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Previously on ELEC-H-473

* Reasons that cause pipeline inefficiency

v Variance in execution time (e.g. CISC or memory)

v Hazards

< Data

< Control

* Techniques that improve IPC of the pipeline

4

v

Register renaming

Data forwarding/out-of-order execution of instructions

v Branch prediction

» Software link — loop unrolling
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Today

* Memory technology
* Memory organisation
* Memory hierarchy

* Cache principals

e Virtual memory
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Memory technology



Memory structure and organisation

* We start by introducing bit-cell storage, i.e. the smallest
memory element capable of memorising one bit of info

* To build larger memory structures
we use 2D memory arrays of
bit-cells organised in n rows and m columns bit
(in all n x m cells)

e Each row

address, and only one row can %
3

bitline

wordline |
stored

IS identified with unique Address -5~ Array

be R/W accessed at a time

Data

* When accessed address activates one row of the array and

v places t

v places t

ne data from the bus into the array (WRITE)

ne data on the bus from the array (READ)
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Bit-cell technology

* Many technology options exist to store one bit of information
(and many others are in currently in development)

* Two major classes, depending on the the information loss on
power down : volatile and non-volatile

* Key volatile technologies:

v Flip-flop — Basic storage element for any sequential logic circuit;
fastest of the three, but most expensive in terms of area (typically
used to build the FSMs)

v SRAM — Static Random Access Memory (random — any data
address can be accessed in the same amount in time);
performance/price in the middle (targets smaller storage entities)

v DRAM — Dynamic Random Access Memory low cost/bit but at the
expense of access time (massive storage)
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Latches & Flip-flops

» Bistable — Sequential circuits having only two stable states
that are controllable by their inputs

e |f the bistable element is sensitive to a level .
it is called latch
e |f the bistable element is sensitive to an )

edge, it is called flip-flops

* For FF, the edge is produced by a rising/falling edge of the
periodic signal (clock)

» Used for FSMs or to pipeline whatever part of the IC
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SRAM cell

* The bit of information is stored in cross-coupled inverters

* The cell can be in one of the three state
v |dle, READ or WRITE

S .

« Two nMOS transistors control the READ/WRITE states :

v When the wordline is active,
both nMOS are ON and

v the bitline state is

transferred from/to wordline
iInverter couple

* Auto-refreshing — immune to
noise because the inverters

will restore the value that is possibly lost

stored
bitline DIt pitline
\ 4
L > L

* 6T(ransistor) configuration : 2 control + 2x2 for inverters
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DRAM cell

* One bit of information is stored in the form of capacitor charge

 The nMOS transistor controls the charging process of the

capacitor bitline
+ When the wordline is active wordiine

— nMOS is on — the bit value stored ++

is stored from the bitline (WRITE) bit=1 [

or placed on the bitline (READ) v

: : bitline

» Capacitor = physical component

— there is leakage, the content wordline

Is lost after some time stored |

v Anyhow after the read operation bit=0 ;

the content is lost too

* DRAM needs refreshment at regular rate even when not read,

hence the name
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Bit-cells : cross-comparison

FF SRAM DRAM
Transistor count /bit ~20 6 1
Speed <0.5 ~1-10ns 100ns

e |n reality the SRAMSs performance parameters

(delay and power) are function of the memory size

e Bigger the SRAM, bigger the access time is ...

® This is going to influence the memory subsystem —
subsystem, because we do not have just one memory

Instance !
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Memory hierarchy — properties

e Multiple memories structured in levels

® | evels trade-off area (memory size) vs. access time and
this is cost/performance driven

e Orders of magnitude difference in today's systems

Reg L1 L2 L3 Main Disk
File
z@'ca' <1kB | <256kB | <24MB | < 2MB |<512 GB| >1TB
Access <0.5 0.5 - 25 <250 | 5x106
time (ns)
Managed |compiler/ Y Y Y, oS oS
by core
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Main memory

* Today main memory is built using DDRs DRAMSs :

v Double Data Rate Synchronous Dynamic Random-Access Memories

* Double rate : 64 bits at both rising and falling edges

* But even with increasing interface frequency the bandwidth
remains insufficient for some applications :

v — 3D stacked DRAM memories (Hybrid Memory Cube)

Names Frequency Transfer Rate Max Bandwidth
DR 100 MHz 200 MT/s 1.6 GB/s

DDR2 400 MHz 800 MT/s 6.4 GB/s

DDRS3 800 MHz 1600 MT/s 12.8 GB/s
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Hybrid memory cube

Multiple DRAM dies
stacked in the same
package

Bottom die
— CTRL Logic
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Memory organisation



Memory access

* We need to define the smallest unit of memory access

* The choice is made at architecture level (often based on cost/
performance trade-off)

* The size of the smallest data unit will impact the amount of data
allocated to a single address seen by SW

* If the smallest unit of access is one byte, then in order to
construct more complex data types (like 64 bit integers that are
maybe more common then unsigned bytes) we need to perform
multiple memory accesses (8 in this case)

* To increase memory bandwidth parallelism is required and bytes
are in general packed in words — one data access concerns
one address / one packed word
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Memory access

 From HW perspective reading/writing data will be performed at
the scale of the word to increase memory access efficiency

» Single transfer is never a good idea
v CPU to memory communication is protocol based
v Establishing a communication can be time consuming

v When you make a connection you want to transfer as much
data as you can

< Burst vs. single word transfer

« But after all we want a General Purpose Computer and all data
types possible

v What about memory access to data types smaller then word?
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Memory alignment and padding

* |f the addresses are multiples of the word size, then we say
that the data is aligned

* |f the data is smaller then data word we have a problem ...

* In a 64-bit memory system accessing 8-bit data types,
assume a data array

v We have to extract the actual byte out of the word information
(expensive in logic and especially time); space overhead
although not critical because of the DRAM $/byte

v We align all 8-bit data addresses to 64-bit words

< In that case, assuming that our word goes at the first byte of the
word, other 56 bits need to have some kind of dummy values
(can be zero!) — data structure padding — filling out the
remaining space with useless data
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Memory hierarchy



One central memory doesn’t work

* Imagine that the Register File is
directly connected to the ALU e
main memory ; clont_rol
ogic
* |f the CPU needs data (this is true Registor
for program data and instructions), file
it needs to fetch it directly from I
the main memory
* In order to have balanced execution, ciiﬁg/ll
and not to stall the processing or memory

the memory 10, we need to compute
and access data equally fast

This is not the case due to technology reasons
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Uneven scaling of logic vs. memory
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If the CPU needs to wait for the data, it is said that the
CPU is stalled, we waste plenty of useful CPU cycles

m Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir 20



What is the solution?

e [nsert smaller, but faster memories on
the instruction/data path between CPU
& the main memory — cache

e (Cache holds a copy of the main memory
content and can deliver it to the CPU
much faster

e \When the CPU access new data (or
new instruction) it will first look into the
cache:

= |f this operation succeeds — cache hit
— main memory latency is hidden to the
CPU that continues computations
— the CPU is not stalled

= if not — cache miss — the data needs
to be fetched from the main memory,
— the CPU is stalled, we loose CPU
cycles
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ALU

I

Register
file

i

Cache
L1

Control
logic

Off-chip DRAM
central memory
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Why caching works ?

* Cache hits are possible because of locality :

v Same data locations are accessed closely in time
— Temporal locality

<+ Typical example: loop counter

v Data that will be accessed in the near future is generally not that
far away from the current data
— Spatial locality

<+ Typical example: data arrays
* How local data is, will depend on:
v the problem itself
v the algorithm used to solve the problem
v program implementation

* And also the way the cache is controlled ...
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How good is the solution ?

* Obviously:
v More cache hits — less CPU stalls — better performance
v More caches misses — more stalls = worse performance
* One wants to trade-offt:
v Performance — by maximising cache hits,
v Cost — by minimising the cache size

% Implementing big on-chip caches is costly (making SRAMs using
technologies dedicated to logic is not that efficient)

* These two criteria are orthogonal !

v Complex compromises need to be made ... but more memory
wins because apps are memory hungry
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Performance metrics

 Memory stall cycles = IC x Misses/Instruction x Miss cost

* Miss cost will depend on :

v Memory access time
<+ How much time is required to get one data
v Hit rate
%+ How many times the actual access returned the right data
v Latency
+ Time elapsed between request and first data being available
v Bandwidth
<+ The amount of time necessary to deliver a block of data

* To count misses : cache simulators that log memory access
traces — these can be analysed later using tools Cacti,
VTune...)
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Memory hierarchy



What does cache memory stores ?

* Obviously useful information : instructions and/or data that
are simply called cache entries

 Each cache entry is structured in fields :
v tag — a part of the data main memory address
v data block — the actual data
v flags — indicating the status of the data block

7/
%*

valid — if the valid data has been loaded

dirty — if the data has been modified by the CPU (this means
that some process of main memory update should take place)

7/
A X4

* Data transfers are done from the main memory to the cache
memory using cache lines, the size of the line depending on
the hardware choices
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Main questions related to cache

* Where to place a given block of data in the cache?

v Block placement

% The question is how to map main memory space onto cache
memory space

* How do you find a given data in the cache?

v Block identification

<+ We need to find the way to quickly and at lowest HW cost
identify where in cache is the data

 Which data block should be evicted to make room for new
ones?

v Block replacement

+ Cache is of finite, in principal small size, so we need to erase
unused data to enable storage of newer and more useful data

Depending on how you do these = many options ...
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Direct mapping — simplest way

* We map 239 main memory space into 23 cache memory

space (there are 8 cache entries in all)

* Memory space uses 4 byte words

and the addresses are

4 byte aligned (so word
addresses are 4, 8, C,

etc.)

e Last two bits indicate
byte offset within the
word

* The following 3 bits
map the set address

Address

11...
11..
11..
11...
11...
11...
11...
11...

00..
00..
00..
00..
00..
00..
00..

00..

11111100
11111000
.11110100
11110000
11101100
11101000
11100100
11100000
°

...00100100
.00100000
.00011100
.00011000
.00010100
.00010000
.00001100
.00001000
...00000100
.00000000

Data

mem[OxFFFFFFFC]

mem[OxFFFFFFFg]

mem[OxFFFFFFF4]

mem[OxFFFFFFFQ]

mem[OxFFFFFFEC]

mem[OxFFFFFFES]

mem[OxFFFFFFEA4]

mem[OxFFFFFFEOQ]

mem[0x00000024]

mem[0x00000020]

mem[0x0000001C]

mem[0x00000018]

mem[0x00000014]

mem[0x00000010]

mem[0x0000000C]

mem[0x00000008]

mem[0x00000004]

mem[0x00000000]

[ >

230-Word Main Memory

23_.Word Cache
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Set 7 (111
Set 6 (110
Set 5 (101
Set 4 (100
Set 3 (011
Set2 (010
Set 1 (001
(

)
)
)
)
)
)
)
Set 0 (000)
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Block identification — example

« Each entry, or set, contains

Tag

Byte
Set Offset

' IS Memor
one line consisting of Memory

00

32 bits of data, 27 bits of tag, (&
and 1 valid bit

* The cache is accessed using a
32-bit address

* The two least significant bits,

//3
V Tag

Data

A 27

the byte offset bits, are ignored |

for word accesses

 The next three bits, the set u
bits, specify the entry or set, in  Hi
the cache that match the most
significant bits

* Aload instruction reads the specified entry from the cache

432

Data

Set 7
Set 6
Set 5
Set 4
Set 3
Set 2
Set 1
Set 0

8-entry X
(1+27+32)-bit
SRAM

and checks the tag and valid bits : if the tag is ok = bingo !
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Direct mapping cache — problem

* Because there is only one set, i.e. given address can be
found on only one cache address, if two consecutive memory
accesses target the address pointing to the same set,
there will be a conflict

 The latest data wi

e |f this occurs in a

| evict the previous data !
oop, we will have a systematic conflict that

will lead to a systematic cache misses (and hence the

performance loss)

0x00004

Ox00014//////

Same set
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Example

* Analyse the execution of the
two programs on the right

e Assume direct cache

mapping with 8 cache entries

e Answer :

v What do these programs do?
v What is the difference?

v What is the miss rate for

these programs?

mov bx, 35
mov cx,10000000
loop:

add bx, [0x004]
add bx, [0x008]
sub cx, 1

.

add bx, [0x004]
add bx, [0x024]
sub cx, 1

jnz loop

jnz loop
\ J
4 N
mov bx, 35
mov cx,10000000
loop:
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Solution for conflicts in direct mapped

 Each main memory address could potentially reside on
multiple locations in the cache memory : associativity

* A cache memory is said to be m-set associate if the data
could be found in m different sets — this is the degree of the
associativity

* Depending on the value of m we can have less to more
associativity :

v direct mapped cache — 1-way set associate because a
given address can be located on only one address in the
cache

v m-set — data could be found in one of the m sets

v fully associate — given data can be placed anywhere in the
cache
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Example of 2-way set associate cache

* The cache reads blocks from both ways in the selected set
and checks the tags and valid bits for a hit

* |f a hit occurs in one of the ways, a multiplexer selects data
from that way

Byte
* In the example Memory | 22— ores
ress ” y W W

above now both st vl VO

V Tag Data V Tag Data
0X004 & 0X024 X Set 3
could remain in the Set 1
cache " T Yo Tes Yoz

9@9 N T © /—Hit

Hit Data
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Set-associative cache performance

* Bigger caches improve hit rate (they reduce miss rate)

* More associativity means better probability to avoid address
conflicts

* More associativity means also more complex search (8-way
set associate cache needs to check 8 tags)

. 0.1
 Running a benchmarks T D — ]
gives you the idea 001 ooy —— ]
v Double the way g A ;
®

has the effect of v 1e.08 ]
doubling the cache ° I
size !!! s 2

v The effect is reduced ™™ o
for increasing associativity 1 ak 1k ek 25k 1M Int

cache size
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Replacement policy

* |[n m-way set associative cache when cache miss occurs the
controller will fetch a new cache line

e ... and it need to decide where to store it
S0, how to decide where to store a new cache line ?

* In direct mapped caches, there is no choice, since there is
only one address where this line can be stored

* What about m-way ?

* Which existing line in cache to
replace ?

* How to make a good
crystal ball?
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Popular replacement policy algorithms

* Random — pick the candidate randomly

v very easy to implement, but you might evict the data that you
will need soon

* Least Recently Used (LRU) — If recently used data is to be
reused, least recently data will not be used !

v If this is true then erase the block that has been unused for the
longest time

* First In First Out (FIFO) — LRU needs to keep track of
what is going on — increased HW complexity. FIFO
emulates LRU behavior at lower implementation cost
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Performance of replacement algorithms

* LRU is the best for smaller caches, however no significant
difference for bigger caches with random

Associativity

e —=

Two-way Four-way Eight-way
Size LRU Random FIFO LRU Random FIFO LRU Random  FIFO
I6KB 1141 1173 1155 117 115.1 113.3 1090 1118 1104
64 KB 103.4 104.3 103.9 102.4 102.3 103.1 99,7 100.5 1003
256 KB 92.2 92,1 92.5 92.1 92.1 92.5 92.1 92.1 92.5

Figure C4 Data cache misses per 1000 instructions comparing least-recently used, random, and first in, first out
replacement for several sizes and associativities. There is little difference between LRU and random for the largest-
size cache, with LRU outperforming the others for smaller caches. FIFO generally outperforms random in the smaller
cache sizes. These data were collected for a block size of 64 bytes for the Alpha architecture using 10 SPEC2000
benchmarks. Five are from SPECint2000 (gap, gcc, gzip, mcf, and perl) and five are from SPEC{p2000 (applu, art,
equake, lucas,and swim). We will use this computer and these benchmarks in most figures in this appendix.
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Write policy

« Similar procedure as with read: when data is supposed to be
written, the address is first checked to see if it is cashed

e Again two situations can occur:

 Hit — the data is first written into cache

* Miss — the block of data corresponding to the address to be
written is fetched from the main memory

* Depending on the way the main memory is updated:

 Write though — the main memory is immediately updated; this
can be time consuming if the central memory is too slow (and
especially, if this location is constantly updated)

 Write back — dirty bit associated with each block is set to 1, if
there was a write to this block; the main memory is updated only
when the data from the cache is evicted
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Write policy

« Common optimization is to insert a write buffer between the
cache memory and the main memory

* The buffer is filled in by the CPU and emptied by the memory
(this is a FIFO)

e Since the write buffer stores the data and has the life on his
own, it will not stall the CPU

* How good it is will depend of course of the FIFO depth :
more is better but we need to keep the FIFO small (area
penalty) — if we can not empty the FIFO fast enough :
buffer saturation and we are facing again the same
problem

* Solution : insert L2 that can match the emptying frequency
imposed by the CPU
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Instructions

* Previously we assumed data caches only
e Similar same principals are applied to instructions cache

* The only difference is that for instructions we are only in the
READ mode
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Further reduction of miss rate

o After all we still have cache misses ...

» Cache hierarchy design is sensitive, because there will be
always causes for a cache miss that can be :

v Compulsory — cache needs to be initialized every time — this is
unavoidable (unless you do explicit prefetch of data in cache); it
generally accounts for a small proportion of the total miss rate

v Conflicts — there will be more requests then ways, this is
application dependent but also implementation trade-off

v Capacity — if the cache size is too small, data blocks will be
systematically evicted and then reloaded, this one is most
important

 Whatever is done in HW it is a choice, application has to know
this and use the best it can whatever is there ...
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Example

* Take matrix multiplication : if matrix is to big, cache misses ...

( h

for 1 in 0..n
for j in 0..m
for k in 0..p
C[1][J] C[1][J] + A[1][k] * B[k][J];
Q J

» Cut the matrix in blocks of the cache size and do block-by-block

computation to avoid cache capacity problems

~ )
for (ii = 0; ii < SIZE; ii += BLOCK SIZE)
for (kk = 0; kk < SIZE; kk += BLOCK SIZE)
for (jj = 0; jj < SIZE; jj += BLOCK SIZE)
for (i = ii; i < ii + BLOCK SIZE && i < SIZE; i++)
for (k = kk; k < kk + BLOCK SIZE && k < SIZE; k++)
for (J = JJ; J < JJ + BLOCK SIZE && ] < SIZE; j++)
C[i1[31 = C[i1[3]1 + A[il[k] * B[kI[J];
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Virtual memory



Physical vs. virtual memory

* At the end of the day you need to store the information
somewhere — physical memory (caches, main memory
etc.)

* But you have all the freedom of the world to create the
address space you like ...

* The question is how much of the memory OS will
allocate to a newly generated process ?

* You can limit this to all available, or a portion of the physical
memory

* Another way would be to allow every program to see a
memory space that correspond to all addressable memory
space — virtual memory
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Example

* Consider the following :
int size = 64 000 000 00O
new double my array[size];

* Will this work (BTW can you compute the size in bytes)?
v In a system where OS see only the physical memory NO

* But if you assume that the HDD could be a potential memory
extension, this is possible

 If the address bus of our architecture has 64 bits, the size of
the address space is 264

* Virtual memory takes all addressable space
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Virtual memory

 All this virtual memory space is allocated to every process
running on the system (every application sees the maximum
memory)

 Virtual memory is mapped to a physical memory using address
translation

e Both virtual and physical memory are divided into pages
(typically 4kB)

* Any virtual page can be found either in main memory or on HDD
— whenever a programs access a virtual page :

v Either it is in the memory — no penalty

v Either itis on the HDD — the page needs to be transferred from
HDD to the main memory — there is penalty
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