
Microprocessor Architectures [ELEC-H-473]
Lab 9: Multi-threaded execution on a multi-core

architecture

BEYENS Ziad
GARCIA DIAZ Antonio

NOUGBA Hamza

May 11, 2017

1 Introduction
The aim of this laboratory was to study the pros and cons of using multi-threading in image
processing. More specifically, the goal is to modify some of the previously implemented methods
in C++ and assembly SIMD (from labs 7 and 8) so that they exploit a multi-thread architecture,
and compare their runtime with that of the original methods (that used a single thread).

2 Presentation of the program
The image processing methods that were treated in this lab were the threshold filter (using a value
of 100), and the maximum filter (applied on 3x3 pixels neighborhoods), both in their C++ and
assembly SIMD versions. These filters are, as usual, applied on an 8-bit gray-scale image file called
test.raw, a 1024x1024 picture of a baby’s face. The program can be compiled with a simple "make"
instruction, and needs no parameters at the execution.

The source code for the aforementioned methods is reused to create multi-threaded versions of
themselves, exploiting 20 threads by default. Both the threshold and the maximum filter implement
different data structure to define their threads (called Thresh and Max, respectively). These
contain, as parameters, the first and last positions to treat in the image data, and all the necessary
variables for applying the filter. The program outputs 8 image files, each processed by a different
filter (threshold or maximum, standard C++ or SIMD-exploiting assembly) and either using multi-
threading or not. The execution times for processing each file are displayed on the console.

3 Benchmarking of the methods
For the threshold filter:

• The C++ implementation using a single thread was executed in 0.0060 seconds.

• The SIMD implementation using a single thread was executed in 0.0020 seconds.

• The C++ implementation using 20 threads was executed in 0.0050 seconds.

• The SIMD implementation using 20 threads was executed in 0.0030 seconds.

For the maximum filter:

• The C++ implementation using a single thread was executed in 0.0970 seconds.

• The SIMD implementation using a single thread was executed in 0.0030 seconds.

• The C++ implementation using 20 threads was executed in 0.8820 seconds.

• The SIMD implementation using 20 threads was executed in 0.0080 seconds.

1



It appears that the multi-threaded versions of the methods tend to take more execution time
than the single-threaded versions. Only the C++ threshold filter is faster when exploiting various
threads than when using a single thread. This may be due either to the relative complexity of
setting the threads themselves with respect to the actual execution time of the algorithm, or (most
probably) to the fact that the tests were run on a computer with two cores. Perhaps, indeed, more
cores are needed to observe a significant improvement in the execution times.

2


	Introduction
	Presentation of the program
	Benchmarking of the methods

