
parallelisation (thread-wise) of LAB 2 :
To execute, make sure you have the NASM and GCC compilers installed :

Sudo apt-get install nasm
Then make sure you have the image called “test.raw” in the same directory
as the source files.
Then run the following :

nasm -f elf64 treshold_lab1.ass && gcc -o3 -g treshold_lab1.o
ccode_lab1.c -lpthread -o res1 && ./res1

results :
Number of threads : 1

execution time in C : 0.002909
execution time in SIMD : 0.000225
execution time in SIMD AVX : 0.000302

Number of threads : 2
execution time in C : 0.001328
execution time in SIMD : 0.000128
execution time in SIMD AVX : 0.000234

Number of threads : 4
execution time in C : 0.002684
execution time in SIMD : 0.000087
execution time in SIMD AVX : 0.000088

Number of threads : 8
execution time in C : 0.000640
execution time in SIMD : 0.000137
execution time in SIMD AVX : 0.000127

Number of threads : 16
execution time in C : 0.000975
execution time in SIMD : 0.000617
execution time in SIMD AVX : 0.000379

Number of threads : 32
execution time in C : 0.000858
execution time in SIMD : 0.000684
execution time in SIMD AVX : 0.001088

Number of threads : 64
execution time in C : 0.002667
execution time in SIMD : 0.002261
execution time in SIMD AVX : 0.001650

parallelisation (thread-wise) of LAB 3 :
run using the following code :

nasm -f elf64 assembly_lab2.ass && gcc -o3 -g assembly_lab2.o
ccode_lab2.c -lpthread -o res2 && ./res2

results :

Number of threads : 1
3X3 execution time in C : 0.065308

execution time in SIMD : 0.000600
5X5 execution time in C : 0.159490

execution time in SIMD : 0.000535
Number of threads : 2

3X3 execution time in C : 0.035923
execution time in SIMD : 0.000229

5X5 execution time in C : 0.085099
execution time in SIMD : 0.000270

Number of threads : 4
3X3 execution time in C : 0.016770

execution time in SIMD : 0.000111
5X5 execution time in C : 0.041721

execution time in SIMD : 0.000398
Number of threads : 8

3X3 execution time in C : 0.007936
execution time in SIMD : 0.000270

5X5 execution time in C : 0.022375
execution time in SIMD : 0.000231

Number of threads : 16
3X3 execution time in C : 0.004544

execution time in SIMD : 0.000611
5X5 execution time in C : 0.008778

execution time in SIMD : 0.000611
Number of threads : 32

3X3 execution time in C : 0.002662
execution time in SIMD : 0.000872

5X5 execution time in C : 0.004340
execution time in SIMD : 0.000428

Number of threads : 64
3X3 execution time in C : 0.001666

execution time in SIMD : 0.000853
5X5 execution time in C : 0.004658

execution time in SIMD : 0.000951

important conclusion :
in SIMD, when using a number of threads equal to that of the number of the cores
(of the system on which the implementation is running), we get the best
performance. The reason for that is that each core has it’s own SIMD registers
xmm0—xmm16. So if we have more threads than cores, these registers have to be
shared (for each thread switch they have to be pushed onto the stack and then
back in), and so this kills performance. If we have the same number of cores than
threads however, no thread switching is needed so the maximum performance is
achieved.

in C however, more we increase the number of threads, better performance we will
get (until a certain limit of course) and this is basically because when C is converted
into assembly by GCC, it mainly uses the stack to save it’s data and local variables.

