Microprocessor Architectures. SIMD lab 3 report. Raymond Lochner and Aldar
Saranov.

Resource sharing

The main shared resource in the project is the image matrix. In order to
implement a parallel image processing, one must be able to access it
simultaneously by the means of several threads. The pixel processing is basically
done in the same way as in the first two labs except that they operate within
separate areas.

Threshold

Since in threshold processing every pixel is independent one can simply update
the pixel values to the thresholded ones. This is of course only possible if each
thread does not overlap the processing areas of the other threads. For example
an image with 2000 pixels can be sliced by 2 threads into 2 areas of 1000 pixels
each.

Minmax

As a conceptual difference from the threshold processing, minmax processes each
pixel depending on its neighbors. Therefore one must store the result matrix as a
separate matrix.

Partition form

One can use several trivial partition forms:



Figure 1. Horizontal and vertical matrix partitions.

Both horizontal and vertical partitions gain equivalent areas of the matrix and
therefore the partition can be considered “fair”. The advantage of the left
approach is that whilst the matrix can be represented as a one-dimensional array
(row by row) this partition will allow to treat these areas as sub-arrays of this
array and forget its matrix-type nature.

Thread management

In order to ensure that every thread finished its execution we use an array of
mutexes where each mutex corresponds to one thread and stands for its
termination. The threads are initialized using CreateThread() function which
creates a vector of thread handles at one invocation. Right after the thread
initializing the main thread converts to awaiting state of the child thread
completion which is done by CloseHandle() function.

Miscellaneous
The project was implemented in Visual Studio 13.



	Resource sharing
	Thread management
	Miscellaneous

