
© Copyright IBM Corporation 2005 Trademarks
Data alignment: Straighten up and fly right Page 1 of 12

Data alignment: Straighten up and fly right
Align your data for speed and correctness

Jonathan Rentzsch (jon.dw@redshed.net)
President
Red Shed Software

08 February 2005

Data alignment is an important issue for all programmers who directly use memory. Data
alignment affects how well your software performs, and even if your software runs at all. As this
article illustrates, understanding the nature of alignment can also explain some of the "weird"
behaviors of some processors.

Memory access granularity

Programmers are conditioned to think of memory as a simple array of bytes. Among C and its
descendants, char* is ubiquitous as meaning "a block of memory", and even Java™ has its byte[]
type to represent raw memory.

Figure 1. How programmers see memory

However, your computer's processor does not read from and write to memory in byte-sized
chunks. Instead, it accesses memory in two-, four-, eight- 16- or even 32-byte chunks. We'll call
the size in which a processor accesses memory its memory access granularity.

Figure 2. How processors see memory

The difference between how high-level programmers think of memory and how modern processors
actually work with memory raises interesting issues that this article explores.

If you don't understand and address alignment issues in your software, the following scenarios, in
increasing order of severity, are all possible:

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
mailto:jon.dw@redshed.net

developerWorks® ibm.com/developerWorks/

Data alignment: Straighten up and fly right Page 2 of 12

• Your software will run slower.
• Your application will lock up.
• Your operating system will crash.
• Your software will silently fail, yielding incorrect results.

Alignment fundamentals

To illustrate the principles behind alignment, examine a constant task, and how it's affected by a
processor's memory access granularity. The task is simple: first read four bytes from address 0
into the processor's register. Then read four bytes from address 1 into the same register.

First examine what would happen on a processor with a one-byte memory access granularity:

Figure 3. Single-byte memory access granularity

This fits in with the naive programmer's model of how memory works: it takes the same four
memory accesses to read from address 0 as it does from address 1. Now see what would happen
on a processor with two-byte granularity, like the original 68000:

Figure 4. Double-byte memory access granularity

When reading from address 0, a processor with two-byte granularity takes half the number of
memory accesses as a processor with one-byte granularity. Because each memory access entails
a fixed amount overhead, minimizing the number of accesses can really help performance.

However, notice what happens when reading from address 1. Because the address doesn't fall
evenly on the processor's memory access boundary, the processor has extra work to do. Such an
address is known as an unaligned address. Because address 1 is unaligned, a processor with two-
byte granularity must perform an extra memory access, slowing down the operation.

Finally, examine what would happen on a processor with four-byte memory access granularity, like
the 68030 or PowerPC® 601:

ibm.com/developerWorks/ developerWorks®

Data alignment: Straighten up and fly right Page 3 of 12

Figure 5. Quad-byte memory access granularity

A processor with four-byte granularity can slurp up four bytes from an aligned address with one
read. Also note that reading from an unaligned address doubles the access count.

Now that you understand the fundamentals behind aligned data access, you can explore some of
the issues related to alignment.

Lazy processors
A processor has to perform some tricks when instructed to access an unaligned address. Going
back to the example of reading four bytes from address 1 on a processor with four-byte granularity,
you can work out exactly what needs to be done:

Figure 6. How processors handle unaligned memory access

The processor needs to read the first chunk of the unaligned address and shift out the "unwanted"
bytes from the first chunk. Then it needs to read the second chunk of the unaligned address and
shift out some of its information. Finally, the two are merged together for placement in the register.
It's a lot of work.

Some processors just aren't willing to do all of that work for you.

The original 68000 was a processor with two-byte granularity and lacked the circuitry to cope
with unaligned addresses. When presented with such an address, the processor would throw an
exception. The original Mac OS didn't take very kindly to this exception, and would usually demand
the user restart the machine. Ouch.

Later processors in the 680x0 series, such as the 68020, lifted this restriction and performed the
necessary work for you. This explains why some old software that works on the 68020 crashes on
the 68000. It also explains why, way back when, some old Mac coders initialized pointers with odd
addresses. On the original Mac, if the pointer was accessed without being reassigned to a valid

developerWorks® ibm.com/developerWorks/

Data alignment: Straighten up and fly right Page 4 of 12

address, the Mac would immediately drop into the debugger. Often they could then examine the
calling chain stack and figure out where the mistake was.

All processors have a finite number of transistors to get work done. Adding unaligned address
access support cuts into this "transistor budget." These transistors could otherwise be used to
make other portions of the processor work faster, or add new functionality altogether.

An example of a processor that sacrifices unaligned address access support in the name of speed
is MIPS. MIPS is a great example of a processor that does away with almost all frivolity in the
name of getting real work done faster.

The PowerPC takes a hybrid approach. Every PowerPC processor to date has hardware support
for unaligned 32-bit integer access. While you still pay a performance penalty for unaligned
access, it tends to be small.

On the other hand, modern PowerPC processors lack hardware support for unaligned 64-bit
floating-point access. When asked to load an unaligned floating-point number from memory,
modern PowerPC processors will throw an exception and have the operating system perform the
alignment chores in software. Performing alignment in software is much slower than performing it
in hardware.

Speed
Writing some tests illustrates the performance penalties of unaligned memory access. The test is
simple: you read, negate, and write back the numbers in a ten-megabyte buffer. These tests have
two variables:

1. The size, in bytes, in which you process the buffer. First you'll process the buffer one byte
at a time. Then you'll move onto two-, four- and eight-bytes at a time.

2. The alignment of the buffer. You'll stagger the alignment of the buffer by incrementing the
pointer to the buffer and running each test again.

These tests were performed on a 800 MHz PowerBook G4. To help normalize performance
fluctuations from interrupt processing, each test was run ten times, keeping the average of the
runs. First up is the test that operates on a single byte at a time:

Listing 1. Munging data one byte at a time
void Munge8(void *data, uint32_t size) {
 uint8_t *data8 = (uint8_t*) data;
 uint8_t *data8End = data8 + size;

 while(data8 != data8End) {
 *data8++ = -*data8;
 }
}

It took an average of 67,364 microseconds to execute this function. Now modify it to work on two
bytes at a time instead of one byte at a time -- which will halve the number of memory accesses:

ibm.com/developerWorks/ developerWorks®

Data alignment: Straighten up and fly right Page 5 of 12

Listing 2. Munging data two bytes at a time

void Munge16(void *data, uint32_t size) {
 uint16_t *data16 = (uint16_t*) data;
 uint16_t *data16End = data16 + (size >> 1); /* Divide size by 2. */
 uint8_t *data8 = (uint8_t*) data16End;
 uint8_t *data8End = data8 + (size & 0x00000001); /* Strip upper 31 bits. */

 while(data16 != data16End) {
 *data16++ = -*data16;
 }
 while(data8 != data8End) {
 *data8++ = -*data8;
 }
}

This function took 48,765 microseconds to process the same ten-megabyte buffer -- 38% faster
than Munge8. However, that buffer was aligned. If the buffer is unaligned, the time required
increases to 66,385 microseconds -- about a 27% speed penalty. The following chart illustrates the
performance pattern of aligned memory accesses versus unaligned accesses:

Figure 7. Single-byte access versus double-byte access

The first thing you notice is that accessing memory one byte at a time is uniformly slow. The
second item of interest is that when accessing memory two bytes at a time, whenever the address
is not evenly divisible by two, that 27% speed penalty rears its ugly head.

Now up the ante, and process the buffer four bytes at a time:

Listing 3. Munging data four bytes at a time

void Munge32(void *data, uint32_t size) {
 uint32_t *data32 = (uint32_t*) data;
 uint32_t *data32End = data32 + (size >> 2); /* Divide size by 4. */
 uint8_t *data8 = (uint8_t*) data32End;
 uint8_t *data8End = data8 + (size & 0x00000003); /* Strip upper 30 bits. */

 while(data32 != data32End) {
 *data32++ = -*data32;
 }
 while(data8 != data8End) {
 *data8++ = -*data8;
 }
}

developerWorks® ibm.com/developerWorks/

Data alignment: Straighten up and fly right Page 6 of 12

This function processes an aligned buffer in 43,043 microseconds and an unaligned buffer in
55,775 microseconds, respectively. Thus, on this test machine, accessing unaligned memory four
bytes at a time is slower than accessing aligned memory two bytes at a time:

Figure 8. Single- versus double- versus quad-byte access

Now for the horror story: processing the buffer eight bytes at a time.

Listing 4. Munging data eight bytes at a time

void Munge64(void *data, uint32_t size) {
 double *data64 = (double*) data;
 double *data64End = data64 + (size >> 3); /* Divide size by 8. */
 uint8_t *data8 = (uint8_t*) data64End;
 uint8_t *data8End = data8 + (size & 0x00000007); /* Strip upper 29 bits. */

 while(data64 != data64End) {
 *data64++ = -*data64;
 }
 while(data8 != data8End) {
 *data8++ = -*data8;
 }
}

Munge64 processes an aligned buffer in 39,085 microseconds -- about 10% faster than processing
the buffer four bytes at a time. However, processing an unaligned buffer takes an amazing
1,841,155 microseconds -- two orders of magnitude slower than aligned access, an outstanding
4,610% performance penalty!

What happened? Because modern PowerPC processors lack hardware support for unaligned
floating-point access, the processor throws an exception for each unaligned access. The operating
system catches this exception and performs the alignment in software. Here's a chart illustrating
the penalty, and when it occurs:

ibm.com/developerWorks/ developerWorks®

Data alignment: Straighten up and fly right Page 7 of 12

Figure 9. Multiple-byte access comparison

The penalties for one-, two- and four-byte unaligned access are dwarfed by the horrendous
unaligned eight-byte penalty. Maybe this chart, removing the top (and thus the tremendous gulf
between the two numbers), will be clearer:

Figure 10. Multiple-byte access comparison #2

There's another subtle insight hidden in this data. Compare eight-byte access speeds on four-byte
boundaries:

Figure 11. Multiple-byte access comparison #3

Notice accessing memory eight bytes at a time on four- and twelve- byte boundaries is slower
than reading the same memory four or even two bytes at a time. While PowerPCs have hardware
support for four-byte aligned eight-byte doubles, you still pay a performance penalty if you use that
support. Granted, it's no where near the 4,610% penalty, but it's certainly noticeable. Moral of the

developerWorks® ibm.com/developerWorks/

Data alignment: Straighten up and fly right Page 8 of 12

story: accessing memory in large chunks can be slower than accessing memory in small chunks, if
that access is not aligned.

Atomicity
All modern processors offer atomic instructions. These special instructions are crucial for
synchronizing two or more concurrent tasks. As the name implies, atomic instructions must be
indivisible -- that's why they're so handy for synchronization: they can't be preempted.

It turns out that in order for atomic instructions to perform correctly, the addresses you pass
them must be at least four-byte aligned. This is because of a subtle interaction between atomic
instructions and virtual memory.

If an address is unaligned, it requires at least two memory accesses. But what happens if the
desired data spans two pages of virtual memory? This could lead to a situation where the first
page is resident while the last page is not. Upon access, in the middle of the instruction, a page
fault would be generated, executing the virtual memory management swap-in code, destroying the
atomicity of the instruction. To keep things simple and correct, both the 68K and PowerPC require
that atomically manipulated addresses always be at least four-byte aligned.

Unfortunately, the PowerPC does not throw an exception when atomically storing to an unaligned
address. Instead, the store simply always fails. This is bad because most atomic functions are
written to retry upon a failed store, under the assumption they were preempted. These two
circumstances combine to where your program will go into an infinite loop if you attempt to
atomically store to an unaligned address. Oops.

Altivec
Altivec is all about speed. Unaligned memory access slows down the processor and costs
precious transistors. Thus, the Altivec engineers took a page from the MIPS playbook and simply
don't support unaligned memory access. Because Altivec works with sixteen-byte chunks at a
time, all addresses passed to Altivec must be sixteen-byte aligned. What's scary is what happens if
your address is not aligned.

Altivec won't throw an exception to warn you about the unaligned address. Instead, Altivec simply
ignores the lower four bits of the address and charges ahead, operating on the wrong address.
This means your program may silently corrupt memory or return incorrect results if you don't
explicitly make sure all your data is aligned.

There is an advantage to Altivec's bit-stripping ways. Because you don't need to explicitly
truncate (align-down) an address, this behavior can save you an instruction or two when handing
addresses to the processor.

This is not to say Altivec can't process unaligned memory. You can find detailed instructions how to
do so on the Altivec Programming Environments Manual (see Resources). It requires more work,
but because memory is so slow compared to the processor, the overhead for such shenanigans is
surprisingly low.

ibm.com/developerWorks/ developerWorks®

Data alignment: Straighten up and fly right Page 9 of 12

Structure alignment
Examine the following structure:

Listing 5. An innocent structure
void Munge64(void *data, uint32_t size) {
typedef struct {
 char a;
 long b;
 char c;
} Struct;

What is the size of this structure in bytes? Many programmers will answer "6 bytes." It makes
sense: one byte for a, four bytes for b and another byte for c. 1 + 4 + 1 equals 6. Here's how it
would lay out in memory:

Table 1. Structure size in bytes
Field Type Field Name Field Offset Field Size Field End

char a 0 1 1

long b 1 4 5

char c 5 1 6

Total Size in Bytes: 6

However, if you were to ask your compiler to sizeof(Struct), chances are the answer you'd get
back would be greater than six, perhaps eight or even twenty-four. There's two reasons for this:
backwards compatibility and efficiency.

First, backwards compatibility. Remember the 68000 was a processor with two-byte memory
access granularity, and would throw an exception upon encountering an odd address. If you were
to read from or write to field b, you'd attempt to access an odd address. If a debugger weren't
installed, the old Mac OS would throw up a System Error dialog box with one button: Restart.
Yikes!

So, instead of laying out your fields just the way you wrote them, the compiler padded the structure
so that b and c would reside at even addresses:

Table 2. Structure with compiler padding
Field Type Field Name Field Offset Field Size Field End

char a 0 1 1

padding 1 1 2

long b 2 4 6

char c 6 1 7

padding 7 1 8

Total Size in Bytes: 8

developerWorks® ibm.com/developerWorks/

Data alignment: Straighten up and fly right Page 10 of 12

Padding is the act of adding otherwise unused space to a structure to make fields line up in a
desired way. Now, when the 68020 came out with built-in hardware support for unaligned memory
access, this padding was unnecessary. However, it didn't hurt anything, and it even helped a little
in performance.

The second reason is efficiency. Nowadays, on PowerPC machines, two-byte alignment is nice,
but four-byte or eight-byte is better. You probably don't care anymore that the original 68000
choked on unaligned structures, but you probably care about potential 4,610% performance
penalties, which can happen if a double field doesn't sit aligned in a structure of your devising.

Conclusion

If you don't understand and explicitly code for data alignment:

• Your software may hit performance-killing unaligned memory access exceptions, which invoke
very expensive alignment exception handlers.

• Your application may attempt to atomically store to an unaligned address, causing your
application to lock up.

• Your application may attempt to pass an unaligned address to Altivec, resulting in Altivec
reading from and/or writing to the wrong part of memory, silently corrupting data or yielding
incorrect results.

Credits

Thanks to Alex Rosenberg and Ian Ollmann for feedback, Matt Slot for his FastTimes timing
library, and Duane Hayes for providing a bevy of testing machines.

ibm.com/developerWorks/ developerWorks®

Data alignment: Straighten up and fly right Page 11 of 12

Resources

• If you're interested in learning more about atomicity, be sure to check out Save your code
from meltdown using PowerPC atomic instructions (developerWorks, November 2004).

• The PowerPC Microprocessor Family: AltiVec(TM) Technology Programming Environments
Manual is available as a PDF from the IBM Microelectronics Technical Library.

• Dan Bernstein comments on PPC alignment and tricks for making GCC do the right thing.
• Alignment is one of many things a developer might want to know about Power Architecture;

developerWorks ran a developer's guide to the POWER architecture, which gives pointers to
other related issues (developerWorks, March 2004).

• Alignment is one of many issues you can face in multithreaded code, or device drivers,
using shared storage on POWER systems. Learn more about the PowerPC storage model
(developerWorks, August 2002).

• To learn more about GNU GCC on all sorts of different platforms, see Links and Selected
Readings.

• For more on PPC programming, see PowerPC Compiler Writer's Guide.
• Much more detail on 64-bit PowerPC can be found in the 64-bit PowerPC ELF Application

Binary Interface Supplement.
• For something more in the middle of those two extremes, see Understanding 64-bit PowerPC

architecture (developerWorks, October 2004); and the PDF-formatted Microelectronics
Technical Library Application Note, Developing Embedded Software For The IBM PowerPC
970FX Processor.

• A C coder, are you? You might also be interested in Use reentrant functions for safer signal
handling (developerWorks, January 2005) describes how and when to employ reentrancy;
and in David Wheeler's Secure programmer columns on the developerWorks Linux zone.

• Inside the IBM PowerPC 970 Part I: Design Philosophy and Front End is very useful if you
would like to learn more about the processor itself; Part II: The Execution Core goes into
Altivec in some detail. SIMD architectures are discussed in 3 1/2 SIMD Architectures and in
and The Pentium 4 and the G4e: an architectural comparison (all Ars Technica).

• Download a IBM PowerPC 405 Evaluation Kit to demo a SoC in a simulated environment, or
just to explore the fully licensed version of Power Architecture technology.

http://www.ibm.com/developerworks/library/pa-atom/
http://www.ibm.com/developerworks/library/pa-atom/
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/FBFA164F824370F987256D6A006F424D
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/FBFA164F824370F987256D6A006F424D
http://cr.yp.to/hardware/ppc.html
http://www.ibm.com/developerworks/linux/library/l-powarch/
http://www.ibm.com/developerworks/eserver/articles/powerpc.html
http://www.gnu.org/software/gcc/readings.html
http://www.gnu.org/software/gcc/readings.html
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF7785256996007558C6
http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi-1.7.html
http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi-1.7.html
http://www.ibm.com/developerworks/library/pa-microdesign/
http://www.ibm.com/developerworks/library/pa-microdesign/
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/AB70A3470F9CC0E287256ECC006D6A54
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/AB70A3470F9CC0E287256ECC006D6A54
http://www.ibm.com/developerworks/linux/library/l-reent.html?ca=dgr-lnxw03Reentrant
http://www.ibm.com/developerworks/linux/library/l-reent.html?ca=dgr-lnxw03Reentrant
http://www.ibm.com/developerworks/views/linux/articles.jsp?sort_order=desc&expand=&sort_by=Date&show_abstract=true&view_by=Search&search_by=secure+programmer%3A
http://arstechnica.com/cpu/02q2/ppc970/ppc970-1.html
http://arstechnica.com/cpu/03q1/ppc970/ppc970-7.html
http://arstechnica.com/cpu/1q00/simd/simd-1.html
http://arstechnica.com/articles/paedia/cpu/p4andg4e2.ars/
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=dw-pa-pek&S_TACT=105AGX16&S_CMP=DWPA

developerWorks® ibm.com/developerWorks/

Data alignment: Straighten up and fly right Page 12 of 12

About the author

Jonathan Rentzsch

Jonathan 'Wolf' Rentzsch runs Red Shed Software, a small Illinois software boutique.
He also leads PSIG, a suburban Mac programmer group, and co-hosts CAWUG, a
downtown Mac & WebObjects programmer group.

© Copyright IBM Corporation 2005
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://rentzsch.com
http://redshed.net
http://cawug.org
http://cawug.org
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Memory access granularity
	Alignment fundamentals
	Lazy processors
	Speed
	Atomicity
	Altivec
	Structure alignment
	Conclusion
	Credits
	Resources
	About the author
	Trademarks

