
ELEC-H-473
Microprocessor architectures

Lecture 02,03
Dragomir Milojevic
dmilojev@ulb.ac.be

Friday 21 February 14 (-38)

mailto:dmilojev@ulb.ac.be
mailto:dmilojev@ulb.ac.be

Université libre de Bruxelles/Faculté des Sciences Appliquées/BEAMS/MILOJEVIC Dragomir

Outline

1. Basic computer architecture concepts

2. Minimum system architecture

3. Instruction execution cycle

4. ISA

5. RISC vs. CISC

6. Instruction execution cycle — physical aspects

7. Pipeline execution and benefits

2

Friday 21 February 14 (-38)

1. Basic computer
architecture concepts

3

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Background
• What defines a computer?

✓ The difference with electronic calculator :
✦ Computer stores electronically the information that controls the

computational process
✦ This is the same as in the Turing machine (the “action table” even if

hardwired, is somehow “stored” in the memory)

• This concept was known to
John von Neumann, the author of :
First Draft of a Report on the EDVAC,
101 pages of unfinished, unpublished report
(subject to controversy …)

• This is considered to be the basis for the
designs ENIAC (USA) and Colossus (UK) :
first electronic calculators to be considered
computers

4

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

(Very) simplified model of computer arch.
• First draft → von Neumann architecture (computer model) :

✓ Instructions for the Central Processor Unit (CPU)
as defined by the program stored in the memory

✓ and the data for computation (also stored in the memory)
✓ Both memories are the SAME !

(What is the consequence to the system
operation?)

• CPU :
✓ Arithmetic-Logic Unit (ALU)

+ Control Unit + Registers (Register File)
• Input/output block interfaces to the outside world
• Communication between different units — a bus : a collection

of wires (What is the ≠ between Point-to-Point connection and
a bus?)

5

CPU Mem

IO

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Harvard architecture — a variant
• Harvard architecture

✓ Data and Instruction memories are NOT the SAME !
• What is the advantage in doing this ?
• These can be separate RAMs instances,

physically different chips, macros, etc.
• Important consequence

✓ Physically different means:
✦ diff electrical properties
✦ timing and/or sizes
✦ but most importantly concurrent access

• Pure Harvard architecture still used in
DSPs and micro-controllers

6

Ctrl
Data
Mem

IO

Inst
Mem

ALU

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Modified Harvard architecture
• Combines the advantages of the von Neumann architecture :

✓ Instructions are treated as data
✦ Stored at same storage space (e.g. HDD, or central memory)
✦ You can do compilation at runtime
✦ You can write self-modifying code

• … and the advantages of the Harvard architecture
✓ Concurrent instruction/data access

• Today computers are most of the time built using modified
Harvard model because of the cache memory hierarchy
introduced to overcome the problem of (S,D)RAM/Logic
scaling discrepancy (separate L1 for Instructions/Data)

7

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Memory
• Stores data and instructions (separately or not, depending on the

memory hierarchy level, more on this later)
• Both data & instructions are binary data (computer doesn’t have

the awareness of what is what, i.e. it can’t make a difference
between program and data)

• Memories are like Look-up Tables (LUTs), defined using :
✓ Entry — defined as address A

(location where do you want to read/write)
✓ Control — defined as signals C, used to drive the control logic of

the memory (typically just ENABLE and R/W for SRAMs, note that
this can be more complicated for DRAMs)

✓ Data — the actual data
✦ stored at address A and accessed when reading
✦ stored at address A when writing

8

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Memory and port view of the module
• Entry → ADDRESS [n-1 : 0]

✓ The number of bits of address determines the number
of available locations (here 2n)

✓ Typical “location” stores one bit of info
✓ Multiple bits are concatenated to make a word
✓ This organization can vary, but typically:

✦ one address → points to one byte
✦ 2something bytes makes a larger data word

that could be accessed in 1 cycle

• Control → CTRL
• Data → D [m-1 : 0]

✓ m wires → m bits that are transferred in parallel
✓ This is also known as bit-level parallelism
✓ Important because this determines CPU to memory bandwidth

9

Mem

C

ADD D

input ports
output ports

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Ports view (and why arrows have meaning)
• Since Memory can be READ/WRITE the DATA port is

typically bi-directional meaning it can be input or output
depending on the control logic
✓ It is input on WRITE
✓ It is output on READ

• If this is the case, you have
similar (mirror) situation
on the CPU side:
✓ CPU acts like a master
✓ Memory acts like a slave
✓ DATA is bi-directional

• CPU translates R/W instructions

10

Mem
C

ADD

D
CPU

Output ports
Bi-dir ports
Input ports

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

System performance
• First view :

✓ If CPU can process N instructions per sec,
✓ the memory should deliver the data/instructions

to the CPU, so that he can effectively execute N instructions.
✓ If this is not the case, the

CPU is stalled (we waist CPU cycles)
• Any system can be in one of these

2 situations:
✓ it can be bounded by computation,
✓ or by the memory access
✓ Good operating point is when we are break-even

• CPU/memory bandwidth depends on the m but also on
something else? What influences the system bandwidth?

11

CPU Mem

m wires

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

CPU — MEM
• CPU and MEM are interconnected with wires

• Wires (Cu conductors) have parasitic resistances/
capacitances/ inductance (RLC)

• At higher frequencies parasitics will act as filters

• For any given connection there will be
a max F that we can have …

• It is a function of the wire geometry & distance : closer the
better (this is why DRAMs are so closed to the CPU)

• THIS IS TRUE AT WHATER SCALE YOU ARE LOOKING AT
(at the scale of the PCB but also IC)

• Bandwidth = Frequency X number of bits

12

CPU Mem

m wires
@ F

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

On masters and slaves
• Master can initiate operations on one or more slaves

• Slave can only accept, or refuse the operation; it can’t
initiate the transfer by himself

• In our model the CPU is the master, the memory is the slave,
and this means that the CPU is initiating the memory access

• CPU needs time to initiate the access, and this time is the
time that the CPU will not use to compute our DATA …
→ It is a wasted time in a way

• In today’s machine the actual cores don’t do that (more on
this later)

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Closer look into the CPU : RF + CTRL
• ALU — unit that actually performs computations
• RF — Register file : set of named registers that store

operands = variables
on which the ALU does
computation

• They can be source
(SRC) – when they are
arguments, or
destination (DST)
when they target function evaluation

• Both ALU & RF need control signals (inputs) to steer their
operation and these need to be properly orchestrated

• These signals are generated by CTRL unit

14

Mem
C

ADD

D
CPU

ALU

RF
C

TR
L

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Register Files (RF)
• Typical RFs are SRAMs
• Typical SRAMs are single ported devices, i.e. 1 SRAM can

read OR write through that port → only one
operation performed at a time (in 1clk cycle)

• Typical RFs are multi-port access memories,
i.e. they allow multiple data to be read or written
in the same time

• RFs : few read ports & only one write port
to avoid data coherency problems
✓ What happens when we have two

simultaneous writes at the same location?
• Multiple-access ports allow to speed up access

to the data that needs to be processed

15

Mem

C

ADD D

Ports

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Computer architecture: not just a HW model
• ALU, RF, CTRL logic and the Memory are not enough to

make a computer

• We still miss :
✓ some architectural details necessary to make a real computer

(even though minimalist)
✓ the instruction execution model — or, how the instructions in

the context of a computer program are handled
✓ the actual specification of instructions,

i.e. Instruction Set Architecture

• These 3 notions combined together are necessary to build a
computer

16

Friday 21 February 14 (-38)

2. Minimum system
architecture

17

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Minimum system architecture

• PC — Program counter :
holds the address of the
current instruction (register)

• IR — Instruction register :
holds the code of the
current instruction (opcode)

• ACC — Dedicated register
that is R/W directly from the
ALU

18

M
em

ory
RF

IR
PC ACC

ALU

CTRL

Data
Bus

Address
Bus

• We start with simple system micro - (µ or u) architecture : a
description of all components in the system and the way they
interact

To ALU + CTRL we add few new
components :

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Minimum system architecture
• Note the data paths :
✓ From memory to Register File (RF)

✓ From memory to Instruction Register (IR)

✓ ALU can compute from RF, but also from the Memory

✓ ALU can compute on result from the previous operation using ACC
✦ How this can be

achieved ?
✦ Could you draw a

simplified schematic
circuit ?

✦ How ALU choses the
operand ?

19

M
em

ory

RF

IR
PC ACC

ALU

CTRL

Data
Bus

Address
Bus

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

RISC 16

20

ENEE 446: Digital Computer Design — RiSC-16 Sequential Implementation

10

Putting it All Together

This diagram combines all of the previous data and control paths into one complete framework.
To accommodate all control and data paths, there are a number of muxes that choose the direction
of data flow. These muxes are operated by the CONTROL module, which depends on only two
inputs:

1. the 3-bit OPCODE of the instruction; and

2. the 1-bit EQ! signal from the ALU (which, for the BEQ instruction, indicates that the two
operands are equal—for all other instructions this signal is ignored).

The CONTROL module is essentially a decoder. It takes these input signals in and sets a number
of outgoing signals that control the ALU, a host of multiplexers, and the write functions of the
register file and data memory. At the beginning of every cycle, a new program counter value is
latched, which causes a new instruction word to be read out and a new opcode to be sent to the

MUXalu2

Sign-Extend-7

Left-Shift-6

FUNCalu

Program Counter

INSTRUCTION

REGISTER FILE

MEMORY

WErf

+1

SRC1

SRC1

OP rA rC
TGT

WEdmem

DATA
MEMORY

rB

SRC2 ADDRDATA IN

EQ!

SRC2

Sign-Ext-7

ADD

TGT

MUXtgt

MUXrf

MUXpc

MUXalu1

CONTROL

DATA OUT

SRC2 SRC1

Friday 21 February 14 (-38)

3. Instruction execution cycle

21

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Instruction execution model
• A program is a list of instructions that is read and executed

one by one in a sequential manner
• The execution model (also part of the von Neumann arch.)

✓ Fetch instruction — Current instruction is fetched from the
memory, i.e. the opcode is transported to IR

✓ Decode instruction — Internal logic interprets the instructions,
that is : it generates the appropriate ctrl signals for all associated
logic that will be involved in the execution of this operation

✓ Fetch operands — Memory read for the data (not always
necessary, if data is already in RF — thus we omit this one)

✓ Execute instruction — Does the actual operation on the operand
✓ Write result — in the memory or in the RF

• Simplified : F, D, Ex, W

22

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

1. Instruction fetch

23

M
em

ory
RF

IR
PC ACC

ALU

CTRL

Data
Bus

Address
Bus

a. CTRL logic places the value of the PC on the ADDRESS bus
b. This generates READ memory access & the data that is read is placed

on the data bus; the data read is the opcode of the instruction stored
on a given address

c. IR recognises that the data on the bus is for him and takes the opcode
value from the bus & stores it for further processing

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

2. Instruction Decode

24

M
em

ory
RF

IR
PC ACC

ALU

CTRL

Data
Bus

Address
Bus

a. CTRL logic takes the instruction from the IR
b. Based on the instruction opcode it generates the appropriate control

signals for all other units in the system, namely ALU → operation
selection and operands preparation

c. In the simplest of its forms it is just a n:m decoder
(can be combinatorial circuit — propose an example of the decoder?)

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

3. Instruction Execute

25

M
em

ory
RF

IR
PC ACC

ALU

CTRL

Data
Bus

Address
Bus

• ALU performs the operation (logical AND, arithmetical + etc.)
• The result is written in accumulator
• PC is updated according to the executed instruction

(typically PC += 1, but something else is possible depending on the
instruction)

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

4. Write

26

M
em

ory
RF

IR
PC ACC

ALU

CTRL

Data
Bus

Address
Bus

• Depending on the architecture and the instruction used (specified
result destination) the result is written

• It can be RF or memory

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Architectures depending on memory R/W
• Depending on what could be a possible combination of the

source/destination operands and/or result we can have
different type of architectures :

✓ Load/Store architecture — operands must be in the RF, any
computation is always preceded with explicit R/W operation
from/to memory to/from RF

✓ Register/Memory architecture — operands can be in either
in RF or memory (this is an exclusive or, both RF and mem is
not possible)

✓ Register + Memory — any operation can have operands
being in memory and/or RF

27

Friday 21 February 14 (-38)

4. ISA

28

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Instruction Set Architecture — ISA
• ISA — the link between the micro-architecture and the

programmer (assembly or compiler)
• Until now we defined an µ-architecture and the way it operated

(instruction execution) but we didn’t said anything on WHAT this
machine can really do

• WHAT the machine can do, as opposed on HOW, makes ISA :
✓ defines native data types (integer and floating point sizes),
✓ register number (names), sizes and types,
✓ instructions,
✓ addressing modes,
✓ memory architecture,
✓ interrupt and exception handling,
✓ and external I/O
• Computer = µ-architecture + ISA

29

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Instructions — typical operations
• Data movement
✓ Load (from memory) or Store (to memory)
✓ move memory-to-memory or register-to-register
✓ move Input/output (from/to I/O device)

• Arithmetic
✓ Integer
✓ Floating point

• Shifts : left, right
• Logical : and, not, set, clear
• Control (jump/branch) : conditional or not
• Subroutine handling : call, return
• Interrupt

30

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Addressing modes

31

Addressing Modes

R1 R1+Mem[100+R2+R3*d]Add R1,100(R2)[R3]Scaled

R2 R2–d

R1 R1+Mem[R2]

Add R1,–(R2)Auto-decrement

R1 R1+Mem[R2]

R2 R2 + d

Add R1,(R2)+Auto-increment

R1 R1+Mem[Mem[R3]]Add R1,@(R3)Memory indirect

R1 R1+Mem[1001]Add R1,(1001)Direct or absolute

R3 R3+Mem[R1+R2]Add R3,(R1+R2)Indexed / Base

R4 R4+Mem[R1]Add R4,(R1)Register indirect

R4 R4+Mem[100+R1]Add R4,100(R1)Displacement

R4 R4 + 3Add R4,#3Immediate

R4 R4 + R3Add R4,R3Register

MeaningExampleAddressing mode

Not all the modes are always implemented
← used to note the assignment of the result

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Classification of Instruction Sets
• Depending on the way we implement instruction set we can have

different (not to say many) flavors of ISA
• In computing, most of the time we do the same type of operations

(memory move, some basic logic/arithmetic operation etc.)
• The idea behind the classification is to look into number of

occurrences of
instructions in
typical programs

• We can plot the
instruction histogram :
(and this is not a very
representative piece of
code)

• How would you plot
your own histo?

32

Top 10 80x86 Instructions

° Rank instruction Integer Average Percent total executed

1 load 22%

2 conditional branch 20%

3 compare 16%

4 store 12%

5 add 8%

6 and 6%

7 sub 5%

8 move register-register 4%

9 call 1%

10 return 1%

Total 96%

° Simple instructions dominate instruction frequency

Friday 21 February 14 (-38)

5. RISC vs. CISC

33

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Classification of Instruction Sets
• Conclusion :

✓ NOT all instructions are used all the time

✓ Some instructions are used very frequently, some rarely

• This drives the idea of two different approaches to ISA :

✓ Reduced Instruction Set Computer — RISC

✓ Complex Instruction Set Computer — CISC

• RISC/CISC war is around for quite some time;

• ... in reality both are cool and whether RISC is to be chosen over
CISC will depend on application … more general purpose CPU will
tend towards CISC architectures (“one architecture fits all
applications”)

34

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

RISC philosophy
• Instructions are simplified in content and therefore can be

implemented more efficiently in HW

• Typically all RISC instructions would require minimum
execution time : one cycle

• Complex instructions are made as “subroutines”
✓ This is typically a load/store system : if operation is to be done

on memory, it will have to be split into separate load, execute
and store instructions

• Efficient instructions will have higher throughput and the
system as a whole would be more performant (if 99% of
instructions are fast, we do not care about the other 1%)

• Instruction set appears as SMALL but they are HIGHLY
optimised

35

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

RISC today
• RISC highly popular in academia, but ended-up in the real world
✓ Berkley — Berkley RISC → SPARC
✓ Stanford — MIPS
• RISC is still on menu:
✓ For high-performance (super-computers)

& servers
✦ Sun Microsystems (acquired by Oracle)

✴ SPARC line of CPUs from T1 to T5
(T5 released in 2013) targets servers
1CPU = 16 cores

✦ Fujitsu instance of SPARC architectures
— K-computer
✴ most powerful super-computer in 2011
✴ 10 Penta-flops using 80k 8-core processors @ GHz

✓ but also in mobile applications (ARM) for tablets and smart
phones ...

36

SPARC T3

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

CISC
• As opposed to RISC, CISC has many instructions and some

of them can be complex : instructions are heterogeneous
(in terms of complexity, and hence execution time)

• Example :

✓ you could possibly load from memory, compute and store in a
single instruction

✓ obviously this can not be made in the same amount of time as
direct computation from RF, where the operands are ready …

• Heterogeneous instructions → in fact means variable N° of
cycles to execute (this will have a strong impact on
performance, as we will se this later ...)

37

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

RISC/CISC today
• It is not black & white : there is no pure CISC architecture,

more like CISC/RISC combo

• Take advantage of RISC for a sub-set of instructions, but still
have complex instructions around to enable
General Purpose Application (gaming or scientific
computation)

• This is what you will find in X86 processor architectures
(Intel/AMD)

✓ You should be able to explain why?

38

Friday 21 February 14 (-38)

6. Instruction execution cycle
— physical aspects

39

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

How to execute these 4 instruction steps?
• All 4 steps in one big step, so that the next instruction can

finish only after the complete instruction cycle have finished?

40

F D E Wi0
F D E Wi1

T• Not ideal, because next instruction will have to wait !
‣ assuming that each cycle last time t,

we have to wait for 4 x t before starting next instruction

• This is known as Single Issue Base Machine
(no computer works like this !)

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Before going any further ...
• The absolute value of t will depend on what?

41

• CPU is a logic circuit (at this stage it doesn’t matter if it is
combinatorial or sequential)

• Any logic circuit has what we call a critical path — the path
that exhibits biggest delay (sum of all gate and interconnect
delays)

• Bigger the circuit → better chances are that the critical path is
bigger (has bigger delay)

• Smaller the circuits → smaller critical path
• Consequence (roughly) :

✓ Small circuit — FASTER
✓ Bigger circuits — SLOWER

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

How to reduce critical path delay ?

42

• The idea is to split the big-circuit into 2 smaller sub-circuits
• If the cut is made in such a way that 1/2 of the critical path is

in the left sub-circuit and the other 1/2 is on the right ...

Big Circuit Small
Circuit

Small
Circuit

• But does this solve our problem?

Not yet, we need to add something ...

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

How to reduce critical path delay ?

43

• For each wire that connects 2 sub-circuits we need to insert a
Flip-Flop (FF)

• FF is a synchronous memory element, driven by a raising (or
a falling) edge of a clock

• FF will store the result of the operation of the SmallCircuit1 !

Small
Circuit1

Small
Circuit2

D

Clk

Q

D

Clk

Q

D

Clk

Q What is the
consequence of this?

Two circuits are 1 cycle away.
What does this mean?

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Inserted FFs → Two independent circuits !

44

• With FFs in between the SmallCircuit1 and SmallCircuit2 can
work independently (in parallel) !

• Also the “time distance” between the two circuits is now 1
Clock cycle

• In time T1 SmallCircuit1 calculates a result out of input
data1(SmallCircuit2 has to wait)

• In time T2 SmallCircuit2 will receive on the input the result of
the computation of the SmallCircuit1

• SINCE THIS IS STORED IN
FF WE CAN DO
SOMETHING ELSE IN THE
SmallCircuit1
→ start computation on data2

Small
Circuit1

Small
Circuit2

D

Clk

Q

D

Clk

Q

D

Clk

Q

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Typical logic circuits are sequential …

45

• ...maning they have already FFs to avoid race conditions
(the operation paradigm is From Register-to-Register)

Small
Circuit1

Small
Circuit2

D

Clk

Q

D

Clk

Q

D

Clk

Q

D

Clk

Q

D

Clk

Q

D

Clk

Q

D

Clk

Q

D

Clk

Q

D

Clk

Q

Big Circuit

D

Clk

Q

D

Clk

Q

D

Clk

Q

D

Clk

Q

D

Clk

Q

D

Clk

Q Big circuit, one cycle
away ...

Two smaller
circuits, two
cycles away ...

This is true for any logic circuit : pipelining

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Pipeline stage insertion : the consequence

46

Small
Circuit1

Small
Circuit2

D

Clk

Q

D

Clk

Q

D

Clk

Q

D

Clk

Q

D

Clk

Q

D

Clk

Q

D

Clk

Q

D

Clk

Q

D

Clk

Q

When inserting a pipeline stage :
• We hopefully break the critical path & reduce delay

(or increase F; Can you explain the link delay/F?)
• But we do insert one clock cycle delay (known as latency)

☺
☹

Friday 21 February 14 (-38)

7. Pipeline execution

47

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Pipelining applied to CPU

48

• Each step of the execution model (F, D, Ex, W) becomes a
distinct logic sub-circuit !

• Because F, D, Ex, W are sub-circuits, they are smaller (and
therefore faster — hopefully we cut critical path in 4 ...)

• All steps are linked using FF that pass the results from one
stage to another

• The latency of the system is therefore 4 cycles :
✓ One cycle delay per pipeline stage
✓ When instruction enters the “instruction pipeline“, the result will

pop-up at the output 4 cycles later
✓ N° of cycles difference between PC on the Address bus and the

operand written in the RF or in the memory …

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Pipeline Execution

49

F D E Wi0
F D E W

F D E W

i1
i2

T
• In T0 — we fetch first instruction
• In T1 — fetch of the i0 is done, i1 can be fetched & i0 decoded
• In T2 — we fetch i2, decode i1 & execute i0
• In T3 — we fetch i3, decode i2, execute i1 & i0 write

T0 T1 T2 T3

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Pipeline Execution

50

F D E Wi0
F D E W

F D E W

i1
i2

T
• T3 — fetch i3 & i2 decode & i1 execute & i0 write

(& means that thing work in parallel)
• After T3

✓ On every clock cycle, 1 new instruction is fetched,1 decoded,
1 executed and 1 written (terminated)

T0 T1 T2 T3

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Pipeline Speed-up vs. Single Issue
• For N instructions and n pipeline stages, the total cycle count

is :
✓ Single Issue Base machine →Cs = N x n x t
✓ n-stage pipeline CPU → Cp=n + N x t

• The acceleration is
✓ Cp/Cn

• If N >> n :
✓ we get 1/n

• The acceleration is proportional to the number of
pipeline stages !

• What do you do with this?
→ Do we insert infinite number of pipeline stages ?

51

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Pipeline & Super-Pipeline
• What do you do with this?
→ Do we insert infinite number of pipeline stages ?

• NEVER !
✓ Each pipeline stage adds an extra-cycle of latency !
✓ Acceleration of n is possible only if you execute lot’s of

instructions that have to be perfectly equal in length (RISC
could potentially use pipeline better)

• In practice : trade-off between
✓ Number of pipeline stages and the size of critical path
✓ Some CPUs are super-pipelined (the number of stages is much,

much bigger then the number of instruction execution steps)
✦ X86 heavily pipelined → good marketing argument since F goes up !

✓ Other CPUs are less pipelined ...

52

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Pipeline & Execution model
• Pipeline executions introduces something very special
→ parallelism : things happen at the same time

• This particular type of parallelism (pipelining) is one of the few
techniques said to exploit : Instruction Level Parallelism, i.e.
the possibility to execute multiple instructions at the same time
(here the overlap is possible between different stages of different
instructions)

• By definition we want more of this since it means faster execution
(better instruction throughput)

• Pipeline execution is handled automatically for you by the HW of
the CPU, you do not see this !

• In the beginning everything was made so that the programers do
not have to think about this … but as we will see this is not
always the case, especially if you target high-performance apps

53

Friday 21 February 14 (-38)

Université libre de Bruxelles/Faculté des Sciences Appliquées/PARTS/MILOJEVIC Dragomir

Things to take
• Simple 1 ALU based architecture is already somehow parallel
✓ Bit-level parallelism (word/operand level)
✓ Pipeline for F, D, Ex, W operation of the instruction

• Pipeline :
✦ enables parallel execution of instructions
→ higher instruction throughput

✦ acceleration proportional to the number of pipeline stages
✦ but trades-off throughput with latency
✦ enables higher clock rates, because of the smaller critical paths of

corresponding

• Today’s machines : modified Harvard architecture, a blend of
CISC/RISC that more or less pipeline the execution of the
instructions

54

Friday 21 February 14 (-38)

