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Previously ...

• Some basic concepts necessary to understand in more 
detailed manner current CPU architectures : 

✓ basic execution environment 

✓ few technology issues and their impact on the
micro-processor architecture

✓ need for parallelism :  
❖ for high-performance multi-media computing (SIMD), 
❖ but also more general parallel computing (thread-

level parallelism)
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Program for today

• Apply all this on the real example !
• What is better then Intel CPUs ?  
✓ Few infos on the company
✓ Brief overview of the past and future Intel’s 

micro-architectures
✓ Few words on NetBurst micro-architecture (past) 

(Pentium4 micro-processors)
✓ More detailed overview of Sandy/Ivy Bridge (present)

micro-architectures
(i3, i5 and i7 micro-processors)

✓ Power and thermal management in recent micro-
architectures
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Intel Corporation
• Funded in 1968 
• Largest and highest valued semiconductor co still today
• Mostly involved in CPUs, but they manufacture other chips 

too (motherboard chipsets, various controllers, memory, 
graphics, etc.)

• In 2012 (big company!):
✓ 100k employees 
✓ 55 billion $ revenue
✓ 11 billion $ net income

• Major competitor → AMD
✓ Intel : more then 80% market share 
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Intel’s strategy from the start
• Combine :
✓ Technology development for (proprietary) IC manufacturing 

(AKA process technology)
✓ Circuit design (i.e. IC architecture)

• Keep both aspects for themselves only !!! 
→ This was true until now : 
FPGAs vendors (Altera) might use their 14nm fab (revolution!)

• At some point in time Tech & Design were considered to be 
independent :
✓ Split into :  Fab + Fabless companies 
→ Intel always ignored that with success

✓ As we move along towards more and more advanced 
technologies, these two become very closely coupled

✓ “Alone” approach not sustainable any more, hence the open-up
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Intel’s product line
• Focuses mostly on micro-processor market 

• Targets mostly high-performance (and thus high-power) 
devices for laptops, desktops, servers, data-centers and super-
computing

• In that field they have very little competition ...

• However one thing they missed is low-power applications !

• There was some trials to enter low-power market,
 but this ended with nothing great 
✓ ARM already created significant niche in this domain and  

established them as major player
❖ Guess what is inside iPhone, iPad etc … 
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Tick-Tock model: alternate process/design

7
1 2/15/12 

Tick-Tock Development Model: 
Sustained Microprocessor Leadership 

Intel® Core™ 
Microarchitecture 

TOCK 
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• Combine Technology & Design in (extremely!) profitable way that 
alternate micro-architecture and technology development → 
maintains the product pipeline full all the time:)
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Intel nomenclature disambiguation 
• Micro—architecture : key differentiator, defines ISA, 

there are 2 major releases : 
✓ x86 → laptop/desktop/server 

depending on data/address path bit width 
❖ CISC 
❖ 32 bit and now 64 bit

✓ Itanium → servers/high-performance computing
❖ VLIW based architecture
❖ remained low-volume
❖ still in the roadmap

• Micro-architecture code name
✓ Each of the above will have a specific code name 

(e.g. NetBurst or Nehelem)
• Brand name — this what you by in the end of the day
✓ Pentium 4 (NetBurst) or i7 (Nehelem)
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Intel micro-architectures and CPUs        1/3
• 8086 — First x86 processor
• 186 — Included a DMA, interrupt controller, timers, and chip select logic
• 286 — First x86 processor with protected mode
• i386 — First 32-bit x86 processor
• i486 — Intel's second-generation of 32-bit x86 processors, 

included built in floating point unit and pipelining 
• P5 — Original Pentium microprocessors
• P6 — Pentium Pro, Pentium II, Pentium II Xeon, Pentium III, and Pentium III 

Xeon 
✓ Pentium M  — Updated version of Pentium III's P6 micro-architecture designed from the 

ground up for mobile computing
✓ Enhanced Pentium M — Updated, dual core version of the Pentium M micro-architecture 

used in Core microprocessors
• NetBurst (2001)

✓ Used in Pentium 4, Pentium D, and some Xeon microprocessors
✓ Commonly referred to as P7 although its internal name was P68 (P7 → Itanium)
✓ Later revisions were the first to feature Intel's x86-64 architecture
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Intel micro-architectures and CPUs       2/3
• Core (2006) — Re-architected P6-based micro-architecture used 

in Core2 and Xeon microprocessors, built in 65nm process
✓ Penryn

❖ 45nm shrink of the Core micro-architecture with larger cache, 
faster FSB and clock speeds, and SSE4.1 instructions.

• Nehalem (2008)
✓ 45nm process → Core i7, Core i5, Core i3 microprocessors
✓ Incorporates the off-chip memory controller into the CPU die.

❖ Westmere 32nm shrink of the Nehalem micro-architecture with several 
new features

• Sandy Bridge (2011) — 32 nm process 
→ Core i7, Core i5, Core i3 2nd generation CPUs
✓ Ivy Bridge (2012)

❖ 22 nm shrink of the Sandy Bridge micro-architecture
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Intel micro-architectures and CPUs        3/3
• Haswell — Future Intel micro-architecture, expected 2013, 22nm process
✓ Broadwell — 14nm shrink of the Haswell micro-architecture

❖ expected around 2014 (formerly called Rockwell)

• Skylake — Future Intel micro-architecture, based on a 14nm process
✓ Skymont — 10 nm shrink of the Skylake micro-architecture

• Larrabee — Multi-core in-order x86-64 updated version of P5 micro-architecture
✓ wide SIMD vector units and texture sampling hardware for use in graphics
✓ cores derived from this micro-architecture are called MIC (Many Integrated 

Core)

• Bonnell — Low-power, in-order micro-architecture for use in Atom processors
✓ Saltwell — 32 nm shrink of the Bonnell micro-architecture.
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Cores roadmap, micro-architectures
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Intel Technology Journal Q1, 2001 

The Microarchitecture of the Pentium 4 Processor 3 

CLOCK RATES 
Processor microarchitectures can be pipelined to different 
degrees.  The degree of pipelining is a microarchitectural 
decision.  The final frequency of a specific processor 
pipeline on a given silicon process technology depends 
heavily on how deeply the processor is pipelined.  When 
designing a new processor, a key design decision is the 
target design frequency of operation.  The frequency 
target determines how many gates of logic can be 
included per pipeline stage in the design.  This then helps 
determine how many pipeline stages there are in the 
machine. 

There are tradeoffs when designing for higher clock rates.  
Higher clock rates need deeper pipelines so the efficiency 
at the same clock rate goes down.  Deeper pipelines make 
many things take more clock cycles, such as mispredicted 
branches and cache misses, but usually more than make 
up for the lower per-clock efficiency by allowing the 
design to run at a much higher clock rate.  For example, a 
50% increase in frequency might buy only a 30% increase 
in net performance, but this frequency increase still 
provides a significant overall performance increase.  
High-frequency design also depends heavily on circuit 
design techniques, design methodology, design tools, 
silicon process technology, power and thermal 
constraints, etc. At higher frequencies, clock skew and 
jitter and latch delay become a much bigger percentage of 
the clock cycle, reducing the percentage of the clock cycle 
usable by actual logic.  The deeper pipelines make the 
machine more complicated and require it to have deeper 
buffering to cover the longer pipelines. 

Historical Trend of Processor Frequencies 
Figure 2 shows the relative clock frequency of Intel’s last 
six processor cores.  The vertical axis shows the relative 
clock frequency, and the horizontal axis shows the various 
processors relative to each other.   
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Figure 2: Relative frequencies of Intel’s processors 

Figure 2 shows that the 286, Intel386™, Intel486™ and 
Pentium® (P5) processors had similar pipeline depths–
they would run at similar clock rates if they were all 
implemented on the same silicon process technology.  
They all have a similar number of gates of logic per clock 
cycle.  The P6 microarchitecture lengthened the processor 
pipelines, allowing fewer gates of logic per pipeline stage, 
which delivered significantly higher frequency and 
performance.  The P6 microarchitecture approximately 
doubled the number of pipeline stages compared to the 
earlier processors and was able to achieve about a 1.5 
times higher frequency on the same process technology.   

The NetBurst microarchitecture was designed to have an 
even deeper pipeline (about two times the P6 
microarchitecture) with even fewer gates of logic per 
clock cycle to allow an industry-leading clock rate. 
Compared to the P6 family of processors, the Pentium 4 
processor was designed with a greater than 1.6 times 
higher frequency target for its main clock rate, on the 
same process technology.  This allows it to operate at a 
much higher frequency than the P6 family of processors 
on the same silicon process technology.  At its 
introduction in November 2000, the Pentium 4 processor 
was at 1.5 times the frequency of the Pentium III 
processor.  Over time this frequency delta will increase as 
the Pentium 4 processor design matures. 

Different parts of the Pentium 4 processor run at different 
clock frequencies.  The frequency of each section of logic 
is set to be appropriate for the performance it needs to 
achieve.  The highest frequency section (fast clock) was 
set equal to the speed of the critical ALU-bypass 
execution loop that is used for most instructions in integer 
programs.  Most other parts of the chip run at half of the 
3GHz fast clock since this makes these parts much easier 
to design.  A few sections of the chip run at a quarter of 
this fast-clock frequency making them also easier to 
design. The bus logic runs at 100MHz, to match the 
system bus needs.  

As an example of the pipelining differences, Figure 3 
shows a key pipeline in both the P6 and the Pentium 4 
processors: the mispredicted branch pipeline. This 
pipeline covers the cycles it takes a processor to recover 
from a branch that went a different direction than the 
early fetch hardware predicted at the beginning of the 
machine pipeline.  As shown, the Pentium 4 processor has 
a 20-stage misprediction pipeline while the P6 
microarchitecture has a 10-stage misprediction pipeline.  
By dividing the pipeline into smaller pieces, doing less 
work during each pipeline stage (fewer gates of logic), the 
clock rate can be a lot higher. 

 

 

 You now know why !
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Intel IA32
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8/05/2012'

1'

COMP3320/6464:'The'Intel'i86'Story'

'
Jiri'Jaros,'Alistair'Rendell'and'Jun'Zhou'

__________________COMP3320)Lecture)1520)Copyright)©)2012)The)Australian)National)University_______________)

15.1'The'Intel'IAF32'Family'

Proc) Intro) MHz(init)) Trans/Die) Registers) Ext)Bus) Max)
Addr)

Cache)

8086' 1978' 8' 29K' 16GP' 16' 1MB' None'

286' 1982' 12.5' 134K' 16GP' 16' 16MB' None'

386' 1985' 20' 275K' 32GP' 32' 4GB' 8KB'on'chip'

486' 1989' 25' 1.2M' 32GP/80FPU' 64' 4GB' L1:8KB'

Pentium' 1993' 60' 3.1M' 32GP/80FPU' 64' 4GB' L1:16KB'

Pent'Pro' 1995' 200' 5.5M' 32GP/80FPU' 64' 64GB' L1:16KB'
L2:256KB'or'512KB'

Pent'II' 1997' 266' 7M' 32GP/80FPU'
64MMX'

64' 64GB' L1:16KB'
L2:256KB'or'512KB'

Pent'III' 1999' 500' 8.2M' 32GP/80FPU'
64MMX/128XMM'

64' 64GB' L1:'32KB'
L2:'512KB'

Pent'IV' 2000' 1500' 42M' 32GP/80FPU'
64MMX/128XMM'

64' 64GB' L1:12Kuops(trace)'
''''''8KB'data'
L2:256KB'

__________________COMP3320)Lecture)1521)Copyright)©)2012)The)Australian)National)University_______________)

15.2'The'Intel'IAF32'and'Intel64'Family'

Proc) Intro) MHz(init)) Trans/Die) Registers) Ext)Bus) Max)
Addr)

Cache)

Pent'M' 2003' 900' 140M' 32GP/80FPU'
64MMX/128XMM'

64' 64GB' L1:'32KB'
L2:'1M'

Core''
(Duo)'

2006' 1500'
1600'

228M' 32GP/80FPU'
64MMX/128XMM'

64' 64GB' L1:'32KB'
L2:'2M'

Core'2'
(Duo/Quad)'

2006' 1600'
2000'

410M'(2)'
820M'(4)'

32GP/80FPU'
64MMX/128XMM'

2x64' 1TB' L1:'32KB'
L2:'2M/4M'or'6/12MB'

Nehalem''
(2F8'cores)'

2008' 2660' 731M' 32GP/80FPU'
64MMX/128XMM'

3x64' 256TB' L1:32KB'
L2:256KB'
L3:'4MBF12MB'

Sandy'
Bridge'
(2F8'cores)'

2011' 2800' 1.16G'(4)'
2.27G'(8)'

32GP/80FPU'
64MMX/128XMM'
256YMM'

4x64' 256TB'
'

L1:32KB'
L2:256KB'
L3:'8MBF20MB'

__________________COMP3320)Lecture)1522)Copyright)©)2012)The)Australian)National)University_______________)

15.3'���������	��Law'(1971F2011)'

__________________COMP3320)Lecture)1523)Copyright)©)2012)The)Australian)National)University_______________)

8/05/2012'

2'

15.4'Intel'4004'(1971),'2300'Transistors'

__________________COMP3320)Lecture)1524)Copyright)©)2012)The)Australian)National)University_______________)

15.5'Intel'8086'(1978),'29K'Transistors'

__________________COMP3320)Lecture)1525)Copyright)©)2012)The)Australian)National)University_______________)

15.6'Intel'80386'(1985),'275K'Transistors'

__________________COMP3320)Lecture)1526)Copyright)©)2012)The)Australian)National)University_______________)

15.7'Pentium'P6'Architecture'

� Pentium)P6)Architecture)is)basis)for)Pentium)Pro,)Pentium)II,))

and)Pentium)III.)

� Can)still)run)object)code)produced)for)Intel)processors)built)in)1978!!))

� item'it'carries'a'LOT'of'history!'

� 322bit)CISC)processor)with)RISC2like)micro2operations)

� Processor)and)cache)are)packaged)on)a)single)board)

� Two)level)cache)

� L1:'On'chip'J'16K'data'and'16K'instruction,'32'byte'cache'line'size,'4Jway'set'associative'

� L2:'Off'chip'J'256KBJ2MB'depending'on'exact'chip'(runs'at'half'clock'speed)''

'

� Just)one)floating)point)operation)per)cycle)

� general)purpose)registers)and)8)802bit)floating)point)registers)

__________________COMP3320)Lecture)1527)Copyright)©)2012)The)Australian)National)University_______________)

8/05/2012'

6'

15.20'Pentium'IV'(2000),'42M'transistors'

_________________COMP3320)Lecture)15220)Copyright)©)2012)The)Australian)National)University_______________)

15.21'Intel'Tic?Tock'Development'Model'

)
)
)
)
)
)
)
)
)
)

� Tick)) �)Process)technology)advancement)
� Tock))�)New)microarchitecture)

_________________COMP3320)Lecture)15221)Copyright)©)2012)The)Australian)National)University_______________)

15.22'Intel'Core'Architecture'#1'
� Intel®)Wide)Dynamic)Execution)(142stage)pipeline))

� Wider'execution'path'(four'(+)'�������'per'cycle)'
� Advanced'branch'prediction'
� Macro?fusion'

� Roughly'~15%'of'all'instructions'are'conditional'branches'
� Macro?fusion'fuses'a'comparison'and'jump'to'reduce'micro?ops'running'down'the'pipeline'

� Micro?fusion'
� Merges'the'load'and'operation'micro?ops'into'one'macro?op'

� 642Bit)Support)(Core)2))
� Merom,'Conroe,'and'Wood'

� Intel®)Advanced)Memory)Access)
� Improved'prefetching'
� Memory'disambiguation'

� Advance'load'before'a'possible'data'dependency'(pointer'conflict)'
� Earlier'loads'hide'memory'latencies'

_________________COMP3320)Lecture)15222)Copyright)©)2012)The)Australian)National)University_______________)

15.23'Intel'Core'Architecture'#2'
� Intel®)Advanced)Smart)Cache:)Multi2core)optimization)

� Shared'between'the'two'cores'
� Advanced'Transfer'Cache'architecture'
� Reduced'bus'traffic'
� Both'cores'have'full'access'to'the'entire'cache'
� L1D'and'L2'cache'prefetching'

'

� Intelligent)Power)Capability):)Advanced)power)gating)&)Dynamic)power)
coordination)
� Multi?point'demand?based'switching'
� Voltage?Frequency'switching'separation'
� Supports'transitions'to'deeper'sleep'modes'
� Event'blocking'
� Clock'partitioning'and'recovery'
� Dynamic'Bus'Parking'
� During'periods'of'high'performance'execution,'many'parts'of'the'chip'core'can'be'shut''''

off'

_________________COMP3320)Lecture)15223)Copyright)©)2012)The)Australian)National)University_______________)

Operand size & register file 
evolution

8086

Pentium4
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IA32 and Intel64
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8/05/2012'

1'

COMP3320/6464:'The'Intel'i86'Story'

'
Jiri'Jaros,'Alistair'Rendell'and'Jun'Zhou'

__________________COMP3320)Lecture)1520)Copyright)©)2012)The)Australian)National)University_______________)

15.1'The'Intel'IAF32'Family'

Proc) Intro) MHz(init)) Trans/Die) Registers) Ext)Bus) Max)
Addr)

Cache)

8086' 1978' 8' 29K' 16GP' 16' 1MB' None'

286' 1982' 12.5' 134K' 16GP' 16' 16MB' None'

386' 1985' 20' 275K' 32GP' 32' 4GB' 8KB'on'chip'

486' 1989' 25' 1.2M' 32GP/80FPU' 64' 4GB' L1:8KB'

Pentium' 1993' 60' 3.1M' 32GP/80FPU' 64' 4GB' L1:16KB'

Pent'Pro' 1995' 200' 5.5M' 32GP/80FPU' 64' 64GB' L1:16KB'
L2:256KB'or'512KB'

Pent'II' 1997' 266' 7M' 32GP/80FPU'
64MMX'

64' 64GB' L1:16KB'
L2:256KB'or'512KB'

Pent'III' 1999' 500' 8.2M' 32GP/80FPU'
64MMX/128XMM'

64' 64GB' L1:'32KB'
L2:'512KB'

Pent'IV' 2000' 1500' 42M' 32GP/80FPU'
64MMX/128XMM'

64' 64GB' L1:12Kuops(trace)'
''''''8KB'data'
L2:256KB'

__________________COMP3320)Lecture)1521)Copyright)©)2012)The)Australian)National)University_______________)

15.2'The'Intel'IAF32'and'Intel64'Family'

Proc) Intro) MHz(init)) Trans/Die) Registers) Ext)Bus) Max)
Addr)

Cache)

Pent'M' 2003' 900' 140M' 32GP/80FPU'
64MMX/128XMM'

64' 64GB' L1:'32KB'
L2:'1M'

Core''
(Duo)'

2006' 1500'
1600'

228M' 32GP/80FPU'
64MMX/128XMM'

64' 64GB' L1:'32KB'
L2:'2M'

Core'2'
(Duo/Quad)'

2006' 1600'
2000'

410M'(2)'
820M'(4)'

32GP/80FPU'
64MMX/128XMM'

2x64' 1TB' L1:'32KB'
L2:'2M/4M'or'6/12MB'

Nehalem''
(2F8'cores)'

2008' 2660' 731M' 32GP/80FPU'
64MMX/128XMM'

3x64' 256TB' L1:32KB'
L2:256KB'
L3:'4MBF12MB'

Sandy'
Bridge'
(2F8'cores)'

2011' 2800' 1.16G'(4)'
2.27G'(8)'

32GP/80FPU'
64MMX/128XMM'
256YMM'

4x64' 256TB'
'

L1:32KB'
L2:256KB'
L3:'8MBF20MB'

__________________COMP3320)Lecture)1522)Copyright)©)2012)The)Australian)National)University_______________)

15.3'���������	��Law'(1971F2011)'

__________________COMP3320)Lecture)1523)Copyright)©)2012)The)Australian)National)University_______________)

Sandy Bridge 995 million transistors in a 216 m^2

Memory controller, the PCI Express (PCIe) controller, and video functions are all located within 
the processor die

Features
• Uop Micro-operation Cache
• Improved Branch Prediction 
• Advanced Vector Extensions (AVX)
• The last level cache (LLC)
• The System Agent
• Turbo Boost
• Quick Sync

Note the bit-width evolution for
the off-chip DRAM

As much L2 as total 
addressable memory of 8086
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Intel’s future ?
• Not very clear …
• Desktop will not be there for a very long time
• Market for high-performance micro-processors will most likely 

dramatically shrink in the next few years :
❖ It has been already some time that mobile market 

(smart-phones + tablets) surpassed PC market 

• Will data-center/server/high-performance computing be 
enough to feed the monster ? 
✓ Very difficult to say … but we can have reasonable doubts
✓ Sign for the winds of change is the fab opening
✓ After all they did cut a deal with Apple ... 

• Anyhow for 14, 10 and maybe 7nm they are going to be there for 
sure ...

16
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Evolution
• Micro-architecture that lasted from 2000 to 2006 !  (long …)
• Tick-tock principal applied but more then this …
• Important micro-architectural changes introduced throughout 

different revisions
• Revision (process)     Brand                                    pipe depth

Willamette (180nm)           Celeron, Pentium 4                                    20
Northwood (130nm)           Celeron, Pentium 4, Pentium 4 HT            20
Gallatin (130nm)                Pentium 4 HT Extreme Edition, Xeon        20
Prescott (90nm)                Celeron D, Pentium 4, 4 HT, Extreme         31
Cedar Mill (65nm)             Celeron D, Pentium 4                                  31
Smithfield (90nm)              Pentium D                                                   31
Presler (65nm)                  Pentium D                                                   31
42 million transistors, six aluminum metal layers, die=217 mm2, 
55W@1.5GHz, 3.2 GB/second system bus 

18
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Global overview
• NetBurst micro-architecture → significant upgrade from P6
✓ Single core, 20 stage pipeline (31 for Prescott) — hyper-pipeline

❖ enables much higher clock rates 
➡ early beginnings of thermal issues — abandon of certain high-

speed revisions (see road-map → beginning of multi-core era)
❖ two cycles to drive result across the chip!

✓ Seven integer execution units against 5 for P6
❖ additional integer ALU plus additional address unit

✓ Further extensions of SIMD (MMX + SSE→SSE2)
✓ SMT (HyperThreading) from Prescott revision

• Uses register renaming 
• Different parts of the Pentium4 run at different clock speeds
• An aggressive integer ALU operates at twice the clock rate
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Architecture overview
1. Bus unit and unified (data & instructions) L2 cache memory
✓ 256kB 8-way set-associative cache with 128B per cache line
✓ write-back strategy
✓ associated with the L2 cache is a hardware prefetcher

❖ monitors data access patterns 
and prefetches data 
automatically into the L2

❖ attempts to stay 256 bytes 
ahead of the current data 
access locations

2. In-order front-end
3. Out-of-order execution engine
4. Integer & FP execution core 

with multiple ALUs
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OVERVIEW OF THE NETBURST™ 
MICROARCHITECTURE  
A fast processor requires balancing and tuning of many 
microarchitectural features that compete for processor die 
cost and for design and validation efforts.  Figure 1 shows 
the basic Intel NetBurst microarchitecture of the Pentium 
4 processor.  As you can see, there are four main sections: 
the in-order front end, the out-of-order execution engine, 
the integer and floating-point execution units, and the 
memory subsystem. 

BTB/Branch Prediction

Out-of-order 
execution 

logic
RetirementFetch/Decode

Trace Cache

Microcode ROM

Front End

Branch History Update

Level 1 Data Cache

Execution Units 

Bus Unit

Level 2 Cache

System Bus

Memory Subsystem

Out-of-order Engine

Integer and FP Execution Units

 

Figure 1: Basic block diagram 

In-Order Front End 
The in-order front end is the part of the machine that 
fetches the instructions to be executed next in the program 
and prepares them to be used later in the machine 
pipeline.  Its job is to supply a high-bandwidth stream of 
decoded instructions to the out-of-order execution core, 
which will do the actual completion of the instructions.  
The front end has highly accurate branch prediction logic 
that uses the past history of program execution to 
speculate where the program is going to execute next.  
The predicted instruction address, from this front-end 
branch prediction logic, is used to fetch instruction bytes 
from the Level 2 (L2) cache.  These IA-32 instruction 
bytes are then decoded into basic operations called uops 
(micro-operations) that the execution core is able to 
execute. 

The NetBurst microarchitecture has an advanced form of 
a Level 1 (L1) instruction cache called the Execution 
Trace Cache.  Unlike conventional instruction caches, the 
Trace Cache sits between the instruction decode logic and 
the execution core as shown in Figure 1.  In this location 
the Trace Cache is able to store the already decoded IA-
32 instructions or uops.  Storing already decoded 
instructions removes the IA-32 decoding from the main 
execution loop.  Typically the instructions are decoded 

once and placed in the Trace Cache and then used 
repeatedly from there like a normal instruction cache on 
previous machines.  The IA-32 instruction decoder is only 
used when the machine misses the Trace Cache and needs 
to go to the L2 cache to get and decode new IA-32 
instruction bytes. 

Out-of-Order Execution Logic 
The out-of-order execution engine is where the 
instructions are prepared for execution.  The out-of-order 
execution logic has several buffers that it uses to smooth 
and re-order the flow of instructions to optimize 
performance as they go down the pipeline and get 
scheduled for execution.  Instructions are aggressively re-
ordered to allow them to execute as quickly as their input 
operands are ready.  This out-of-order execution allows 
instructions in the program following delayed instructions 
to proceed around them as long as they do not depend on 
those delayed instructions.  Out-of-order execution allows 
the execution resources such as the ALUs and the cache 
to be kept as busy as possible executing independent 
instructions that are ready to execute.  

The retirement logic is what reorders the instructions, 
executed in an out-of-order manner, back to the original 
program order.  This retirement logic receives the 
completion status of the executed instructions from the 
execution units and processes the results so that the proper 
architectural state is committed (or retired) according to 
the program order.  The Pentium 4 processor can retire up 
to three uops per clock cycle.  This retirement logic 
ensures that exceptions occur only if the operation 
causing the exception is the oldest, non-retired operation 
in the machine.  This logic also reports branch history 
information to the branch predictors at the front end of the 
machine so they can train with the latest known-good 
branch-history information. 

Integer and Floating-Point Execution Units 
The execution units are where the instructions are actually 
executed.  This section includes the register files that store 
the integer and floating-point data operand values that the 
instructions need to execute.  The execution units include 
several types of integer and floating-point execution units 
that compute the results and also the L1 data cache that is 
used for most load and store operations. 

Memory Subsystem 
Figure 1 also shows the memory subsystem.  This 
includes the L2 cache and the system bus.  The L2 cache 
stores both instructions and data that cannot fit in the 
Execution Trace Cache and the L1 data cache.  The 
external system bus is connected to the backside of the 
second-level cache and is used to access main memory 
when the L2 cache has a cache miss, and to access the 
system I/O resources. 

2.

1.

3.

4.
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• In-order front-end (1.) feeds the Out-of-Order (OO) Execution 
Core (2.) connected to L1 data cache (3.)

• Prefetches instructions that are likely to be executed
• Fetches instructions that have not already been prefetched
• Decodes instructions into u-ops
• Generates microcode for

complex instructions and 
special-purpose code (CISC)

• Delivers decoded instructions 
from the execution 
trace cache (Instruction L1)

• Predicts branches using 
advanced prediction algorithm

Front-end

21
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2.2.2.1  The Front End Pipeline

The front end supplies instructions in program order to the out-of-order execution core. It performs a number of 
functions:
• Prefetches instructions that are likely to be executed
• Fetches instructions that have not already been prefetched
• Decodes instructions into micro-operations
• Generates microcode for complex instructions and special-purpose code
• Delivers decoded instructions from the execution trace cache
• Predicts branches using highly advanced algorithm

The pipeline is designed to address common problems in high-speed, pipelined microprocessors. Two of these 
problems contribute to major sources of delays:
• time to decode instructions fetched from the target
• wasted decode bandwidth due to branches or branch target in the middle of cache lines

The operation of the pipeline’s trace cache addresses these issues. Instructions are constantly being fetched and 
decoded by the translation engine (part of the fetch/decode logic) and built into sequences of µops called traces. 
At any time, multiple traces (representing prefetched branches) are being stored in the trace cache. The trace 
cache is searched for the instruction that follows the active branch. If the instruction also appears as the first 
instruction in a pre-fetched branch, the fetch and decode of instructions from the memory hierarchy ceases and the 
pre-fetched branch becomes the new source of instructions (see Figure 2-2).

The trace cache and the translation engine have cooperating branch prediction hardware. Branch targets are 
predicted based on their linear addresses using branch target buffers (BTBs) and fetched as soon as possible.

Figure 2-2.  The Intel NetBurst Microarchitecture
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Retirement
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4-way

2nd Level Cache
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Front-end operation
• Instructions are most of the time loaded from Trace Cache 

(instruction L1) : instructions are already decoded here !
• If we have cache miss, the instruction will be loaded from L2 and 

decoded into micro-ops
• Instruction Translation Lookaside Buffer (ITLB) translates the 

virtual memory pointer into physical
addresses needed to access the 
L2 cache

• Branch prediction using 
Branch Target Buffer (BTB)

• If the instruction is complex, the 
correct micro-ops sequence  
might come from Microcode ROM 

• micro-ops are queued for 
out-of-order execution
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Branch prediction
• Hardware instruction prefetching logic associated with the front-

end BTB fetches IA-32 instruction bytes from the L2 cache that are 
predicted to be executed next

• The fetch logic attempts to keep the instruction decoder fed with the 
next IA-32 instructions the program needs to execute

• This instruction prefetcher is guided by the branch prediction logic 
(branch history table and branch target buffer listed here as the front-
end BTB) to know what to fetch next

• Branch prediction allows the processor to begin fetching and 
executing instructions long before the previous branch outcomes are 
certain

• The front-end branch predictor is large to capture most of the branch 
history information for the program

• If a branch is not found in the BTB, the branch prediction hardware 
statically predicts the outcome of the branch based on the direction 
of the branch displacement

23

Friday 11 April 14 (-38)



Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Allocator
• Out-of-order execution engine has buffers to perform its re-ordering, 

tracking, and sequencing operations
• Allocator logic allocates buffers needed by micro-op to execute
• If a needed resource, such as a register file entry, is unavailable for one 

of the three uops coming to the Allocator this clock cycle, the Allocator 
will stall this part of the machine

• When the resources become available
the Allocator assigns them to the 
requesting uops and allows these 
satisfied uops to flow down the 
pipeline to be executed

• The Allocator also allocates one of 
the 128 integer or floating-point 
register entries for the result data 
value of the uop, and possibly a 
load or store buffer used to track one of the 48 loads or 24 stores in the 
machine pipeline
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Register renaming
• The register renaming logic renames the logical IA-32 registers (e.g. EAX) 

on a 128-entry physical register file
• This allows the small, 8-entry, architecturally defined IA-32 register file to 

be dynamically expanded to use the 128 physical registers 
• Renaming process removes false 

conflicts caused by multiple instructions 
creating their simultaneous but unique 
versions of a register such as EAX

• There could be dozens of unique 
instances of EAX in the machine 
pipeline at one time!

• The renaming logic remembers the 
most current version of each register, 
such as EAX, in the Register Alias Table 
(RAT) so that a new instruction coming 
down the pipeline can know where to get the 
correct current instance of each of its input operand registers
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Figure 5: Pentium® III vs. Pentium® 4 processor register allocation 

The ROB entries, which track uop status, consist only of 
the status field and are allocated and deallocated 
sequentially.  A sequence number assigned to each uop 
indicates its relative age.  The sequence number points to 
the uop’s entry in the ROB array, which is similar to the 
P6 microarchitecture.  The Register File entry is allocated 
from a list of available registers in the 128-entry RF–not 
sequentially like the ROB entries.  Upon retirement, no 
result data values are actually moved from one physical 
structure to another. 

Uop Scheduling 
The uop schedulers determine when a uop is ready to 
execute by tracking its input register operands.  This is the 
heart of the out-of-order execution engine.  The uop 
schedulers are what allow the instructions to be reordered 
to execute as soon as they are ready, while still 
maintaining the correct dependencies from the original 
program.  The NetBurst microarchitecture has two sets of 
structures to aid in uop scheduling: the uop queues and 
the actual uop schedulers. 

There are two uop queues–one for memory operations 
(loads and stores) and one for non-memory operations.  
Each of these queues stores the uops in strict FIFO (first-
in, first-out) order with respect to the uops in its own 
queue, but each queue is allowed to be read out-of-order 
with respect to the other queue.  This allows the dynamic 
out-of-order scheduling window to be larger than just 
having the uop schedulers do all the reordering work.   

There are several individual uop schedulers that are used 
to schedule different types of uops for the various 
execution units on the Pentium 4 processor as shown in 
Figure 6.  These schedulers determine when uops are 
ready to execute based on the readiness of their dependent 
input register operand sources and the availability of the 
execution resources the uops need to complete their 
operation.   

These schedulers are tied to four different dispatch ports.  
There are two execution unit dispatch ports labeled port 0 
and port 1 in Figure 6.  These ports are fast: they can 
dispatch up to two operations each main processor clock 
cycle.  Multiple schedulers share each of these two 
dispatch ports.  The fast ALU schedulers can schedule on 
each half of the main clock cycle while the other 
schedulers can only schedule once per main processor 
clock cycle.  They arbitrate for the dispatch port when 
multiple schedulers have ready operations at once.  There 
is also a load and a store dispatch port that can dispatch a 
ready load and store each clock cycle.  Collectively, these 
uop dispatch ports can dispatch up to six uops each main 
clock cycle.  This dispatch bandwidth exceeds the front-
end and retirement bandwidth, of three uops per clock, to 
allow for peak bursts of greater than 3 uops per clock and 
to allow higher flexibility in issuing uops to different 
dispatch ports.  Figure 6 also shows the types of 
operations that can be dispatched to each port each clock 
cycle.  

Friday 11 April 14 (-38)



Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Execution core
• Specialized 4 port dispatch unit with 7 ALUs → super-scalar
• Floating-Point (x87), MMX, SSE (Streaming SIMD Extension), and 

SSE2 (Streaming SIMD Extension 2) operations are executed by the 
two floating-point execution blocks

• MMX instructions are 64-bit packed integer SIMD operations that 
operate on 8, 16, or 32-bit operands

• SSE instructions are 128-bit packed IEEE single-precision FP 
floating-point operations

• SSE2
✓ 128-bit single

and double 
precision FP
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Figure 6: Dispatch ports in the Pentium® 4 processor

Integer and Floating-Point Execution Units 
The execution units are where the instructions are actually 
executed.  The execution units are designed to optimize 
overall performance by handling the most common cases 
as fast as possible.  There are several different execution 
units in the NetBurst microarchitecture.  The units used to 
execute integer operations include the low-latency integer 
ALUs, the complex integer instruction unit, the load and 
store address generation units, and the L1 data cache.  

Floating-Point (x87), MMX, SSE (Streaming SIMD 
Extension), and SSE2 (Streaming SIMD Extension 2) 
operations are executed by the two floating-point 
execution blocks.  MMX instructions are 64-bit packed 
integer SIMD operations that operate on 8, 16, or 32-bit 
operands.  The SSE instructions are 128-bit packed IEEE 
single-precision floating-point operations.  The Pentium 4 
processor adds new forms of 128-bit SIMD instructions 
called SSE2.  The SSE2 instructions support 128-bit 
packed IEEE double-precision SIMD floating-point 
operations and 128-bit packed integer SIMD operations.  
The packed integer operations support 8, 16, 32, and 64-
bit operands. See  IA-32 Intel Architecture Software 
Developer’s Manual Volume 1: Basic Architecture [3] for 
more detail on these SIMD operations. 

The Integer and floating-point register files sit between 
the schedulers and the execution units.  There is a separate 
128-entry register file for both the integer and the 
floating-point/SSE operations.  Each register file also has 
a multi-clock bypass network that bypasses or forwards 
just-completed results, which have not yet been written 
into the register file, to the new dependent uops.  This 
multi-clock bypass network is needed because of the very 
high frequency of the design. 

Low Latency Integer ALU 
The Pentium 4 processor execution units are designed to 
optimize overall performance by handling the most 
common cases as fast as possible.  The Pentium 4 
processor can do fully dependent ALU operations at twice 
the main clock rate.  The ALU-bypass loop is a key 
closed loop in the processor pipeline.  Approximately 60-
70% of all uops in typical integer programs use this key 
integer ALU loop.  Executing these operations at ½ the 
latency of the main clock helps speed up program 
execution for most programs.  Doing the ALU operations 
in one half a clock cycle does not buy a 2x performance 
increase, but it does improve the performance for most 
integer applications. 

This high-speed ALU core is kept as small as possible to 
minimize the metal length and loading.  Only the essential 
hardware necessary to perform the frequent ALU 
operations is included in this high-speed ALU execution 
loop.  Functions that are not used very frequently, for 
most integer programs, are not put in this key low-latency 
ALU loop but are put elsewhere.  Some examples of 
integer execution hardware put elsewhere are the 
multiplier, shifts, flag logic, and branch processing.   

The processor does ALU operations with an effective 
latency of one-half of a clock cycle.  It does this operation 
in a sequence of three fast clock cycles (the fast clock 
runs at 2x the main clock rate) as shown in Figure 7.  In 
the first fast clock cycle, the low order 16-bits are 
computed and are immediately available to feed the low 
16-bits of a dependent operation the very next fast clock 
cycle.  The high-order 16 bits are processed in the next 
fast cycle, using the carry out just generated by the low 
16-bit operation.  This upper 16-bit result will be 
available to the next dependent operation exactly when 
needed.  This is called a staggered add.  The ALU flags 
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micro-op scheduling
• The micro-op schedulers determine when a micro-op is ready to 

execute by tracking its input register operands
• They reorder instructions to execute as soon as they are 

ready:
✓ uop queues : store in FIFO fashion but read in out-of-order

❖ For memory operations
❖ For non-memory operations (computation)

• Schedulers are tied to four different dispatch ports
• There are two fast exec units dispatch ports: Port0 & Port1
✓ fast: they can dispatch up to two operations each main 

processor clock cycle
• Multiple schedulers share each of these two dispatch ports
• Other schedulers can only schedule once per main processor 

clock cycle
• There is also a load and a store schedule

27

Friday 11 April 14 (-38)



Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Complete CPU
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Figure 3: Misprediction Pipeline 
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Figure 4: Pentium® 4 processor microarchitecture

NETBURST MICROARCHITECTURE 
Figure 4 shows a more detailed block diagram of the 
NetBurst microarchitecture of the Pentium 4 processor.  
The top-left portion of the diagram shows the front end of 
the machine.  The middle of the diagram illustrates the 
out-of-order buffering logic, and the bottom of the 
diagram shows the integer and floating-point execution 
units and the L1 data cache.  On the right of the diagram 
is the memory subsystem. 

Front End 
The front end of the Pentium 4 processor consists of 
several units as shown in the upper part of Figure 4.  It 
has the Instruction TLB (ITLB), the front-end branch 
predictor (labeled here Front-End BTB), the IA-32 
Instruction Decoder, the Trace Cache, and the Microcode 
ROM. 
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Overview
• Sandy Bridge (2011)
✓ Used in Core i7, Core i5, Core i3 second generation 

microprocessors (succeeding Core architecture)
✓ With 32nm process 
→ Tick : new micro-architecture 

• Ivy Bridge (2012)
✓ 22 nm shrink of the Sandy Bridge micro-architecture 
→ Tock : new technology

• This 22nm technology node brought new technology 
feature :
✓ Multi-gate transistors 
✓ Main gain : performance per watt 

❖ 0.5X power for the same performance
31
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Planar transistor vs. 3D transistor
• Standard CMOS transistors are planar devices
• Shrinking starts to be a trouble since electrical 

properties are coupled to geometry 
• At one point in time it is complicated

to reduce all areas !
• 3D transistor concept in 1989
• First 3-gate transistor in 2002 & 2006
• 3-D transistors (multi-gate, or FinFETs), a block material 

across the top of the channel
• A tri-gate transistor has a channel with three dimensions
• The flow of electricity is on all three sides
• It reduces transistor size on silicon die to the width of the fin 

while still being a long enough gate for a good signal
32
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Planar vs. multi-gate

33

3D Tri-gate Transistors
“The easiest way to imagine a Tri-Gate 

transistor is to think of it as a normal transistor 
folded up in the middle”

•Ivy bridge's three sides of the channel equate to 
22 nm (transistor width = 2H + w)
•3-D concept Digh Hisamoto MuGFet in 1989
•First tri-gate transistor was made by Ghau and 
Kayalieros in 2002 and 2006.
•3-D transistors are known as FinFET, a block 
material across the top of the channel
•A tri-gate transistor has a channel with three 
dimensions. The flow of electricity is on all three 
sides. It reduces transistor size on silicon die to 
the width of the fin while still being a long 
enough gate for a good signal.

3D Tri-gate Transistors
“The easiest way to imagine a Tri-Gate 

transistor is to think of it as a normal transistor 
folded up in the middle”

•Ivy bridge's three sides of the channel equate to 
22 nm (transistor width = 2H + w)
•3-D concept Digh Hisamoto MuGFet in 1989
•First tri-gate transistor was made by Ghau and 
Kayalieros in 2002 and 2006.
•3-D transistors are known as FinFET, a block 
material across the top of the channel
•A tri-gate transistor has a channel with three 
dimensions. The flow of electricity is on all three 
sides. It reduces transistor size on silicon die to 
the width of the fin while still being a long 
enough gate for a good signal.

Channel
grows into

vertical direction 

Link

3D Tri-gate Transistors
“The easiest way to imagine a Tri-Gate 

transistor is to think of it as a normal transistor 
folded up in the middle”

•Ivy bridge's three sides of the channel equate to 
22 nm (transistor width = 2H + w)
•3-D concept Digh Hisamoto MuGFet in 1989
•First tri-gate transistor was made by Ghau and 
Kayalieros in 2002 and 2006.
•3-D transistors are known as FinFET, a block 
material across the top of the channel
•A tri-gate transistor has a channel with three 
dimensions. The flow of electricity is on all three 
sides. It reduces transistor size on silicon die to 
the width of the fin while still being a long 
enough gate for a good signal.

Friday 11 April 14 (-38)

http://www.intel.com/content/www/us/en/silicon-innovations/standards-22nm-explained-video.html
http://www.intel.com/content/www/us/en/silicon-innovations/standards-22nm-explained-video.html


SandyBridge :
micro-architecture overview

Friday 11 April 14 (-38)



Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

CPU → SoC : global overview
1. 2-8 physical cores implementing Intel’s 

SMT → HyperThreading
• each physical core correspond to 2 

logical cores (2 threads per core)
• TurboBoost Technology 

2. Integrated memory controller 
2 channel DDR3 
(up to 4 channels of DDR3@1600MHz)

3. High bandwidth Least Level Cache 
(LLC) → L3

4. SoC interconnect
5. Embedded high-performance graphics 

processor (GPU)
6. System Agent — Overall SoC controller
7. SoC IO

35
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Sandy Bridge: Overview

Sandy Bridge - Intel® Next Generation Microarchitecture

Integrated Memory Controller 
2ch DDR3

High Bandwidth 
Last Level Cache

Next Generation Processor 
Graphics and Media

Next Generation Intel® Turbo 
Boost Technology

Intel® Hyper-Threading 
Technology           

4 Cores  / 8 Threads 
2 Cores / 4 Threads

Integrates CPU, Graphics, MC, 
PCI Express* On Single Chip 

Embedded Display Port

Substantial performance 
improvement

Intel® Advanced Vector 
Extension (Intel® AVX)

High BW/low-latency modular 
core/GFX interconnect

Discrete Graphics Support: 
1x16 or 2x8

2ch DDR3

x16 
PCIe

PECI Interface
To Embedded 

Controller

Notebook
DP Port

PCH

Energy Efficiency

Stunning PerformanceStunning Performance

2.
1.

3.

4.

5.
6.

7.
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Hyper-threading in action

36

Physical 
cores

Logical 
cores
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How to assign a given thread to a core?

37

#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <stdio.h>
HANDLE *m_threads = NULL;
DWORD_PTR WINAPI threadMain(void* p);

DWORD_PTR GetNumCPUs() {             // get n° of logical cores
  SYSTEM_INFO m_si = {0, };
  GetSystemInfo(&m_si);
  return (DWORD_PTR)m_si.dwNumberOfProcessors;
}
int wmain(int argc, wchar_t **args) {
  DWORD_PTR c = GetNumCPUs();
  m_threads = new HANDLE[c];
  for(DWORD_PTR i = 0; i < c; i++) {
    DWORD_PTR m_id = 0;
    DWORD_PTR m_mask = 1 << i;
    m_threads[i] = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)threadMain, (LPVOID)i, 
NULL, &m_id);                         // create threads
    SetThreadAffinityMask(m_threads[i], m_mask); // set thread affinity 
    wprintf(L"Creating Thread %d (0x%08x) Assigning to CPU 0x%08x\r\n", i, 
(LONG_PTR)m_threads[i], m_mask);
  }
  return 0;
}
DWORD_PTR WINAPI threadMain(void* p) {return 0;}
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Turbo Boost 
• Le CPU has few operating points in terms of Vdd, F

✓ Depending on the Vdd we can chose F

❖ Higher Vdd → higher operating F

✓ But both have impact on power since :

❖ P  = C x Vdd2 x F

• TurboBoost : allows cores to run much faster then nominal 
operating F for a very short amount of time

• Idea behind : uses thermal inertia of the IC + package ! 

✓ Much slower then processing bursts 

✓ Uses whole IC as kind of a heat spreader/sink

38
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DDR IO — solving memory bottleneck
• Embedded DDR-DRAM Controller
• 2 (up to 4) independent channels for DDR3 & DDR3L 

support
✓ Low voltage DDR3 (DDR3L) support for mobile 

• DDR Over-clocking
✓ support for up to 2800 MT/s (up from 2133) 
✓ Finer grain steps in adjusting frequency
✓ Added 200 MHz

• DDR I/O embedded power gating
✓ Power off DDR I/O when idle

39
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LLC
• High graphics performance, DRAM power savings, more DRAM 

BW available for cores
• LLC is shared among all cores, graphics and media
✓ Graphics driver controls which streams are cached/coherent

• Any agent can access all data in the LLC, independent of who 
allocated the line, after memory range checks

• Controlled LLC way allocation mechanism to 
prevent thrashing between Core/graphics

• Multiple coherency domains 
✓ IADomain - cores (Fully coherent via cross-snoops)
✓ Graphic domain (Graphics virtual caches, flushed to 

IA domain by graphics engine)
✓ Non-Coherent domain (Display data, flushed to memory by graphics 

engine)

40
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Sandy Bridge LLC Sharing
• LLC shared among all Cores, Graphics and Media
– Graphics driver controls which streams are cached/coherent
– Any agent can access all data in the LLC, independent of who 

allocated the line, after memory range checks
• Controlled LLC way allocation mechanism to prevent 

thrashing between Core/graphics
• Multiple coherency domains
– IA Domain (Fully coherent via cross-snoops)
– Graphic domain (Graphics virtual caches, 

flushed to IA domain by graphics engine)
– Non-Coherent domain (Display data, flushed to 

memory by graphics engine)

Block Diagram Illustrative only. Number of processor cores will vary with different  processor models based on the Sandy Bridge 
Microarchitecture. Represents client processor implementation. Sandy Bridge - Intel® Next Generation Microarchitecture

Much higher Graphics performance, 
DRAM power savings, more DRAM BW 

available for Cores
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On-die Interconnect (it is not a bus!)
• High Bandwidth, Low Latency, Modular
• Ring based interconnect between : Cores, 

Graphics CPU, Last Level Cache (LLC) 
and System Agent domains

• Composed of 4 rings :
✓ 32 Byte data, Request, Acknowledge & Snoop 
✓ Fully pipelined at core frequency/voltage: 

bandwidth, latency and power scale with cores
• Massive ring wire routing runs over the LLC 

with no area impact (already paid by LLC)
• Access on ring always picks the shortest path to minimize latency
• Distributed arbitration, sophisticated ring protocol to handle 

coherency, ordering, and core interface
• Scalable to servers with large number of processors

41
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Scalable Ring On-die Interconnect
• Ring-based interconnect between Cores, Graphics, Last 

Level Cache (LLC) and System Agent domain
• Composed of 4 rings

– 32 Byte Data ring, Request ring, Acknowledge
ring and Snoop ring

– Fully pipelined at core frequency/voltage:
bandwidth, latency and power scale with cores

• Massive ring wire routing runs over the LLC 
with no area impact

• Access on ring always picks the shortest 
path – minimize latency

• Distributed arbitration, sophisticated ring 
protocol to handle coherency, ordering, and 
core interface

• Scalable to servers with large number of 
processors

Block Diagram Illustrative only. Number of processor cores will vary with different  processor models based on the Sandy Bridge 
Microarchitecture. Represents client processor implementation.

High Bandwidth, Low Latency, Modular
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System agent
• An arbiter that handles all accesses from the ring domain 

and from I/O (PCIe* and DMI) and routes the accesses to the 
right place

• PCIe controllers connect to external PCIe devices
• The PCIe controllers have different 

configuration possibilities
• DMI controller connects to the 

Platform Controller Hub (PCH)chipset
• Integrated display engine, 

Flexible Display Interconnect, and 
Display Port, for the internal 
graphic operations

• Memory controller
42
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• An embedded GPU
• Started in Nehalem micro-architecture as 

Multi-Chip Module and heterogeneous IC manufacturing 
process 

• Here embedded into the same IC 
(SoC) using the same process technlogy

• Functionality 
✓ Multi-media and gaming oriented
✓ HW support for high-performance 

video encoding/decoding

Graphics Processor

43

CPU GPU
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Versions (branded as Core i3, i5, i7)

44

Note the impact of the cache memory size on
the total die size 
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Dies
• For most dense configuration 
✓ Up to 2 billion transistors on the single die for Sandy Bridge
✓ 435mm2 area 
✓ This is huge !

45

Sandy Bridge 995 million transistors in a 216 m^2

Memory controller, the PCI Express (PCIe) controller, and video functions are all located within 
the processor die

Features
• Uop Micro-operation Cache
• Improved Branch Prediction 
• Advanced Vector Extensions (AVX)
• The last level cache (LLC)
• The System Agent
• Turbo Boost
• Quick Sync

Sandy bridge 

Ivy bridge 
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Single core pipeline

47
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b. Instruction Cache, via activating the legacy decode pipeline 

c. L2 cache, last level cache (LLC) and memory, as necessary 

2. The micro-ops corresponding to this code are sent to the Rename/retirement 
block. They enter into the scheduler in program order, but execute and are de-
allocated from the scheduler according to data-flow order. For simultaneously 
ready micro-ops, FIFO ordering is nearly always maintained. 
Micro-op execution is executed using execution resources arranged in three
stacks. The execution units in each stack are associated with the data type of
the instruction. 
Branch mispredictions are signaled at branch execution. It re-steers the front
end which delivers micro-ops from the correct path. The processor can overlap
work preceding the branch misprediction with work from the following corrected
path. 

Figure 2-1.  Intel microarchitecture code name Sandy Bridge Pipeline Functionality

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4

256- FP MUL

ALU

V-Shuffle
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ALU ALU
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1.5K uOP Cache

256K L2 Cache (Unified)

32K L1 Instruction Cache Pre-decode
Decoders

Instr Queue

256- FP Blend

Load
Buffers

Store
Buffers

Reorder
Buffers

Line Fill
Buffers

In-order
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48 bytes/cycle
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SandyBridge Pipeline overview
• An in-order issue front-end that fetches instructions and decodes them 

into micro-ops (similar to NetBurst) 
• The front-end feeds the next pipeline stages with a continuous stream of 

micro-ops from the most 
likely path that the program 
will execute

• An out-of-order, 
superscalar execution 
engine that dispatches up to 
six micro-ops to execution 
per cycle

• The allocate/rename block 
reorders micro-ops to 
“dataflow” order so they can 
execute as soon as their 
sources are ready and 
execution resources are
available

48
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b. Instruction Cache, via activating the legacy decode pipeline 

c. L2 cache, last level cache (LLC) and memory, as necessary 

2. The micro-ops corresponding to this code are sent to the Rename/retirement 
block. They enter into the scheduler in program order, but execute and are de-
allocated from the scheduler according to data-flow order. For simultaneously 
ready micro-ops, FIFO ordering is nearly always maintained. 
Micro-op execution is executed using execution resources arranged in three
stacks. The execution units in each stack are associated with the data type of
the instruction. 
Branch mispredictions are signaled at branch execution. It re-steers the front
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Front-end
• Similar to Net Burst
• Instruction Cache 32KB

8-way + decoded 
instruction cache 
(micro-ops)

• Pre-decoding and 
instruction queuing 

• 3 simple decode engines
• 1 complex decode engine
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Front-end functionality 
• Legacy DecodePipeline
✓ Decode instructions to micro-ops, delivered to the micro-op queue and 

the Decoded ICache
✓ Provides the same decode latency and bandwidth as prior Intel 

processors
• Decoded ICache
✓ Provide stream of micro-ops to the micro-op queue
• MSROM
✓ Complex instruction micro-op, accessible from both Legacy Decode 

Pipeline and Decoded ICache
• Branch Prediction Unit (BPU)
✓ Determine next block of code to be executed and drive lookup of 

Decoded ICache and legacy decode pipelines
• Micro-op queue
✓ Queues micro-ops from the Decoded ICache and the legacy 

decode pipeline
50
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Out-of-order engine
• Improve ILP by detecting dependency chains and by executing them 

out-of-of order while maintaining the correct data flow
• When a dependency chain is waiting for a resource, such as a 

second-level data cache line, it sends micro-ops from another chain 
to the execution core

• Designed with power savings in mind too !
• Components :
✓ Renamer — moves micro-ops from the front-end to the execution core; 

eliminates false dependencies among micro-ops, thereby enabling out-
of-order execution of micro-ops

✓ Schedule — queues micro-ops until all source operands are ready; 
schedules and dispatches ready micro-ops to the available execution 
units in as close to a first in first out (FIFO) order as possible

✓ Retirement — retires instructions and micro-ops in order and handles 
faults and exceptions

51
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Execution core
• Superscalar core that processes instructions in out-of-order fashion
• The out-of-order core consist of three execution stacks, each stack 

encapsulates a certain type of data : 
✓ General purpose integer
✓ SIMD integer and X86 

floating point
✓  X87 floating 

point instructions

• The execution core also 
contains connections to and 
from the cache hierarchy

• The loaded data is fetched 
from the caches and written 
back into one of the stacks

• The scheduler can dispatch up to six micro-ops every cycle, 
one on each port, specialized for certain functionality

52
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b. Instruction Cache, via activating the legacy decode pipeline 

c. L2 cache, last level cache (LLC) and memory, as necessary 

2. The micro-ops corresponding to this code are sent to the Rename/retirement 
block. They enter into the scheduler in program order, but execute and are de-
allocated from the scheduler according to data-flow order. For simultaneously 
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Dispatch Port and Execution Stacks

53

2-14

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

! General purpose integer  
! SIMD integer and floating point
! X87 

The execution core also contains connections to and from the cache hierarchy. The 
loaded data is fetched from the caches and written back into one of the stacks.

The scheduler can dispatch up to six micro-ops every cycle, one on each port. The 
following table summarizes which operations can be dispatched on which port.

After execution, the data is written back on a writeback bus corresponding to the 
dispatch port and the data type of the result. Micro-ops that are dispatched on the 
same port but have different latencies may need the write back bus at the same 
cycle. In these cases the execution of one of the micro-ops is delayed until the write-
back bus is available. For example, MULPS (five cycles) and BLENDPS (one cycle) 
may collide if both are ready for execution on port 0: first the MULPS and four cycles 
later the BLENDPS. Intel microarchitecture code name Sandy Bridge eliminates such 
collisions as long as the micro-ops write the results to different stacks. For example, 
integer ADD (one cycle) can be dispatched four cycles after MULPS (five cycles) since 
the integer ADD uses the integer stack while the MULPS uses the FP stack. 

When a source of a micro-op executed in one stack comes from a micro-op executed 
in another stack, a one- or two-cycle delay can occur. The delay occurs also for tran-
sitions between Intel SSE integer and Intel SSE floating-point operations. In some of 

Table 2-3.  Dispatch Port and Execution Stacks

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer ALU, Shift ALU,
Fast LEA,
Slow LEA,
MUL

Load_Ad
dr,
Store_ad
dr

Load_Ad
dr
Store_ad
dr

Store_dat
a

ALU,
Shift,
Branch,
Fast LEA

SSE-Int,
AVX-Int,
MMX

Mul, Shift, 
STTNI, Int-
Div,
128b-Mov

ALU, 
Shuf, 
Blend, 
128b-Mov

Store_dat
a

ALU, Shuf, 
Shift, 
Blend, 
128b-Mov

SSE-FP,
AVX-
FP_low

Mul, Div, 
Blend, 
256b-Mov

Add, CVT Store_dat
a

Shuf, 
Blend, 
256b-Mov

X87,
AVX-
FP_High

Mul, Div, 
Blend, 
256b-Mov

Add, CVT Store_dat
a

Shuf, 
Blend, 
256b-Mov

Functional specialisation of execution ports
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Cache hierarchy
• The cache hierarchy contains a first level instruction cache, a 

first level data cache (L1 DCache) 
• Unified second level (L2) cache for each core 

(shared by instructions and data)
• All cores in a physical processor package are connected to a 

shared last level cache (LLC) via a ring connection
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2.1.5.1  Load and Store Operation Overview

This section provides an overview of the load and store operations.

Loads

When an instruction reads data from a memory location that has write-back (WB) 
type, the processor looks for it in the caches and memory. Table 2-6 shows the 
access lookup order and best case latency. The actual latency can vary depending on 
the cache queue occupancy, LLC ring occupancy, memory components, and their 
parameters.

The LLC is inclusive of all cache levels above it - data contained in the core caches 
must also reside in the LLC.  Each cache line in the LLC holds an indication of the 
cores that may have this line in their L2 and L1 caches. If there is an indication in the 
LLC that other cores may hold the line of interest and its state might have to modify, 
there is a lookup into the L1 DCache and L2 of these cores too. The lookup is called 
"clean" if it does not require fetching data from the other core caches. The lookup is 

Table 2-5.  Cache Parameters 

Level Capacity
Associativity 
(ways)

Line Size 
(bytes)

Write Update 
Policy Inclusive

L1 Data 32 KB 8 64 Writeback -

Instruction 32 KB 8 N/A N/A -

L2 (Unified) 256 KB 8 64 Writeback No

Third Level (LLC) Varies, query 
CPUID leaf 4

Varies with 
cache size

64 Writeback Yes

Table 2-6.  Lookup Order and Load Latency

Level Latency (cycles) Bandwidth (per core per cycle)

L1 Data 41

NOTES:
1. Subject to execution core bypass restriction shown in Table 2-4.

2 x16 bytes

L2 (Unified) 12 1 x 32 bytes

Third Level (LLC) 26-312

2. Latency of L3 varies with product segment and sku. The values apply to second generation Intel
Core processor families.

1 x 32 bytes

L2 and L1 DCache in other 
cores if applicable

43- clean hit;

60 - dirty hit

Friday 11 April 14 (-38)



Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Cache hierarchy
• L1 is private to a core 
• L1D cache may be shared by two logical processors if the 

processor support HyperThreading 
• The L2 cache is shared by instructions and data
• The caches use the services of the 
✓ Instruction Translation Lookaside Buffer (ITLB), 
✓ Data Translation Lookaside Buffer (DTLB) and 
✓ Shared Translation Lookaside Buffer (STLB) 

• These are used to translate linear addresses to physical 
address

• Data coherency in all cache levels is maintained using the MESI 
protocol
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Load operation latency

• When an instruction reads data from a memory location that has write-
back (WB) type, the processor looks for it in the caches and memory

• This is best case latency, the actual latency will vary depending on the 
cache queue occupancy, LLC ring occupancy, memory components

• Each cache line in the LLC holds an indication of the cores that may have 
this line in their L2 and L1 caches → if this is the case lookup 
✓ The lookup is called "clean" if it does not require fetching data from the 

other core caches
✓ The lookup is called "dirty" if modified data has to be fetched from the 

other core caches and transferred to the loading core

56

2-16

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.1.5.1  Load and Store Operation Overview

This section provides an overview of the load and store operations.

Loads

When an instruction reads data from a memory location that has write-back (WB) 
type, the processor looks for it in the caches and memory. Table 2-6 shows the 
access lookup order and best case latency. The actual latency can vary depending on 
the cache queue occupancy, LLC ring occupancy, memory components, and their 
parameters.

The LLC is inclusive of all cache levels above it - data contained in the core caches 
must also reside in the LLC.  Each cache line in the LLC holds an indication of the 
cores that may have this line in their L2 and L1 caches. If there is an indication in the 
LLC that other cores may hold the line of interest and its state might have to modify, 
there is a lookup into the L1 DCache and L2 of these cores too. The lookup is called 
"clean" if it does not require fetching data from the other core caches. The lookup is 

Table 2-5.  Cache Parameters 

Level Capacity
Associativity 
(ways)

Line Size 
(bytes)

Write Update 
Policy Inclusive

L1 Data 32 KB 8 64 Writeback -

Instruction 32 KB 8 N/A N/A -

L2 (Unified) 256 KB 8 64 Writeback No

Third Level (LLC) Varies, query 
CPUID leaf 4

Varies with 
cache size

64 Writeback Yes

Table 2-6.  Lookup Order and Load Latency

Level Latency (cycles) Bandwidth (per core per cycle)

L1 Data 41

NOTES:
1. Subject to execution core bypass restriction shown in Table 2-4.

2 x16 bytes

L2 (Unified) 12 1 x 32 bytes

Third Level (LLC) 26-312

2. Latency of L3 varies with product segment and sku. The values apply to second generation Intel
Core processor families.

1 x 32 bytes

L2 and L1 DCache in other 
cores if applicable

43- clean hit;

60 - dirty hit
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Store
• When an instruction writes data to a memory that has a write back 

memory type, the processor first ensures that it has the line 
containing this memory location in its L1 DCache

• If the cache line is not there (and in the right coherency state), the 
processor fetches it from the next levels of the memory hierarchy 
using a Read for Ownership request in the specified order:
✓ L1 DCache
✓ L2
✓ Last Level Cache
✓ L2 and L1 DCache in other cores, if applicable
✓ Memory

• Once the cache line is in the L1 DCache, the new data is written to it, 
and the line is marked as Modified state

• Low latency cost, except if multiple consecutive write cache misses
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SIMD
• Legacy : from MMX to SSE4.2 + AVX
• AVX
✓ Support for 256-bit wide vectors and 16 SIMD register set
✓ 256-bit floating-point instruction set enhancement with up to 2X 

performance gain relative to 128-bit Streaming SIMD extensions.
✓ Instruction syntax support for generalized three-operand syntax 

to improve instruction programming flexibility and efficient 
encoding of new instruction extensions

✓ Enhancement of legacy 128-bit SIMD instruction extensions to 
support three-operand syntax and to simplify compiler 
vectorization of high-level language expressions.

✓ Support flexible deployment of 256-bit AVX code, 128-bit AVX 
code, legacy 128- bit code and scalar code
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Power in ICs
• Power is a problem in current ICs : limited frequency speed-ups 

from node to node because of the power and associated thermal 
• Has two components 
✓ Dynamic — when gates are toggling (output of the gates changes 

due to input changes)
✓ Static — due to leakage, transistors are not perfect switches

• While in the past dynamic component has been pre-dominant, 
over the years static power dissipation became as important 

• To deal with static power dissipation we need to “cut” the
✓ clock supply — clock gating or reduce clock period 
✓ Vdd — power gating

• Most of the ICs implement these techniques; for general purpose 
CPU it is important to have an interface with the layers above  
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Hierarchical management
• Previously done in BIOS → moves from firmware to OS using 

dedicated core (here a core 1M transistors! ~ 486)
• Advanced Configuration and Power Interface (ACAPI)
✓ Open standard for platform independent hardware discovery, 

configuration, power management and monitoring (Intel, HP, etc.)
✓ Operating System-directed configuration and Power Management 

(OSPM)
• Different CPU state classes : 
✓ S-State — System Sleep States
→ system level sleep state
❖ C-State — Microprocessor and Package Idle States
→ off, can wake up (4 different states)

➡ P-State — Microprocessor Performance State 
→ CPU in active state defines 6 different states (DVFS couples)

✓ T-State — Microprocessor Throttle States
→ we know little about these ...
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S-States — System Sleep States
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S0

S1

S2

S3

S5

ShutDown

S4

Hibernation
State is saved on HDD, 
practically no power 
dissipation

CPU + chipset is off 
but DRAM remains 
powered-up and 
contains the saved 
execution context

System is active : 
any P or C-state

CPU is off, the 
execution context is 
saved in DRAM 

Time to wake-
up increases 
but the power 
goes down

Minimum
live 
state
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C-States
• When fully powered (CPU is in S0 

state) it can be in one of the C-
States:
✓ C0 — cores are in one of the 

P-States (that is having one of the 
Vdd, Clk couple)
❖ Defines P sub-states

✓ C1 — no execution, all Clk signals 
are off (Clk gating)

✓ C3 — caches are empty but Vdd is 
applied, core is active

✓ C6 — no Vdd @ core level to avoid 
leakage →system state is saved in 
LLC practically 0W, core is inactive
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Power Management

4 Power Management

This chapter provides information on the following power management topics: 

= Advanced Configuration and Power Interface (ACPI) States
= Processor Core
= Integrated Memory Controller (IMC)
= PCI Express*
= Direct Media Interface (DMI)
= Processor Graphics Controller

Figure 4-1. Power States
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P-States
• Thermal Design Power (TDP) — maximum amount 

of power the cooling system in a computer is required to dissipate
• Processor operates at power levels 

higher than rated TDP limit for short durations
✓ P0 is max possible frequency
✓ P1 is guaranteed frequency
✓ Pn is the energy efficient state 

• In between OS controls Pn-P1 range
• P1-P0 has significant frequency range (GHz) 
✓ P1 to P0 range is fully H/W controlled 
✓ User preferences and policies
✓ Single thread or lightly loaded applications

• GFX <>CPU balancing
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Intel® Turbo,Boost,Technology,2.0
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� Dependent on number of active cores
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� Processor operates at power level 
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P-states examples
• P-States implement the idea of 

Dynamic Voltage and Frequency Scaling (DVFS)
• Each P-State defines a couple : Vdd, F 

(Do you remember the link between the Vdd and F ?)
• P-States and corresponding DVFS couples 
✓ Example for a mobile CPU :
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



              
            


      
             
   

               
                 



                
              
         


               
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Intel TurboBoost Technology
• Performance on Demand 
✓ CPU can run faster than base operating frequency

• Working within power, current and temperature constraints

• Dependent on number of active cores 

• Highest frequency is with 1 core (gets all the headroom)

• Example: base F=2.5GHz 
→ more F if less cores running @ the same time

66

N° de cores N° of Turbo Steps Max F [GHz]
3 or 4 7 3.2 = 2.5+7*100

2 9 3.4 = 2.5+9*100
1 10 3.5 = 2.5+10*100
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How we can do TurboBost ?
• After idle periods, the system accumulates “energy budget” and 

can accommodate high power/performance for up to a minute

• In Steady State conditions the power stabilises on TDP, possibly at 
higher then nominal frequency

6714Sandy Bridge  - Hot Chips 2011

C0/P0 (Turbo)

After idle periods, the system 
accumulates “energy budget” and 
can accommodate high 
power/performance for up to a 
minute

Use accumulated 
energy budget to 

enhance user 
experience

Intel® Turbo Boost Technology 2.0 - Dynamic

Time

Power

Sleep or
Low power

“TDP”

Buildup thermal budget 
during idle periods

Max power
1.2-1.3X TDP

30-60 Sec 
exponential Average
5 Sec /

30-60 Sec

In Steady State conditions the 
power stabilizes on TDP, possibly at 
higher then nominal frequency 

Friday 11 April 14 (-38)



Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Thermal management
• On die thermal sensors
✓ 12 sensors on each CPU core + Graphics 

processor, ring and System Agent 
✓ Operating range 50-100’C

• Temperature reporting
✓ Maximum reading of each functional block
✓ Maximum reading of the total chip

• Used for:
✓ Critical thermal protection

❖ Notification, throttle and shutdown
❖ Programmable throttle temperature

✓ Leakage calculation of power meter 
✓ Power optimization algorithms
✓ External system controls (e.g. Fan control)
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Package thermal management

� On die thermal sensors
� 12 sensors on each CPU core + PG, ring and 

SA
� Operating range 50-100’C 

� Temperature reporting  
� Maximum reading of each functional block and  

maximum reading of the total chip
� Used for:

� Critical thermal protection
� Notification, throttle and shutdown
� Programmable throttle temperature

� Leakage calculation of power meter
� PCU optimization algorithms
� External system controls (e.g. Fan control)
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