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Previously on ELEC-H-473
• Reasons that cause pipeline inefficiency : 
✓ Variance in execution time (e.g. CISC or memory)
✓ Hazards

❖ Data
❖ Control

• Techniques that improve IPC of the pipeline
✓ Register renaming 
✓ Data forwarding/out-of-order execution of instructions
✓ Branch prediction

• Software link → loop unrolling
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Today

•Memory technology

•Memory organisation

•Memory hierarchy

•Cache principals

•Virtual memory
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Memory structure and organisation
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specified by an Address. The value read or written is called Data.
An array with N-bit addresses and M-bit data has 2N rows and M
columns. Each row of data is called a word. Thus, the array contains 2N

M-bit words.
Figure 5.39 shows a memory array with two address bits and three

data bits. The two address bits specify one of the four rows (data words)
in the array. Each data word is three bits wide. Figure 5.39(b) shows
some possible contents of the memory array.

The depth of an array is the number of rows, and the width is the
number of columns, also called the word size. The size of an array is
given as depth ! width. Figure 5.39 is a 4-word ! 3-bit array, or simply
4 ! 3 array. The symbol for a 1024-word ! 32-bit array is shown in
Figure 5.40. The total size of this array is 32 kilobits (Kb).

Bit Cells
Memory arrays are built as an array of bit cells, each of which stores
1 bit of data. Figure 5.41 shows that each bit cell is connected to a
wordline and a bitline. For each combination of address bits, the mem-
ory asserts a single wordline that activates the bit cells in that row. When
the wordline is HIGH, the stored bit transfers to or from the bitline.
Otherwise, the bitline is disconnected from the bit cell. The circuitry to
store the bit varies with memory type.

To read a bit cell, the bitline is initially left floating (Z). Then the
wordline is turned ON, allowing the stored value to drive the bitline to 0
or 1. To write a bit cell, the bitline is strongly driven to the desired value.
Then the wordline is turned ON, connecting the bitline to the stored bit.
The strongly driven bitline overpowers the contents of the bit cell, writ-
ing the desired value into the stored bit.

Organization
Figure 5.42 shows the internal organization of a 4 ! 3 memory array.
Of course, practical memories are much larger, but the behavior of larger
arrays can be extrapolated from the smaller array. In this example, the
array stores the data from Figure 5.39(b).

During a memory read, a wordline is asserted, and the corre-
sponding row of bit cells drives the bitlines HIGH or LOW. During a
memory write, the bitlines are driven HIGH or LOW first and then a
wordline is asserted, allowing the bitline values to be stored in that
row of bit cells. For example, to read Address 10, the bitlines are left
floating, the decoder asserts wordline2, and the data stored in that
row of bit cells, 100, reads out onto the Data bitlines. To write the
value 001 to Address 11, the bitlines are driven to the value 001,
then wordline3 is asserted and the new value (001) is stored in the
bit cells.
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memory element capable of memorising one bit of info
• To build larger memory structures 

we use 2D memory arrays of 
bit-cells organised in n rows and m columns 
(in all n x m  cells)
• Each row is identified with unique 

address, and only one row can
 be R/W accessed at a time
• When accessed address activates one row of the array and
✓ places the data from the bus into the array (WRITE)
✓ places the data on the bus from the array (READ)
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Bit-cell technology
• Many technology options exist to store one bit of information 

(and many others are in currently in development)

• Two major classes, depending on the the information loss on 
power down : volatile and non-volatile
• Key volatile technologies:
✓ Flip-flop — Basic storage element for any sequential logic circuit; 

fastest of the three, but most expensive in terms of area (typically 
used to build the FSMs)

✓ SRAM — Static Random Access Memory (random → any data 
address can be accessed in the same amount in time); 
performance/price in the middle (targets smaller storage entities)

✓ DRAM — Dynamic Random Access Memory low cost/bit but at the 
expense of access time (massive storage)

6
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Latches & Flip-flops
• Bistable — Sequential circuits having only two stable states 

that are controllable by their inputs

• If the bistable element is sensitive to a level 
it is called latch

• If the bistable element is sensitive to an 
edge, it is called flip-flops 

• For FF, the edge is produced by a rising/falling edge of the 
periodic signal (clock)

• Used for FSMs or to pipeline whatever part of the IC

7
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7. Latches and Flip-Flops
Latches and flip-flops are the basic elements for storing information. One latch or flip-flop can store one bit of

information. The main difference between latches and flip-flops is that for latches, their outputs are constantly
affected by their inputs as long as the enable signal is asserted. In other words, when they are enabled, their content
changes immediately when their inputs change. Flip-flops, on the other hand, have their content change only either
at the rising or falling edge of the enable signal. This enable signal is usually the controlling clock signal. After the
rising or falling edge of the clock, the flip-flop content remains constant even if the input changes.

There are basically four main types of latches and flip-flops: SR, D, JK, and T. The major differences in these
flip-flop types are the number of inputs they have and how they change state. For each type, there are also different
variations that enhance their operations. In this chapter, we will look at the operations of the various latches and flip-
flops.

7.1 Bistable Element
The simplest sequential circuit or storage element is a bistable element, which is constructed with two inverters

connected sequentially in a loop as shown in Figure 1. It has no inputs and two outputs labeled Q and Q’. Since the
circuit has no inputs, we cannot change the values of Q and Q’. However, Q will take on whatever value it happens
to be when the circuit is first powered up. Assume that Q = 0 when we switch on the power. Since Q is also the
input to the bottom inverter, Q’, therefore, is a 1. A 1 going to the input of the top inverter will produce a 0 at the
output Q, which is what we started off with. Similarly, if we start the circuit with Q = 1, we will get Q’ = 0, and
again we get a stable situation.

A bistable element has memory in the sense that it can remember the content (or state) of the circuit
indefinitely. Using the signal Q as the state variable to describe the state of the circuit, we can say that the circuit has
two stable states: Q = 0, and Q = 1; hence the name “bistable.”

An analog analysis of a bistable element, however, reveals that it has three equilibrium points and not two as
found from the digital analysis. Assuming again that Q = 1, and we plot the output voltage (Vout1) versus the input
voltage (Vin1) of the top inverter, we get the solid line in Figure 2. The dotted line shows the operation of the bottom
inverter where Vout2 and Vin2 are the output and input voltages respectively for that inverter.

Figure 2 shows that there are three intersection points, two of which corresponds to the two stable states of the
circuit where Q is either 0 or 1. The third intersection point labeled metastable, is at a voltage that is neither a logical
1 nor a logical 0 voltage. Nevertheless, if we can get the circuit to operate at this voltage, then it can stay at that
point indefinitely. Practically, however, we can never operate a circuit at precisely a certain voltage. A slight
deviation from the metastable point as cause by noise in the circuit or other stimulants will cause the circuit to go to
one of the two stable points. Once at the stable point, a slight deviation, however, will not cause the circuit to go
away from the stable point but rather back towards the stable point because of the feedback effect of the circuit.

An analogy of the metastable behavior is a ball on top of a symmetrical hill as depicted in Figure 3. The ball can
stay indefinitely in that precarious position as long as there is absolutely no movement whatsoever. With any slight
force, the ball will roll down to either of the two sides. Once at the bottom of the hill, the ball will stay there until an
external force is applied to it. The strength of this external force will cause the ball to do one of three things. If a
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Figure 1. Bistable element.
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SRAM cell
• The bit of information is stored in cross-coupled inverters
• The cell can be in one of the three states :
✓ Idle, READ or WRITE
• Two nMOS transistors control the READ/WRITE states :
✓ When the wordline is active, 

both nMOS are ON and 
✓ the bitline state is 

transferred from/to
inverter couple

• Auto-refreshing — immune to 
noise because the inverters 
will restore the value that is possibly lost
• 6T(ransistor) configuration : 2 control + 2x2 for inverters 
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5 . 5 . 4 Area and Delay

Flip-flops, SRAMs, and DRAMs are all volatile memories, but each has
different area and delay characteristics. Table 5.4 shows a comparison of
these three types of volatile memory. The data bit stored in a flip-flop is
available immediately at its output. But flip-flops take at least 20 transis-
tors to build. Generally, the more transistors a device has, the more area,
power, and cost it requires. DRAM latency is longer than that of SRAM
because its bitline is not actively driven by a transistor. DRAM must
wait for charge to move (relatively) slowly from the capacitor to the bit-
line. DRAM also has lower throughput than SRAM, because it must
refresh data periodically and after a read.

Memory latency and throughput also depend on memory size; larger
memories tend to be slower than smaller ones if all else is the same. The
best memory type for a particular design depends on the speed, cost, and
power constraints.

5 . 5 . 5 Register Files

Digital systems often use a number of registers to store temporary vari-
ables. This group of registers, called a register file, is usually built as a
small, multiported SRAM array, because it is more compact than an
array of flip-flops.

Figure 5.47 shows a 32-register ! 32-bit three-ported register file
built from a three-ported memory similar to that of Figure 5.43. The
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DRAM cell
• One bit of information is stored in the form of capacitor charge
• The nMOS transistor controls the charging process of the 

capacitor
• When the wordline is active 
→ nMOS is on → the bit value 
is stored from the bitline (WRITE) 
or placed on the bitline (READ)

• Capacitor = physical component 
→ there is leakage, the content 
is lost after some time 
✓ Anyhow after the read operation 

the content is lost too

• DRAM needs refreshment at regular rate even when not read, 
hence the name

9
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Bit-cells : cross-comparison

10

FF SRAM DRAM

Transistor count /bit ~20 6 1

Speed <0.5 ~1-10ns 100ns

• In reality the SRAMs performance parameters 
(delay and power) are function of the memory size 

• Bigger the SRAM, bigger the access time is …

• This is going to influence the memory subsystem — 
subsystem, because we do not have just one memory 
instance !
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Memory hierarchy — properties  

11

Reg
File L1 L2 L3 Main Disk

Typical
size < 1kB < 256kB <24MB <  2MB < 512 GB > 1TB

Access
time (ns) <0.5 0.5 - 250.5 - 250.5 - 25 <250 5x106

Managed 
by

compiler/
core HW HW HW OS OS

• Multiple memories structured in levels
• Levels trade-off area (memory size) vs. access time  and 

this is cost/performance driven

• Orders of magnitude difference in today's systems 
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Main memory
• Today main memory is built using DDRs DRAMs :
✓ Double Data Rate Synchronous Dynamic Random-Access Memories 

• Double rate : 64  bits at both rising and falling edges
• But even with increasing interface frequency the bandwidth 

remains insufficient for some applications : 
✓ → 3D stacked DRAM memories (Hybrid Memory Cube)

12

Names Frequency Transfer Rate Max Bandwidth

DR 100 MHz 200 MT/s 1.6 GB/s

DDR2 400 MHz 800 MT/s 6.4 GB/s

DDR3 800 MHz 1600 MT/s 12.8 GB/s
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Hybrid memory cube

13

Multiple DRAM dies 
stacked in the same 

package

Bottom die 
→ CTRL Logic



Memory organisation
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Memory access
• We need to define the smallest unit of memory access 

• The choice is made at architecture level (often based on cost/
performance trade-off)

• The size of the smallest data unit will impact the amount of data 
allocated to a single address seen by SW

• If the smallest unit of access is one byte, then in order to 
construct more complex data types (like 64 bit integers that are 
maybe more common then unsigned bytes) we need to perform 
multiple memory accesses (8 in this case)

• To increase memory bandwidth parallelism is required and bytes 
are in general packed in words — one data access concerns 
one address / one packed word 

15
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Memory access
• From HW perspective reading/writing data will be performed at 

the scale of the word to increase memory access efficiency

• Single transfer is never a good idea
✓ CPU to memory communication is protocol based
✓ Establishing a communication can be time consuming
✓ When you make a connection you want to transfer as much 

data as you can
❖ Burst vs. single word transfer

• But after all we want a General Purpose Computer and all data 
types possible
✓ What about memory access to data types smaller then word?

16
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Memory alignment and padding 
• If the addresses are multiples of the word size, then we say 

that the data is aligned 
• If the data is smaller then data word we have a problem …
• In a 64-bit memory system accessing 8-bit data types, 

assume a data array 
✓ We have to extract the actual byte out of the word information 

(expensive in logic and especially time); space overhead 
although not critical because of the DRAM $/byte

✓ We align all 8-bit data addresses to 64-bit words 
❖ In that case, assuming that our word goes at the first byte of the 

word, other 56 bits need to have some kind of dummy values 
(can be zero!) — data structure padding → filling out the 
remaining space with useless data

17
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One central memory doesn’t work
• Imagine that the Register File is 

directly connected to the 
main memory
• If the CPU needs data (this is true 

for program data and instructions), 
it needs to fetch it directly from 
the main memory
• In order to have balanced execution, 

and not to stall the processing or 
the memory IO, we need to compute 
and access data equally fast

19

This is not the case due to technology reasons 

ALU

Register
file

Control
logic

 DRAM
central 

memory
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Uneven scaling of logic vs. memory

20

If the CPU needs to wait for the data, it is said that the 
CPU is stalled, we waste plenty of useful CPU cycles

system appears fast. The large memory stores the remainder of the data
and instructions, so the overall capacity is large. The combination of two
cheap memories is much less expensive than a single large fast memory.
These principles extend to using an entire hierarchy of memories of
increasing capacity and decreasing speed.

Computer memory is generally built from DRAM chips. In 2006, a
typical PC had a main memory consisting of 256 MB to 1 GB of
DRAM, and DRAM cost about $100 per gigabyte (GB). DRAM prices
have declined at about 30% per year for the last three decades, and
memory capacity has grown at the same rate, so the total cost of the
memory in a PC has remained roughly constant. Unfortunately, DRAM
speed has improved by only about 7% per year, whereas processor
performance has improved at a rate of 30 to 50% per year, as shown in
Figure 8.2. The plot shows memory and processor speeds with the 1980
speeds as a baseline. In about 1980, processor and memory speeds were
the same. But performance has diverged since then, with memories
badly lagging.

DRAM could keep up with processors in the 1970s and early
1980’s, but it is now woefully too slow. The DRAM access time is one to
two orders of magnitude longer than the processor cycle time (tens of
nanoseconds, compared to less than one nanosecond).

To counteract this trend, computers store the most commonly used
instructions and data in a faster but smaller memory, called a cache. The
cache is usually built out of SRAM on the same chip as the processor.
The cache speed is comparable to the processor speed, because SRAM is
inherently faster than DRAM, and because the on-chip memory elimi-
nates lengthy delays caused by traveling to and from a separate chip. In
2006, on-chip SRAM costs were on the order of $10,000/GB, but the
cache is relatively small (kilobytes to a few megabytes), so the overall

8.1 Introduction 465
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Figure 8.2 Diverging processor
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Architecture: A Quantitative Approach,
3rd ed., Morgan Kaufmann, 2003.
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What is the solution?
• Insert smaller, but faster memories on 

the instruction/data path between CPU 
& the main memory — cache

• Cache holds a copy of the main memory 
content and can deliver it to the CPU 
much faster 

• When the CPU access new data (or 
new instruction) it will first look into the 
cache:
➡ if this operation succeeds — cache hit 

— main memory latency is hidden to the 
CPU that continues computations 
→ the CPU is not stalled

➡ if not — cache miss — the data needs 
to be fetched from the main memory, 
→ the CPU is stalled, we loose CPU 
cycles 

21
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Why caching works ?
• Cache hits are possible because of locality :  
✓ Same data locations are accessed closely in time
→ Temporal locality
❖ Typical example: loop counter

✓ Data that will be accessed in the near future is generally not that 
far away from the current data
→ Spatial locality
❖ Typical example: data arrays

• How local data is, will depend on: 
✓ the problem itself
✓ the algorithm used to solve the problem
✓ program implementation 

• And also the way the cache is controlled …

22
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How good is the solution ?
• Obviously:
✓ More cache hits → less CPU stalls → better performance
✓ More caches misses → more stalls → worse performance

• One wants to trade-off:
✓ Performance — by maximising cache hits, 
✓ Cost — by minimising the cache size 

❖ Implementing big on-chip caches is costly (making SRAMs using 
technologies dedicated to logic is not that efficient)

• These two criteria are orthogonal ! 
✓ Complex compromises need to be made … but more memory 

wins because apps are memory hungry

23
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Performance metrics
• Memory stall cycles = IC x Misses/Instruction x Miss cost
• Miss cost will depend on : 
✓ Memory access time

❖ How much time is required to get one data
✓ Hit rate 

❖ How many times the actual access returned the right data 
✓ Latency 

❖ Time elapsed between request and first data being available
✓ Bandwidth 

❖ The amount of time necessary to deliver a block of data
• To count misses : cache simulators that log memory access 

traces → these can be analysed later using tools Cacti, 
VTune…)
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What does cache memory stores ?
• Obviously useful information : instructions and/or data that 

are simply called cache entries 
• Each cache entry is structured in fields :
✓ tag — a part of the data main memory address
✓ data block — the actual data 
✓ flags — indicating the status of the data block

❖ valid — if the valid data has been loaded
❖ dirty — if the data has been modified by the CPU (this means 

that some process of main memory update should take place)

• Data transfers are done from the main memory to the cache 
memory using cache lines, the size of the line depending on 
the hardware choices

26
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Main questions related to cache
• Where to place a given block of data in the cache?
✓ Block placement  

❖ The question is how to map main memory space onto cache 
memory space

• How do you find a given data in the cache?
✓ Block identification

❖ We need to find the way to quickly and at lowest HW cost 
identify where in cache is the data

• Which data block should be evicted to make room for new 
ones?
✓ Block replacement 

❖ Cache is of finite, in principal small size, so we need to erase 
unused data to enable storage of newer and more useful data 

Depending on how you do these → many options … 
27
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Direct mapping — simplest way
• We map 230 main memory space into 23 cache memory 

space (there are 8 cache entries in all) 
• Memory space uses 4 byte words 

and the addresses are
4 byte aligned (so word
addresses are 4, 8, C,
etc.)
• Last two bits indicate

byte offset within the 
word
• The following 3 bits

map the set address

28
0xFFFFFFE4 all map to set 1, as shown in blue. Likewise, data at
addresses 0x00000010, . . . , 0xFFFFFFF0 all map to set 4, and so
forth. Each main memory address maps to exactly one set in the cache.

Example 8.4 CACHE FIELDS

To what cache set in Figure 8.5 does the word at address 0x00000014 map?
Name another address that maps to the same set.

Solution: The two least significant bits of the address are 00, because the address
is word aligned. The next three bits are 101, so the word maps to set 5. Words at
addresses 0x34, 0x54, 0x74, . . . , 0xFFFFFFF4 all map to this same set.

Because many addresses map to a single set, the cache must also
keep track of the address of the data actually contained in each set.
The least significant bits of the address specify which set holds the
data. The remaining most significant bits are called the tag and indi-
cate which of the many possible addresses is held in that set.

In our previous example, the two least significant bits of the 32-bit
address are called the byte offset, because they indicate the byte within
the word. The next three bits are called the set bits, because they indicate
the set to which the address maps. (In general, the number of set bits is
log2S.) The remaining 27 tag bits indicate the memory address of the
data stored in a given cache set. Figure 8.6 shows the cache fields for
address 0xFFFFFFE4. It maps to set 1 and its tag is all 1’s. 
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00...00010000

230-Word Main Memory

mem[0x00000000]
mem[0x00000004]
mem[0x00000008]
mem[0x0000000C]
mem[0x00000010]
mem[0x00000014]
mem[0x00000018]
mem[0x0000001C]
mem[0x00000020]
mem[0x00000024]

mem[0xFFFFFFE0]
mem[0xFFFFFFE4]
mem[0xFFFFFFE8]
mem[0xFFFFFFEC]
mem[0xFFFFFFF0]
mem[0xFFFFFFF4]
mem[0xFFFFFFF8]
mem[0xFFFFFFFC]

23-Word Cache

Address

00...00000000
00...00000100
00...00001000
00...00001100

00...00010100
00...00011000
00...00011100
00...00100000
00...00100100

11...11110000

11...11100000
11...11100100
11...11101000
11...11101100

11...11110100
11...11111000
11...11111100

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Data

Figure 8.5 Mapping of main
memory to a direct mapped
cache
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Block identification — example
• Each entry, or set, contains 

one line consisting of 
32 bits of data, 27 bits of tag, 
and 1 valid bit 

• The cache is accessed using a 
32-bit address

• The two least significant bits, 
the byte offset bits, are ignored 
for word accesses

• The next three bits, the set 
bits, specify the entry or set, in 
the cache that match the most 
significant bits

•  

29

Example 8.5 CACHE FIELDS

Find the number of set and tag bits for a direct mapped cache with 1024 (210)
sets and a one-word block size. The address size is 32 bits.

Solution: A cache with 210 sets requires log2(210) ! 10 set bits. The two least sig-
nificant bits of the address are the byte offset, and the remaining 32 " 10 " 2 ! 20
bits form the tag.

Sometimes, such as when the computer first starts up, the cache sets
contain no data at all. The cache uses a valid bit for each set to indicate
whether the set holds meaningful data. If the valid bit is 0, the contents
are meaningless.

Figure 8.7 shows the hardware for the direct mapped cache of
Figure 8.5. The cache is constructed as an eight-entry SRAM. Each
entry, or set, contains one line consisting of 32 bits of data, 27 bits of
tag, and 1 valid bit. The cache is accessed using the 32-bit address. The
two least significant bits, the byte offset bits, are ignored for word
accesses. The next three bits, the set bits, specify the entry or set in the
cache. A load instruction reads the specified entry from the cache and
checks the tag and valid bits. If the tag matches the most significant

472 CHAPTER EIGHT Memory Systems

00
Tag  Set

Byte
OffsetMemory 

Address
001111    ...   111

FFFFFF          E          4

Figure 8.6 Cache fields for
address 0xFFFFFFE4 when
mapping to the cache in
Figure 8.5

DataTag

00
Tag Set

Byte
OffsetMemory 

Address

DataHit

V

=

27 3

27 32

8-entry x 
(1+27+32)-bit

SRAM

Set 7
Set 6
Set 5
Set 4
Set 3
Set 2
Set 1
Set 0

Figure 8.7 Direct mapped cache
with 8 sets

Chapter 08.qxd  1/30/07  9:53 AM  Page 472

• A load instruction reads the specified entry from the cache 
and checks the tag and valid bits : if the tag is ok → bingo !
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Direct mapping cache — problem 
• Because there is only one set, i.e. given address can be 

found on only one cache address, if two consecutive memory 
accesses target the address pointing to the same set, 
there will be a conflict
• The latest data will evict the previous data !
• If this occurs in a loop, we will have a systematic conflict that 

will lead to a systematic cache misses (and hence the 
performance loss)

30

0x00004
.
.
.
0x00014

Same set



Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Example
• Analyse the execution of the 

two programs on the right 

• Assume direct cache 
mapping with 8 cache entries

• Answer : 

✓ What do these programs do?

✓ What is the difference?

✓ What is the miss rate for 
these programs?

31

mov    bx,35
mov    cx,10000000
loop: 
   add!   bx, [0x004]
   add!   bx, [0x024]
   sub   cx, 1
jnz   loop

mov    bx,35
mov    cx,10000000
loop: 
   add!   bx, [0x004]
   add!   bx, [0x008]
   sub   cx, 1
jnz   loop
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Solution for conflicts in direct mapped
• Each main memory address could potentially reside on 

multiple locations in the cache memory : associativity
• A cache memory is said to be m-set associate if the data 

could be found in m different sets — this is the degree of the 
associativity 
• Depending on the value of m we can have less to more 

associativity :
✓ direct mapped cache — 1-way set associate because a 

given address can be located on only one address in the 
cache

✓ m-set — data could be found in one of the m sets
✓ fully associate — given data can be placed anywhere in the 

cache

32
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Example of 2-way set associate cache

33

Example 8.7 CACHE BLOCK CONFLICT

What is the miss rate when the following loop is executed on the eight-word
direct mapped cache from Figure 8.7? Assume that the cache is initially empty.

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, !1
j loop

done:

Solution: Memory addresses 0x4 and 0x24 both map to set 1. During the initial
execution of the loop, data at address 0x4 is loaded into set 1 of the cache. Then
data at address 0x24 is loaded into set 1, evicting the data from address 0x4.
Upon the second execution of the loop, the pattern repeats and the cache must
refetch data at address 0x4, evicting data from address 0x24. The two addresses
conflict, and the miss rate is 100%.

Multi-way Set Associative Cache
An N-way set associative cache reduces conflicts by providing N blocks
in each set where data mapping to that set might be found. Each mem-
ory address still maps to a specific set, but it can map to any one of the
N blocks in the set. Hence, a direct mapped cache is another name for a
one-way set associative cache. N is also called the degree of associativity
of the cache.

Figure 8.9 shows the hardware for a C " 8-word, N " 2-way
set associative cache. The cache now has only S " 4 sets rather than 8.
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DataTag

Tag Set
Byte

OffsetMemory 
Address

Data

1 0

Hit1

V

=

00

32 32

32

DataTagV

=

Hit1Hit0

Hit

28 2

28 28

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

Figure 8.9 Two-way set
associative cache
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• The cache reads blocks from both ways in the selected set 
and checks the tags and valid bits for a hit
• If a hit occurs in one of the ways, a multiplexer selects data 

from that way
• In the example 

above now both 
0X004 & 0X024
could remain in the 
cache
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Set-associative cache performance 
• Bigger caches improve hit rate (they reduce miss rate)
• More associativity means better probability to avoid address 

conflicts 
• More associativity means also more complex search (8-way 

set associate cache needs to check 8 tags)
• Running a benchmarks 

gives you the idea
✓ Double the way

has the effect of 
doubling the cache 
size !!!

✓ The effect is reduced
for increasing associativity
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Replacement policy
• In m-way set associative cache when cache miss occurs the 

controller will fetch a new cache line 

• … and it need to decide where to store it

• So, how to decide where to store a new cache line ?

• In direct mapped caches, there is no choice, since there is 
only one address where this line can be stored

• What about m-way ?

• Which existing line in cache to 
replace ? 

• How to make a good 
crystal ball?
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Popular replacement policy algorithms 
• Random — pick the candidate randomly
✓ very easy to implement, but you might evict the data that you 

will need soon

• Least Recently Used (LRU) — If recently used data is to be 
reused, least recently data will not be used !
✓ If this is true then erase the block that has been unused for the 

longest time

• First In First Out (FIFO) —  LRU needs to keep track of 
what is going on → increased HW complexity. FIFO 
emulates LRU behavior at lower implementation cost 
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Performance of replacement algorithms

37

C-10 a Appendix C Review of Memory Hierarchy 

Figure C.4 Data cache misses per 1000 instructions comparing least-recently used, random, and first in, first out 
replacement for several sizes and associativities. There is little difference between LRU and random for the largest-
size cache, with LRU outperforming the others for smaller caches. FIFO generally outperforms random in the smaller 
cache sizes. These data were collected for a block size of 64 bytes for the Alpha architecture using 10 SPEC2000 
benchmarks. Five are from SPECint2000 (gap, gcc, gzip, mcf, and perl) and five are from SPECfp2000 (applu, art, 
equake, lucas,and swim). We will use this computer and these benchmarks in most figures in this appendix. 

the block read begins as soon as the block address is available. If the read is a hit, 
the requested part of the block is passed on to the processor immediately. If it is a 
miss, there is no benefit—but also no harm except more power in desktop and 
server computers; just ignore the value read. 

Such optimism is not allowed for writes. Modifying a block cannot begin 
until the tag is checked to see if the address is a hit. Because tag checking cannot 
occur in parallel, writes normally take longer than reads. Another complexity is 
that the processor also specifies the size of the write, usually between 1 and 8 
bytes; only that portion of a block can be changed. In contrast, reads can access 
more bytes than necessary without fear. 

The write policies often distinguish cache designs. There are two basic 
options when writing to the cache: 

• Write through—The information is written to both the block in the cache and 
to the block in the lower-level memory. 

• Write back—The information is written only to the block in the cache. The 
modified cache block is written to main memory only when it is replaced. 

To reduce the frequency of writing back blocks on replacement, a feature 
called the dirty bit is commonly used. This status bit indicates whether the block 
is dirty (modified while in the cache) or clean (not modified). If it is clean, the 
block is not written back on a miss, since identical information to the cache is 
found in lower levels. 

Both write back and write through have their advantages. With write back, 
writes occur at the speed of the cache memory, and multiple writes within a block 
require only one write to the lower-level memory. Since some writes don't go to 
memory, write back uses less memory bandwidth, making write back attractive in 
multiprocessors. Since write back uses the rest of the memory hierarchy and 
memory interconnect less than write through, it also saves power, making it 
attractive for embedded applications. 

• LRU is the best for smaller caches, however no significant 
difference for bigger caches with random



Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Write policy
• Similar procedure as with read: when data is supposed to be 

written, the address is first checked to see if it is cashed
• Again two situations can occur:
• Hit — the data is first written into cache
• Miss — the block of data corresponding to the address to be 

written is fetched from the main memory 
• Depending on the way the main memory is updated:
• Write though — the main memory is immediately updated; this 

can be time consuming if the central memory is too slow (and 
especially, if this location is constantly updated)

• Write back — dirty bit associated with each block is set to 1, if 
there was a write to this block; the main memory is updated only 
when the data from the cache is evicted
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Write policy
• Common optimization is to insert a write buffer between the 

cache memory and the main memory 
• The buffer is filled in by the CPU and emptied by the memory 

(this is a FIFO)
• Since the write buffer stores the data and has the life on his 

own, it will not stall the CPU 
• How good it is will depend of course of the FIFO depth : 

more is better but we need to keep the FIFO small (area 
penalty) → if we can not empty the FIFO fast enough : 
buffer saturation and we are facing again the same 
problem
• Solution : insert L2 that can match the emptying frequency 

imposed by the CPU
39
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Instructions
• Previously we assumed data caches only
• Similar same principals are applied to instructions cache
• The only difference is that for instructions we are only in the 

READ mode
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Further reduction of miss rate
• After all we still have cache misses ...

• Cache hierarchy design is sensitive, because there will be 
always causes for a cache miss that can be :
✓ Compulsory — cache needs to be initialized every time → this is 

unavoidable (unless you do explicit prefetch of data in cache); it 
generally accounts for a small proportion of the total miss rate

✓ Conflicts — there will be more requests then ways, this is 
application dependent but also implementation trade-off

✓ Capacity — if the cache size is too small, data blocks will be 
systematically evicted and then reloaded, this one is most 
important

• Whatever is done in HW it is a choice, application has to know 
this and use the best it can whatever is there … 
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Example 

42

for i in 0..n
  for j in 0..m
    for k in 0..p
      C[i][j] = C[i][j] + A[i][k] * B[k][j];

for (ii = 0; ii < SIZE; ii += BLOCK_SIZE)
  for (kk = 0; kk < SIZE; kk += BLOCK_SIZE)
    for (jj = 0; jj < SIZE; jj += BLOCK_SIZE)
      for (i = ii; i < ii + BLOCK_SIZE && i < SIZE; i++)
        for (k = kk; k < kk + BLOCK_SIZE && k < SIZE; k++)
          for (j = jj; j < jj + BLOCK_SIZE && j < SIZE; j++)
            C[i][j] = C[i][j] + A[i][k] * B[k][j];

• Take matrix multiplication : if matrix is to big, cache misses ...

• Cut the matrix in blocks of the cache size and do block-by-block 
computation to avoid cache capacity problems
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Physical vs. virtual memory
• At the end of the day you need to store the information 

somewhere — physical memory (caches, main memory 
etc.)
• But you have all the freedom of the world to create the 

address space you like …
• The question is how much of the memory OS will 

allocate to a newly generated process ?
• You can limit this to all available, or a portion of the physical 

memory
• Another way would be to allow every program to see a 

memory space that correspond to all addressable memory 
space — virtual memory 
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Example
• Consider the following :
int size = 64 000 000 000

new double my_array[size]; 
• Will this work (BTW can you compute the size in bytes)?
✓ In a system where OS see only the physical memory NO

• But if you assume that the HDD could be a potential memory 
extension, this is possible
• If the address bus of our architecture has 64 bits, the size of 

the address space is 264

• Virtual memory takes all addressable space
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Virtual memory
• All this virtual memory space is allocated to every process 

running on the system (every application sees the maximum 
memory)

• Virtual memory is mapped to a physical memory using address 
translation  

• Both virtual and physical memory are divided into pages 
(typically 4kB)

• Any virtual page can be found either in main memory or on HDD 
— whenever a programs access a virtual page :
✓ Either it is in the memory → no penalty 
✓ Either it is on the HDD → the page needs to be transferred from 

HDD to the main memory  → there is penalty 
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