
ELEC-H-473
SIMD: Assignment 3

Tristan VANSPOUWEN, Theofanis RIGAS

May 9, 2017

1 Introduction
For this project, we have implemented multi-threaded C versions of the threshold and Max-Min
image filters and we compare their performance to their single-threaded and SIMD counter-
parts.

1.1 Note on the use of POSIX threads
Our code is compiled on a Window machine (using mingw), yet we opted for POSIX threads
(pthread.h) instead of the Windows API (windows.h). This is because for our benchmarks,
we needed to use a thread barrier: we create all the threads, use the barrier to block them,
start the clock and then have the main thread enter the barrier to release all the other threads.
We do this in order to measure the time needed to process the images without taking into
account the time needed to instantiate the threads. The Windows thread API does include this
functionality, but the migwn implementation is bugged (see https://github.com/Alexpux/
mingw-w64/pull/2), thus forcing us to use POSIX threads instead.

2 Benchmarks
Both the threshold and the Max-Min filters are applied to a raw 1048576 bytes (about 1Mb)
grayscale image. We measure their performance on an Intel Core i5-4210 2.90Ghz CPU. This
CPU has two physical cores and uses the Intel Hyper-threading technology (so 4 cores are
visible to the OS). We use the QueryPerfomanceCounter function to obtain high quality mea-
surements. We start the clock just before the actual processing of the image takes place (so
after variable declarations and thread setup) and stop it after the last byte has been processed.

For each filter, we provide benchmarks for the single-threaded C implementation without
any compiler optimization (Debug version) and compiled with the -O2 flag (Release version),
the multi-threaded equivalent using 2,4 and 8 threads and finally the (single-threaded) SIMD
implementation. The benchmarks have been averaged over 10 executions and are expressed in
microseconds (µsecs) or milliseconds (msecs) accordingly:

Table 1: Threshold benchmarks
C Debug C Release SIMD

Single threaded 2741.2 µsecs 1101.3 µsecs 454.5 µsecs
2 threads 2272.8 µsecs 1335.6 µsecs -
4 threads 1889.6 µsecs 818.4 µsecs -
8 threads 1905.0 µsecs 907.0 µsecs -

Table 2: Max-Min benchmarks
C Debug C Release SIMD

Single threaded 190.5 msecs 103.9 msecs 540.5 µsecs
2 threads 104.2 msecs 29.2 msecs -
4 threads 83.3 msecs 25.4 msecs -
8 threads 84.3 msecs 25.1 msecs -

1



3 Remarks
Let us first discuss what we expected to see in terms of performance changes:

• A considerable speedup when comparing the single-threaded and the version using 2
threads: the CPU has two physical cores so processing of the image should be more or
less parallelized.

• A smaller but noticeable speedup between the 2 and the 4 threads version: 4 logical cores
do not offer the same advantages as 4 physical cores. The additional gain in speed should
be around 30% at most.

• No difference between the 4 and the 8 threads version: adding more threads than those
who can physically run in parallel on the CPU should not offer any speed advantages.

Our benchmarks largely confirmed our hypothesis:

• In most cases, using threads resulted in a significant improvement in performance com-
pared to the single-threaded version. For example, using 2 threads sped up the optimized
(Release) version of the Max-Min filter by 3.5x.

• Using 4 threads instead of 2 also resulted in better performance, offering speed ups
between 15-30% as expected. For example, for the Debug version of the threshold filter
the performance improved by 20% (from 104.2 msecs down to 83.3).

• In both the Release and the Debug versions, for both filters, the 8-thread version is
slightly slower than the 4-thread version. As we noted above, this was to be expected
given that the CPU has only 4 logical cores. The performance loss could be due to
context-switching between the 8 threads.

3.1 Multi-threading vs SIMD
From our benchmarks, it is clear that even if using threads drastically improves the speed of the
C implementations, especially when combined with compiler optimizations, the single-threaded
SIMD versions remain much faster.

As an experiment, we also benchmarked a multi-threaded version of the SIMD threshold
implementation but this resulted in no noticeable increase in speed (see accompanying source
code).

3.2 Dividing the data between threads
In order to implement multi-threading, we had to divide the pixels of the image being processed
between the worker threads. For the threshold filter we used a straightforward approach and
divided the 1D array holding them in 2,4 or 8 equal parts. For the Max-Min filter, our algorithm
works with 2D coordinates. We logically split the 1D array in matrices with as many columns
as the width of the image and with image height

number of threads rows.

3.3 Closing remarks
Finally, we should also note that when looking at the implementations as a whole, the process
of spinning up the threads can consume significant time. So, if the size of the processed data
is small and the filter simple (like the threshold for example), using multiple threads, even if
it speeds up the actual processing of the data, can actually result in a worse overall execution
time.

2


