is Guaranteed Frequency

� Pn is Energy Efficient Frequency

OS

Control

& T-

State

Throttle

OS

Visible

States

“Turbo”

H/W

Control

Fr
eq
ue
nc
y

Pn

P1

P0 (1 Core)

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

P-states examples
• P-States implement the idea of

Dynamic Voltage and Frequency Scaling (DVFS)
• Each P-State defines a couple : Vdd, F

(Do you remember the link between the Vdd and F ?)
• P-States and corresponding DVFS couples
✓ Example for a mobile CPU :

65





              
            


      
             
   

               
                 



                
              
         


               


 
         



   
   
   
   
   
   
   




                 

    
                  
             



            
               
                

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Intel TurboBoost Technology
• Performance on Demand
✓ CPU can run faster than base operating frequency

• Working within power, current and temperature constraints

• Dependent on number of active cores

• Highest frequency is with 1 core (gets all the headroom)

• Example: base F=2.5GHz
→ more F if less cores running @ the same time

66

N° de cores N° of Turbo Steps Max F [GHz]
3 or 4 7 3.2 = 2.5+7*100

2 9 3.4 = 2.5+9*100
1 10 3.5 = 2.5+10*100

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

How we can do TurboBost ?
• After idle periods, the system accumulates “energy budget” and

can accommodate high power/performance for up to a minute

• In Steady State conditions the power stabilises on TDP, possibly at
higher then nominal frequency

6714Sandy Bridge - Hot Chips 2011

C0/P0 (Turbo)

After idle periods, the system
accumulates “energy budget” and
can accommodate high
power/performance for up to a
minute

Use accumulated
energy budget to

enhance user
experience

Intel® Turbo Boost Technology 2.0 - Dynamic

Time

Power

Sleep or
Low power

“TDP”

Buildup thermal budget
during idle periods

Max power
1.2-1.3X TDP

30-60 Sec
exponential Average
5 Sec /

30-60 Sec

In Steady State conditions the
power stabilizes on TDP, possibly at
higher then nominal frequency

Friday 11 April 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Thermal management
• On die thermal sensors
✓ 12 sensors on each CPU core + Graphics

processor, ring and System Agent
✓ Operating range 50-100’C

• Temperature reporting
✓ Maximum reading of each functional block
✓ Maximum reading of the total chip

• Used for:
✓ Critical thermal protection

❖ Notification, throttle and shutdown
❖ Programmable throttle temperature

✓ Leakage calculation of power meter
✓ Power optimization algorithms
✓ External system controls (e.g. Fan control)

68

25Sandy Bridge - Hot Chips 2011

Package thermal management

� On die thermal sensors
� 12 sensors on each CPU core + PG, ring and

SA
� Operating range 50-100’C

� Temperature reporting
� Maximum reading of each functional block and

maximum reading of the total chip
� Used for:

� Critical thermal protection
� Notification, throttle and shutdown
� Programmable throttle temperature

� Leakage calculation of power meter
� PCU optimization algorithms
� External system controls (e.g. Fan control)

25Sandy Bridge - Hot Chips 2011

Package thermal management

� On die thermal sensors
� 12 sensors on each CPU core + PG, ring and

SA
� Operating range 50-100’C

� Temperature reporting
� Maximum reading of each functional block and

maximum reading of the total chip
� Used for:

� Critical thermal protection
� Notification, throttle and shutdown
� Programmable throttle temperature

� Leakage calculation of power meter
� PCU optimization algorithms
� External system controls (e.g. Fan control)

Friday 11 April 14 (-38)

