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Previously on ELEC-H-473 
• Basic architecture : combination of Von Neumann and 

Harvard architecture

• Instruction execution model — different views : 

✓ Programmer — F, D, Ex, W

✓ IC designer views — Critical path 

• Pipelined execution trade-off : 
delay reduction (frequency increase) vs. latency 

• Latency depends on the pipeline depth (i.e. the N° of pipeline 
stages)

• CISC/RISC approach to ISA
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Minimum system architecture 
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Simplified instruction set

• We will introduce few assembly instructions necessary to 
write some pseudo-code necessary to illustrate different 
concepts i.e. we add Instruction Set Architecture to the 
minimum system architecture

• Instructions: few basic instructions, more as we move along
✓ Data movement – from memory-to-register (and inverse!) and 

from register-to-register
✦ MOV dst , src 

✓ Arithmetic 
✦ ADD, DIV, MUL — simple + , / , *

• Register file – set of registers of a certain size with names
✓ AX → JX (10 registers of whatever word size)

4
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Today

• Pipeline hazards

• Name dependency 

• Data conflicts

✓ Out-of-order execution

• Branch conflicts

• Resource conflicts

• Loop unrolling 

5
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Pipeline acceleration

• Speed-up proportional to N° of pipeline stages is possible only if :
✓ all stages take the same, fixed, predictable amount of time 
✓ there is no dependency between consecutive instructions

• These hypothesis are EXTREMELY optimistic !!!
• If this happens in the real world, then we are :

✓ either very lucky ... or we understand computer architecture well !

6
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Pipeline acceleration
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• Even if multiple µ-ops executed in parallel, at their best, the 
pipeline can achieve an IPC of 1
➡  1 instruction could be done for each system cycle
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In the real world ...
• What happens if, for whatever reason, we can not maintain 

the pace of the ideal pipeline execution ? 
(remember C.Chaplin in “Modern Times” : 
he is too tired to follow the others 
in the pipeline and misses his turns … )

• Pipeline chain is broken, normal 
operation is altered … 

• This is called : 
✓ Pipeline stall

✓ Broken pipeline

✓ Bubbling 
(a bubble enters the pipeline)

8
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Bubbling in computer architecture
• This happens because we have execution hazards 

• Execution hazard will occur : 
✓ When instructions do not take the same time
✓ When some unpredictable situation happen 
✓ When there is computational dependency between instructions

Often, there is dependency between instructions 
→ after all the computing is : 
“About how do we serialize the computations ? ” 
(cf Turing machine) 

• Example : 
✓ Arithmetic operation currently in execution reference memory 

location (instead of register) 
✓ Since operand fetch from memory will take more cycles, the 

following instruction need to wait the completition of the first

9
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Pipeline stall — the execution mechanism 
• How the CPU handles the pipeline stall :

✓ Instruction is fetched
✓ Control logic determines if there is a potential hazard
✓ If this is the case, the control logic inserts NOPs 

(AKA wait state) in the instruction execution pipeline of the 
following instruction → that waits the fist one to complete !

✓ The number of NOPs is proportional to the difference in 
execution time

✓ If the number of NOPs > then the N° of pipeline stages, the 
pipeline is fully emptied (it is said that the pipeline is flushed)

10
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Bubble example : instruction exec time diff
• Let’s tray to compute the following : 

C=(A/B) + C

• It is reasonable to believe that the 
arithmetic division (instruction 4.) is 
going to take more time then addition 
(instruction 5.), if there is no HW divider

• If these two instruction are to be 
pipelined: addition will have to wait until 
the division ends first !

-- 
1. MOV    AX, A 
2. MOV    BX, B
3. MOV    CX, C
4. DIV    AX, BX
5. ADD    AX, CX

F D E Wi4
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Pipeline acceleration when bubble
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• In real world IPC < 1, because of the stalls (you can not get a 
WRITE on every system cycle)

• The question is :

✓ How we can improve this?

• First thing to we need to understand are the pipeline stall 
causes ...
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Possible causes of the pipeline break
• You can possibly enumerate all hazard causes based on 

computer architecture and programming models : 

✓ Name dependency

✓ Data dependency

✓ Control dependency 

✓ Resource conflicts

13



Name dependency

14



Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Name dependency
• RegFile — limited set of registers storing operands

• We say that there is register name dependency if the instruction 
operands target the same names of src/dst registers, but if there is no 
actual data flow between the instructions !
✓ Anti dependence — instructions i+1 writes to register used by i; the 

good order needs to be preserved 
✓ Output dependence — instructions i, i+1 write to the same output 

register :  

• Name dependence is not true dependence, there is no real 
computational sequence between instructions (false dependency)

• If this is the case, the register names can be changed any time!

15

Register renaming — avoid unnecessary serial reuse of 
registers due to their limited number 

Propose an example ?
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ISA vs. Physical registers
• Register File — multi-ported SRAM of a limited size that 

trade-off size for fast access time → physical registers
• These registers can be mapped to ISA, or architecture 

registers (e.g. AX, BX, CX etc.)
• The mapping can be done in 1-to-1 fashion, once for all 

(hardwired in HW) : 
for each ISA register there is one corresponding physical register

• Or, we can do differently : 
✓ ISA registers map to physical registers using dynamically 

allocated table (Register Alias Table — RAT)
✓ So program access physical registers through RAT
✓ If this allocation is done smartly, you can do register renaming 

online

16
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Who can do register renaming ?
• Statically — so, not at run time but during programming or 

compile time : 
✓ Programmer — when allocating registers for operands
✓ Compiler — when translating high-level (C/C++) code into 

assembly 

• Dynamically — at run-time, during execution
✓ CPU — looks for the register renaming opportunities 

• Dynamic register renaming can work out quite well, but the 
good idea in general is to check if this is done

17

Register renaming was possible because there was no 
data dependency, but what happens when we have one ?
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Name dependency — Example

18

-- 
1. MOV    CX, [Mem1] 
2. ADD    CX, BX
3. MOV    CX, [Mem2]
4. ADD    CX, BX

-- 
1. MOV    CX, [Mem1] 
2. ADD    CX, BX
3. MOV    JX, [Mem2]
4. ADD    JX, BX

Both additions target the same 
destination register CX : 
there is no possible overlap of 
instructions 
→ poor possibility for pipelining

Second destination register is 
modified to target another free 
RegFile physical slot : possible 
overlap of instructions → pipelining 

If done online the initial code could 
still contain reg names on the left, 
the change will happen on the fly 



Data dependencies 
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Example of data dependency
• Let’s tray to compute the following : 

C=(A/B) and E=(A+D)

• Let’s suppose that the arithmetic division 
(instruction 4.) is going to take more time 
then addition (instruction 5.) — this might 
not be true for high perf CPUs today ...

• If these two instruction are to be 
pipelined: addition will have to wait until 
the division ends first !

-- 
1. LDA    CX, A 
2. LDA    BX, B
3. LDA    AX, C
4. DIV    AX, BX
5. ADD    AX, CX
6. MOV    D , AX

F D E Wi4
F D E Wi5

T
stall
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Types of data hazards
• Read after Write (any pipeline is subject to this)

i1. ADD    AX, CX

i2. ADD    BX, AX

• Write after Read — i2 writes before i1 uses it
i1. ADD    AX, CX

i2. ADD    CX, AX 
(this could happen if multiple ALUs)

• Write after Write — both instructions write to same destination
i1. ADD    AX, CX

i2. ADD    AX, BX 
(this could happen if multiple ALUs)

21
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Simple solution
• The same is valid even if the i4 took only one cycle, if the data 

needs to be written to the RegFile before we can use it

• In that case i5 needs to wait for data to be written to RegFile 
(execution can proceed only after W stage)

• Or computed data is already available after E of i4 : so if it can be 
passed directly to the i5 we do not need to wait for W of the i4

22
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Instruction dependency
• Two instructions are independent if they can execute 

simultaneously (if we have multiple ALU: e.g. one general and one 
dedicated)

• If the instructions are independent they will never cause a stall in the 
pipeline of an arbitrary depth, if executed one after another

• The idea then is to put as close as possible, and as much as possible 
independent instructions together ! 

• On the opposite : you want to put data dependent instructions just 
enough far away so that the result is available when needed
✓ This means that there exist order of the instruction execution that will 

maximize the instruction throughput and minimize pipeline stalls 
→ this sounds like instructions scheduling !

• Similar thing happens at another abstraction level — OS and task 
scheduling—, but what is different is the granularity and the time we 
have to schedule instructions (ms vs. ns time frames)
What is the impact of the small amount of time?

23
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Who does instruction scheduling ?
• Proposed minimal architecture follows the execution sequence 

imposed by the program itself : this is called in-order execution

• For in-order architectures, correct scheduling,that will depend on 
the ISA, can be done by the compiler, or by the programmer

• The drawback is that both need to be ISA aware (compiler/
program are then architecture dependent and will not run 
elsewhere with the same perf)

• Idea : make a HW block that will perform out-of-order execution

• At run-time, this block will try to pack instructions in such a way to 
minimize potential pipeline stalls

• Advantages : compiler/user independent 

• Disadvantages : extra area cost, complexity, low run-time 
decision cycle (or general scheduling problem is complex) → 
even though automatic, should be checked

24
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Out-of-order (OoO) example

25

Out-of-order processors use schedulers, which scan a window of
upcoming instructions for data dependencies. By comparing the operand
registers of each instruction the scheduler determines which instructions
must wait for results from others and which are ready to be executed.
By scheduling instructions for execution as soon as possible, the aver-
age IPC is improved. Of course, a penalty in die area and design com-
plexity must be paid to create the scheduler, and additional logic will
be required to maintain the illusion of in-order execution.
Reordering of instructions improves performance by allowing the

processor to work around data dependencies. It also helps reduce pipeline
breaks due to resource conflicts. The scheduler can take into account not
just the data an instruction needs but also any execution resources. If
one divide instruction is waiting for another to complete, the processor
can still make forward progress by executing other instructions that do
not require the same hardware. Another solution to resource conflicts is
to provide more resources. Superscalar processors improve IPC by
adding resources to allow multiple instructions to be executed at the
same step in the pipeline at the same time, as shown in Fig. 5-6.

132 Chapter Five

Figure 5-5 Out-of-order pipeline.

Figure 5-6 Superscalar pipeline.
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-- 
DIV R2, R1
ADD R3, R2
MUL R4, R3
SUB R8, R7
SUB R10, R9
SUB R12, R11

First 3 instructions : data dependent, no 
scheduling opportunity on DIV, ADD, 
MUL

But SUBs are independent !

One of the SUBs could be executed 
earlier … 



Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

OoO : How it is done ?
• Make a window of instructions and retire the instruction from the 

window whenever the operand is available :
✓ Instruction fetch
✓ Instruction dispatch to an instruction queue
✓ The instruction waits in the queue until the input operands 

are available
✓ The instruction is then allowed to leave the queue before 

earlier, older instructions
✓ The instruction is issued to the appropriate execution unit and 

executed by that unit
✓ The results are queued
✓ Only after all older instructions have their results written back 

to the register file, the end result will be retired 

26



Control dependency
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It is useful to alter instruction flow 
• Occurs whenever we have a branch in the instruction flow
• Branch:

✓ Unconditional — equivalent to  goto statements
✓ Conditional — based on Boolean value of an arbitrary 

algebraic or logical expression (false, true)

• At branching point the control flow is altered, and we start 
executing another instruction sequence  

• Let’s add this feature to our ISA
✓ Jump

✦ label — marks the place in the code
✦ JZ, JNZ — jumps if equal to zero or

if not equal to zero to the label

28

-- 
1. LDA    BX, B
2. label :
3.    ...
4.    SUB    BX, 1
5.    JNZ label   
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Why programs avoid unconditional jumps ?
• Uncontrolled usage of unconditional jumps create 

✓ unreadable code, difficult to debug and possibly inefficient

• In literature known as spaghetti code 
(because you can not figure out which part of the spaghetti goes where)

29

• Structured programming 
✓ Force usage of functions, 

not jumps 
✓ Enables better readability
✓ C/C++ against BASIC 
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Typical branching structure

30

if (a==35) then 
  /* instruction sequence1*/

/* normal sequence*/

• Depending on the condition : 
✓ Branch is taken or
✓ not taken

• If the branch is not taken, 
then we do not have to 
change PC

• If yes the PC will have to 
update the value 
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Impact of the branch on pipeline execution

31

The causes of pipeline breaks are as follows:

Data dependencies

Control dependencies

Resource conflicts

Because of the data dependency on instruction 1, instruction 2 and
all the following instructions are delayed. The pipeline will no longer
complete an instruction every cycle because for some cycles it will be
stalled while waiting for dependencies.
In addition to data dependencies, there are also control dependencies.

The execution of a branch instruction determines which instruction should
enter the pipe next. This means control dependencies cause breaks, stalling
not just the execution of the next instruction but even the fetch step. If the
third instruction were a branch, the pipeline might look like Fig. 5-4.
A third cause of pipeline breaks is resource conflicts. The microar-

chitecture of our processor may include only a single divider. If there are
two divide instructions to be executed, even without any data or control
dependencies, one may have to wait for the needed hardware to be avail-
able. Pipeline breaks limit how much speedup is achieved by pipelining.
The pipelines shown in Figs. 5-3 and 5-4 are called in-order pipelines

because the order that the instructions reach execution is the same as
the order they appear in the program. Performance is improved by
allowing instructions to execute out of order, improving the average
number of completed instructions per cycle (IPC).
Figure 5-5 shows an out-of-order pipeline, which starts as before with

a divide instruction and an add instruction that uses the result of the
divide. The fourth instruction is a multiply that uses the result of the add.
These instructions have data dependencies that require them to be
executed in order. However, the other instructions shown are subtracts,
which are independent of the other instructions. Each one does not
share its registers with any of the other instructions. This allows the first
subtract to be executed before the add instruction even though it comes
after it in the instruction flow.

Microarchitecture 131

Figure 5-4 In-order pipeline control dependency.
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• Branching has a very strong impact on the pipeline execution 
obviously …

• We need to compute condition (using general purpose ALU) 
and then look into the result of this computation 

• Next instruction can not be fetched before we know which of 
the two paths we will have to follow !

Waits → 
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Condition statistics
• Important question is :

How often the condition is TRUE or FALSE ?
• Three possible situations  :

✓ Often TRUE
✓ Often FALSE
✓ 50/50

• Depending on HW and the actual statistics on a==35 you 
could write your code differently 
✓ Alternative 

(a != 35)

32

if (a==35) then 
  /* instruction sequence1*/

/* normal sequence*/
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Solution 1 

33

• We need to compute condition (one ALU remember) and then 
look into the result of this computation 

• Next instruction can not be fetched before we know which of 
the two paths we will have to follow !

• The simplest scheme to handle branches is to flush the 
pipeline, holding or deleting any instructions after the branch, 
until the branch destination is known

• Simple both for hardware and software, but as you would 
expect not that efficient... 
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Solution 2 

34

• Treat every branch will not be taken and allow HW to 
continue execution as if there was no branch 

• The pipeline looks like there is no branch 

• If the branch is taken, however, we need to turn the fetched 
instruction into a no-op and restart the fetch at the target 
address → pipeline is flushed 

• This is a bet : either we succeed or we fail

• If you know your HW branch strategy you can adapt your 
code accordingly 

• More on this later ...



Resource conflicts 
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Super-scalar architectures 

36

• Until now in our simple architecture we assumed only one 
execution unit — one ALU 

• Integer ALUs are not that expensive in HW (at least 
compared with other components that we introduced)

• Idea : replicate ALUs not necessarily with same 
functionalities (common subset + some specialized functions)

• If there are independent instructions in the program they can 
be executed on different execution units (new term for ALU) 
and thus avoid pipeline stall

• The problem is only how to redirect executions on multiple 
execution units

• You can de-multiply the complete execution pipeline ...
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Super-scalar execution pipeline

37

Out-of-order processors use schedulers, which scan a window of
upcoming instructions for data dependencies. By comparing the operand
registers of each instruction the scheduler determines which instructions
must wait for results from others and which are ready to be executed.
By scheduling instructions for execution as soon as possible, the aver-
age IPC is improved. Of course, a penalty in die area and design com-
plexity must be paid to create the scheduler, and additional logic will
be required to maintain the illusion of in-order execution.
Reordering of instructions improves performance by allowing the

processor to work around data dependencies. It also helps reduce pipeline
breaks due to resource conflicts. The scheduler can take into account not
just the data an instruction needs but also any execution resources. If
one divide instruction is waiting for another to complete, the processor
can still make forward progress by executing other instructions that do
not require the same hardware. Another solution to resource conflicts is
to provide more resources. Superscalar processors improve IPC by
adding resources to allow multiple instructions to be executed at the
same step in the pipeline at the same time, as shown in Fig. 5-6.
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Figure 5-5 Out-of-order pipeline.

Figure 5-6 Superscalar pipeline.
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• With multiple execution pipelines the IPC can now be > 1
• But this is still not guaranteed
• Extraction of the ILP could be better assuming better automatic 

instruction scheduling, or better code (compiler or written)



Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Super-scalar architectures 

38

• If ALUs are different : e.g. we can have HW multiplier in one 
ALU and not in the other 

• If instructions are ADD and then MUL this is OK, both ALUs 
can be used at the same time (work in parallel)

• If instructions are ADD OK too 
• But what happens if both are MUL? 

✓ Resource conflict — both instructions try to use the same 
execution unit at the same time

✓ Stall
✓ We loose cycles as before

• Extra constraints on instruction scheduler …(more difficult to 
extract ILP)



Loop unrolling
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Loop unrolling
• Goal : increase the probability of possible overlapping instructions 

to help scheduler avoid pipeline stalls
• In loops this is very frequent situation, look at the code : 

     for(i=0; i<1000; i++)
     A[i] = A[i] + B[i];

• If there is a delay on A[i] = A[i] + B[i] computation, there will 
be a pipeline stall on every loop iteration (X 1000 times) ! 

• Consider the following loop transformation : 
 for(i=0; i<250; i++) {
     A[i + 0*250] = A[i + 0*250] + B[i + 0*250];
     A[i + 1*250] = A[i + 1*250] + B[i + 1*250];
     A[i + 2*250] = A[i + 2*250] + B[i + 2*250];
     A[i + 3*250] = A[i + 3*250] + B[i + 3*250]; }

• Four computations are now independent : we removed data 
dependency on subsequent instructions

40
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Loop unrolling — gains
• Transformed loop : 

 for(i=0; i<250; i++) {
     A[i + 0*250] = A[i + 0*250] + B[i + 0*250];
     A[i + 1*250] = A[i + 1*250] + B[i + 1*250];
     A[i + 2*250] = A[i + 2*250] + B[i + 2*250];
     A[i + 3*250] = A[i + 3*250] + B[i + 3*250]; }

• Four computations :
✓ Can do register renaming
✓ Could order instructions to minimise the pipeline stall
✓ If super-scalar, the system could use multiple execution units 

at the same time

41
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Example : loop operation + not scheduled

42

MOV! DX, [A];           -- load pointer to A
MOV! CX, 1000;          -- load loop counter (i)
loop:
   MOV!  AX, [DX];       -- load A(i) 
   ADD!  BX, AX;         -- ADD
   MOV   Mem2, BX;       -- store result
   ADD   DX, 8;          -- move to next arr. elem.     
   SUB   CX, 1;          -- dec loop counter
JNZ loop;

for(i=0; i<1000; i++)
A[i] = A[i] + B[i]
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Example : scheduled

43

• Id ADD takes 3 cycles, how can you improve the overall 
execution time ? (modify the following code)

MOV! DX, [A];           -- load pointer to A
MOV! CX, 1000;          -- load loop counter (i)
loop:
   MOV!  AX, [DX];       -- load A(i) 
   ADD!  BX, AX;         -- ADD
   MOV   Mem2, BX;       -- store result
   ADD   DX, 8;          -- move to next arr. elem.     
   SUB   CX, 1;          -- dec loop counter
JNZ loop;
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MOV! DX, [A];           -- load pointer to A
MOV! CX, 500;           -- load loop counter (i)
loop:
   MOV!  AX, [DX];       -- load A(i)
   MOV!  EX, [DX+500];   -- load A(i+500) 
...  
JNZ loop;

• Unroll the loop twice using the following template ?
• What is the maximum number of unrolled iterations you can 

do?


